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Abstract
Sarcopenia, the age-related loss of muscle strength and mass or quality, is a common condition with major adverse conse-
quences. Although the pathophysiology is incompletely understood, there are common mechanisms between sarcopenia and 
the phenomenon of accelerated ageing seen in diabetes mellitus. Drugs currently used to treat type 2 diabetes mellitus may 
have mechanisms of action that are relevant to the prevention and treatment of sarcopenia, for those with type 2 diabetes 
and those without diabetes. This review summarises shared pathophysiology between sarcopenia and diabetes mellitus, 
including the effects of advanced glycation end products, mitochondrial dysfunction, chronic inflammation and changes to 
the insulin signalling pathway. Cellular and animal models have generated intriguing, albeit mixed, evidence that supports 
possible beneficial effects on skeletal muscle function for some classes of drugs used to treat diabetes, including metformin 
and SGLT2 inhibitors. Most human observational and intervention evidence for the effects of these drugs has been derived 
from populations with type 2 diabetes mellitus, and there is a need for intervention studies for older people with, and at risk 
of, sarcopenia to further investigate the balance of benefit and risk in these target populations. Not all diabetes treatments 
will be safe to use in those without diabetes because of variable side effects across classes. However, some agents [including 
glucagon-like peptide (GLP)-1 receptor agonists and SGLT2 inhibitors] have already demonstrated benefits in populations 
without diabetes, and it is these agents, along with metformin, that hold out the most promise for further investigation in 
sarcopenia.
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Key Points 

Type 2 diabetes mellitus and sarcopenia share multiple 
pathophysiological mechanisms.

Preclinical, observational and interventional data suggest 
that some drugs used to treat diabetes may have beneficial 
effects on sarcopenia even in patients without diabetes.

Clinical trials of these agents have not focussed on 
enrolling people with sarcopenia, and such trials are 
needed to evaluate whether diabetes drugs could improve 
or prevent sarcopenia in patients with or without diabe-
tes.

1  Introduction

Sarcopenia is the loss of muscle strength and muscle mass 
or quality commonly seen with advancing age [1]. It is 
now clear that sarcopenia is common; meta-analysis of 
community-based studies show a prevalence of 10% of the 
general population aged 60 years and over [2], albeit with 
wide differences (2–36%) between different populations 
and diagnostic methods. A higher prevalence is found in 
certain subgroups, for instance those living with multiple 
long-term conditions (MLTC) [3, 4]. Sarcopenia increases 
the risk of a series of adverse outcomes, including falls, 
fractures and immobility, as well as the need for health 
and social care, and is a key contributor to the syndrome 
of physical frailty [5–7]. It is also associated with ear-
lier death [8]. Sarcopenia has been estimated to cost the 
UK health service £2 billion per year [9], and the direct 
costs of sarcopenia in the USA in 2000 were estimated at 
$18.5 billion per year [10].

Sarcopenia is therefore a key ageing syndrome, and pre-
ventive and treatment therapies are needed to help main-
tain health and wellbeing in later life. Resistance exer-
cise, with or without adjunctive protein supplementation, 
is the only intervention with good evidence of efficacy for 
the prevention and treatment of sarcopenia [11, 12], but 
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not all individuals with sarcopenia are willing or able to 
participate in such training. The place of vitamin D as a 
treatment for sarcopenia remains controversial, with trial 
results ranging from modest benefit to possible harm [13, 
14]. Pharmacological therapies are therefore required [15], 
both as an alternative to resistance exercise but also to 
augment the effects of resistance training.

Type 2 diabetes mellitus (T2DM) has long been rec-
ognised as a condition associated with accelerated age-
ing [16]; it is also a condition characterised by impaired 
skeletal muscle function [17, 18]. A growing body of pre-
clinical and clinical data suggest that medications used to 
treat T2DM may have important effects on muscle func-
tion, both by their effects on glucose metabolism and via 
effects not directly related to glucose metabolism [19, 
20]. Understanding the mechanisms of action and clini-
cal effects of these medications on skeletal muscle will 
enable more nuanced and informed choices of agent for 
those with T2DM and sarcopenia, but importantly may 
also suggest novel therapeutic avenues to prevent and treat 
sarcopenia in patients who do not have T2DM.

Integrating mechanistic and clinical research on the 
effects of these drugs for people with and without T2DM 
is needed to guide progress in research and practice by 
giving a broad, clinically applicable overview of current 
knowledge. The purpose of this review is therefore to 
examine the current evidence for mechanisms by which 
drugs for T2DM might improve skeletal muscle function, 
and to examine evidence of beneficial effects of these 
treatments on skeletal muscle function in individuals with 
and without diabetes.

1.1 � The Biology of Sarcopenia

The pathophysiology of sarcopenia is incompletely under-
stood, but a range of fundamental biological processes have 
been implicated. Histological studies suggest a preferential 
loss of type 2 (fast twitch) muscle fibres and a fast-to-slow 
fibre shift, although both type 1 (slow twitch) and type 2 
fibres show evidence of atrophy in patients with sarcopenia 
[21, 22]. Histological studies also show evidence of denerva-
tion and neuromuscular junction dysfunction with each motor 
neuron innervating a larger number of motor units [23]. Infil-
tration of fat into muscle, and replacement of muscle tissue 
by fat, are commonly seen in sarcopenia; the combination of 
sarcopenia and obesity (sarcopenic obesity) predicts worse 
outcomes than sarcopenia alone in epidemiological studies 
[24, 25]. Chronic inflammation, mitochondrial dysfunction, 
oxidative stress, changes in the extracellular matrix such as 
increased collagen deposition [26], vascular dysfunction and 
neurohormonal changes have all been linked to the develop-
ment of sarcopenia [1, 17, 27, 28].

1.2 � Diabetes as a Syndrome of Accelerated Ageing

Accelerated ageing is a hallmark of T2DM. Life expectancy 
in type 1 diabetes is still 12 years shorter than for individu-
als without diabetes [29], and cardiometabolic conditions 
(e.g. renal disease, cardiovascular disease) typically manifest 
years earlier than in individuals without diabetes [15]. Both 
overt T2DM and other insulin-resistant states are associ-
ated with chronic inflammation, enhanced reactive oxygen 
species generation, telomere shortening and cellular senes-
cence – processes that are driven in part by the obesity that 
commonly underlies T2DM [30]. Importantly, these are also 
fundamental biological processes that underpin ageing and 
sarcopenia [31].

2 � The Relationship between Hyperglycaemic 
States and Skeletal Muscle Function

2.1 � Biology

a.	 Advanced glycation end products (AGEs)
	   Glycation of proteins and other macromolecules to 

form advanced glycation end products (AGEs) is a hall-
mark of T2DM and has been postulated to underpin 
many of the long-term adverse consequences of the con-
dition, including both macrovascular and microvascular 
disease [32]. However, it is now clear that glycation is 
also an important contributor to the ageing phenotype 
even in individuals who do not have T2DM [33]. Skel-
etal muscle holds a significant proportion of total body 
protein [34], and glycation of skeletal muscle collagen 
occurs with advancing age in humans [35]. A range of 
other skeletal muscle proteins, including actin and cre-
atine kinase, also show increased labelling with AGE-
specific antibodies in older versus younger rats [36].

	   The adverse consequences of AGEs are not con-
fined to the direct effect on macromolecular structure 
and function. These adducts, acting via AGE receptors 
[37], are a major driver of chronic inflammation [31]; 
inflammation in turn drives cellular senescence, oxida-
tive stress and mitochondrial dysfunction [38] – key 
pathophysiological mechanisms also implicated in sar-
copenia. Importantly, AGEs in in vitro myotube systems 
also directly impair myogenesis and induce muscle atro-
phy via AGE-receptor-mediated protein kinase B (Akt) 
pathway signalling [39].

b.	 Insulin resistance and skeletal muscle glucose uptake
	   Raised concentrations of insulin are found in indi-

viduals with insulin resistance, usually thought to be a 
response to impaired insulin-mediated skeletal muscle 
glucose uptake and hence higher circulating glucose 



705Diabetes drugs for sarcopenia

concentrations [40]. The loss of muscle mass that occurs 
in sarcopenia would be expected to reduce the amount of 
metabolically active muscle available to absorb glucose 
from the circulation under the influence of insulin, and 
this may explain the association between insulin resist-
ance and sarcopenia [41]. Conversely, increasing muscle 
mass through pharmacological intervention in animal 
models leads to improvements in insulin sensitivity 
[42]. In addition, there are several health states or risk 
factors that are common to both sarcopenia and insulin 
resistance (for instance, physical inactivity and chronic 
inflammation [43, 44]) that may also explain the associa-
tion even without accounting for the loss of muscle mass 
seen in sarcopenia.

	   Insulin has important effects not only on glucose 
uptake but also on protein turnover in skeletal muscle, 
reducing muscle protein breakdown and (in some stud-
ies where sufficient amino acids are present) increasing 
muscle protein synthesis [45]. There is some evidence 
from isotope tracer studies that skeletal muscle in older 
people is less sensitive to the anabolic effects of insulin 
than in younger individuals, and that this difference is 
greater than can be explained by differences in skeletal 
muscle glucose uptake in response to insulin [46, 47]. 
It is less clear whether impaired skeletal muscle glu-
cose uptake is itself a limiting factor in skeletal muscle 
metabolism, or whether insulin resistance has direct 
effects on mitochondrial function [48] or other aspects 
of skeletal muscle metabolism.

c.	 Direct toxic effects of hyperglycaemia
	   There is evidence that hyperglycaemia prevents sat-

ellite cell proliferation and differentiation in individu-
als with T2DM [49]. However, the significance of this 
finding for the development of sarcopenia in individu-
als without diabetes, or with well-controlled diabetes, 
is unclear, as satellite cell numbers and function have 
not been found to be consistently impaired in sarcope-
nia [50]. Glucose may also have directly toxic effects 
on mitochondrial function, either via osmotic effects or 
by driving metabolism via alternative pathways [51]. 
Although such phenomena are likely to be most relevant 
in patients with uncontrolled diabetes, recent work sug-
gests that high-glucose diets in animal models impair 
mitochondrial function [52].

d.	 Non-glycaemic effects
	   T2DM and sarcopenia share a number of pathophysi-

ological processes, and current evidence suggests that 
they may all be reciprocally causal. Intramyocellular 
lipid deposition, common in obesity but also a feature 
of sarcopenia, may result in part from mitochondrial 
dysfunction with resultant accumulation of unmetabo-
lised free fatty acids [53]. Lipid deposition in skeletal 
muscle or in adipose tissue is in turn is a driver of 

chronic inflammation [54, 55], which is known to be a 
cause of mitochondrial dysfunction [44]. The increased 
generation of reactive oxygen species resulting from 
mitochondrial dysfunction is in turn a driver of further 
mitochondrial dysfunction [53], creating a vicious cycle 
of pro-oxidative and pro-inflammatory activity.

	   Microvascular dysfunction is another shared patho-
physiological process. The microvascular dysfunction 
typically seen in patients with DM [56] may have direct 
adverse effects on skeletal muscle. Patients with T2DM 
have lower capillarisation of skeletal muscle [57] and 
ultrastructural changes in capillaries, including thick-
ened basement membranes [58]. Sarcopenia is also 
associated with reduced skeletal muscle capillarisation 
[59], and low capillarisation has been proposed as a lim-
iting factor in the ability of skeletal muscle to respond 
to resistance training [60]. This microvascular dysfunc-
tion may be driven in part by vascular insulin resistance; 
both conduit arteries and microvascular beds have been 
found to be less responsive to insulin in states of obesity 
and of T2DM [61, 62]. A selection of mechanisms that 
may drive sarcopenia, together with drugs used to treat 
diabetes that may ameliorate the adverse effects of these 
mechanisms, is shown in Fig. 1.

2.2 � Epidemiology

Sarcopenia is more common in individuals with T2DM than 
in those without diabetes; estimates suggest a prevalence 
50% higher in individuals with T2DM, after accounting 
for age and sex, and these associations are found across 
a range of different definitions of sarcopenia and ways of 
adjusting skeletal muscle mass [63, 64]. Longer duration 
of T2DM is associated with an increased risk of quadriceps 
weakness [65]. Interestingly, the link between T2DM and 
muscle strength measures appears much stronger than the 
association between T2DM and muscle mass. A Mendelian 
randomisation study also gave some limited support for the 
above findings, with genetically predicted diabetes risk in 
men (but not women) being associated with lower handgrip 
strength and lower whole-body lean mass measured using 
bioimpedance analysis in the UK Biobank cohort. This Men-
delian randomisation study suggest a bidirectional relation-
ship: low genetically predicted whole-body lean mass was a 
risk factor for future development of T2DM for women (but 
not for men) in this analysis [66].

Skeletal muscle plays an important role in taking up cir-
culating glucose under the influence of insulin [40], and thus 
lower muscle mass can be expected to contribute to the syn-
drome of insulin resistance and consequent hyperglycaemia. 
Studies of insulin resistance suggest that this metabolic state 
is also associated with lower quadriceps strength in cross-
sectional studies [41] and with an accelerated loss of lean 



706	 M. D. Witham et al.

mass measured by dual-energy X ray absorptiometry (DXA) 
over time [67]. In keeping with this finding, elevated circu-
lating glucose concentrations are associated with a higher 
incidence of mobility limitation (self-reported difficulty 
walking a quarter of a mile, short physical performance 
battery <9 points) and physical frailty measured using the 
Fried frailty criteria in older people [68] – key outcomes 
driven by reduced muscle mass and strength. In addition, 
an inverse dose–response relationship is evident between 
blood glucose concentrations and handgrip strength [18] and 
between higher hemoglobin A1c (HbA1c) within the normal 
range and lower knee extensor strength [69]. However, no 
difference was seen in the rate of decline in muscle strength 
over 2 years between participants in the highest and lowest 
quartiles of HbA1c in this analysis.

The relationship between skeletal muscle mass and dys-
regulation of metabolism is made more complex by the role 
of fat. Studies that adjust skeletal muscle mass for height 
squared find weaker relationships with cardiometabolic 
syndromes than those that adjust for body weight or body 
mass index (BMI) [70]; for a given body weight, less muscle 
means more fat, and obesity is well-known to be a driver 

of insulin resistance and diabetes [71]. Both low skeletal 
muscle mass and high fat mass may play independent roles; 
individuals with the combination of these states (sarcopenic 
obesity) are at higher risk of death and mobility limitation 
than those with sarcopenia alone or obesity alone [24, 25], 
and the degree of sarcopenia is strongly associated with the 
degree of insulin resistance seen in individuals with obesity 
[72].

Concentrations of AGEs either in the skin or the circula-
tion are higher in individuals with lower muscle mass and 
strength [73], both for the general population [74, 75] and 
for individuals with T2DM [76]. Some, but not all, of these 
analyses suggest a dose-response between higher AGEs and 
lower muscle mass or strength. Finally, there is some evi-
dence that the association between glycaemia and muscle 
function may be causal. An observational study of Japanese 
patients with T2DM [77] found that a reduction in HbA1c 
during treatment with oral diabetes medications or with 
insulin was associated with increased walk speed, but not 
grip strength. This difference between upper and lower limb 
function may suggest that other aspects of walking control 

Fig. 1   Mechanisms potentially contributing to sarcopenia that may be amenable to modification with drugs used to treat diabetes
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(e.g. central or peripheral nerve function [78]) could be 
important in explaining the improvement in walk speed.

3 � Diabetes Drugs and Skeletal Muscle

3.1 � Metformin

Metformin is a biguanide molecule, in use for the treatment 
of T2DM since the 1950s [79]. Despite initial concerns 
over the ability of biguanides to induce lactic acidosis [80], 
metformin has proven to be a safe and effective member 
of the therapeutic armamentarium in the management of 
T2DM. It effectively lowers plasma glucose concentrations 
when concentrations are high, but it is rare for metformin 
to be associated with hypoglycaemia when used as a single 
agent [81]. Unlike insulin and some other medications used 
for treating diabetes, it does not cause weight gain. Lactic 
acidosis is very rare side effect (and usually precipitated 
by intercurrent illness); gastrointestinal disturbance limits 
tolerability for 5–10% of users [82].

Despite nearly 70 years of use, the mechanisms of action 
of metformin continue to be debated. Metformin inhibits 
gluconeogenesis in the liver [83] in patients with T2DM 
and elevated blood glucose concentrations, but in patients 
without T2DM, new evidence suggests that metformin may 
increase endogenous glucose production [84]. Multiple 
other pathways have been identified by which metformin 
might exert beneficial effects on age-related pathophysiol-
ogy – particularly on mechanisms relevant to energy utilisa-
tion. Many of these mechanisms may be relevant to skeletal 
muscle function. Firstly, metformin inhibits mitochondrial 
complex 1, and this in turn may reduce the production of 
reactive oxygen species [85, 86], thought to be involved in 
cellular damage and mitochondrial dysfunction. Secondly, 
metformin activates adenosine monophosphate (AMP)-acti-
vated kinase (AMPK), the ‘master regulator’ of energy uti-
lisation by cells. AMPK has effects on autophagy and stress 
resistance, and in stimulating mitochondrial biogenesis [87]. 
A further AMPK-driven action of metformin is to inhibit the 
mammalian target of rapamycin complex (mTORC). The 
mTORC pathway is critical to multiple ageing processes, 
a key example of which is regulation of autophagy. Con-
stitutive mTORC upregulation inhibits autophagy, includ-
ing in skeletal muscle cells; in animal models the loss of 
autophagy leads to a skeletal myopathy that is reversible 
with the mTORC inhibitor rapamycin [88, 89]. Although 
high mTORC activity is associated with shorter lifespan in 
multiple species, mTORC also plays important roles in the 
maintenance of skeletal muscle mass and prevention of atro-
phy [90] suggesting that  mTORC inhibition could have del-
eterious effects on skeletal muscle. The net effect of mTORC 

inhibition may depend on both the starting activity and the 
degree of inhibition – skeletal muscle from sarcopenic rats 
was found to have highly active mTORC, and partial inhibi-
tion of mTORC was able to increase muscle mass in this 
animal model [91].

Metformin may not act directly on myocytes in a clini-
cally important way however. Human skeletal muscle uptake 
of metformin appears low in comparison to hepatic, renal 
and intestinal uptake in radioactive tracer studies using 
11C-labelled metformin [92]. It is therefore not certain that 
sufficient metformin reaches skeletal muscle to mediate the 
aforementioned effects directly within myocytes.

Thirdly, metformin inhibits pro-inflammatory cytokine 
production [including interleukin (IL)-1 and tumour necrosis 
factor (TNF)-alpha], and intracellular pathways activated by 
inflammation [via inhibition of nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-κB)] [93–95]; it has 
also been shown to increase circulating levels of irisin, a 
key myokine [96]. Fourthly, metformin suppresses cellular 
senescence in multiple tissues, including skeletal muscle, 
which is a major driver of ageing in mammals via its impact 
on mitochondrial complex I, AMPK, mTOR and NF-κB. 
Metformin’s senostatic action has been shown to improve 
frailty (including improvements in skeletal muscle mass and 
function in a mouse model of premature ageing [97]) and 
led to improvements in muscle strength and endurance in a 
sarcopenic mouse model, along with reduction in a suite of 
pro-inflammatory cytokines [98].

Finally, metformin also precipitates changes to the gut 
microbiome [99]. This has been proposed as an indirect 
mechanism of action for some of the effects of metformin, 
and although the precise biological pathways involved 
remain unclear, a range of actions have been postulated, 
including changes to bacterial-derived pro-inflammatory 
compounds, changes to production of circulating bacterial 
metabolites with actions on AMPK and indirect effects to 
stimulate release of GLP-1 by the gut [100]. Not all effects 
of metformin on skeletal muscle may be beneficial however; 
metformin has been shown to reduce gastrocnemius mass 
in mice in one study, an effect likely driven by induction of 
myostatin transcription [101].

3.2 � Evidence from Observational and Intervention 
Studies

Few studies have examined the relationship between met-
formin use and skeletal muscle health – such studies are 
challenging because metformin is currently indicated for use 
in T2DM – a condition which is itself implicated in accel-
erated ageing and muscle dysfunction. Observational data 
from the Osteoporotic Fracture in Men (MrOS) study sug-
gested that men with T2DM treated with metformin showed 
slower loss of muscle mass measured by DXA over time 
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than those not treated with insulin-sensitising agents [102]; 
similar results were found among women with T2DM in the 
Study of Osteoporotic Fractures (SOF) [103].

One randomised controlled trial suggests promising 
effects of metformin on physical function [104]. A total 
of 120 participants aged 60 years and over with prefrailty 
(measured and without diabetes were randomised to receive 
16 weeks of metformin 500 mg three times a day or match-
ing placebo. Walk speed increased significantly in the treat-
ment group compared with placebo (by 0.13 m/s, which 
exceeds the minimum clinically important difference for 
this measure [105]). No differences were seen for quality 
of life as measured by the EQ5D tool, handgrip strength or 
myostatin level; weight change was not reported, and drop-
out rates were high (≥ 20%) in both arms. The MASTERS 
trial [106] also found no augmentation of muscle strength 
when metformin 850 mg twice daily was added to a 14-week 
resistance training programme for older men and women, 
and indeed the muscle hypertrophic response measured by 
both computed tomography and by DXA to exercise was 
blunted by metformin when compared with placebo. Similar 
findings were seen in a small but detailed trial of metformin 
(up to 1 g twice daily versus placebo) given to healthy older 
people undertaking 12 weeks of aerobic exercise training. 
In this trial, metformin prevented the expected improvement 
in whole-body insulin sensitivity measured by oral glucose 
tolerance test, and attenuated the expected improvement in 
maximal oxygen uptake and skeletal muscle mitochondrial 
respiration from aerobic training [107]. The focus of these 
trials was on augmenting the effect of training rather than 
standalone effects of metformin (the effect of metformin 
alone was not studied), and although the trial included 
people with a range of physical capabilities, it did not spe-
cifically target those with sarcopenia. These results suggest 
however that careful targeting may be needed to avoid del-
eterious effects of metformin by targeting only those popula-
tions most likely be benefit (perhaps those with over-active 
mTOR as discussed above, or those not willing or able to 
undertake exercise training).

A number of other trials are under way that seek to 
test the effects of metformin on skeletal muscle function. 
Of particular note are a randomised, placebo-controlled 
trial enrolling participants with impaired glucose toler-
ance [108], testing metformin up to 1 g twice daily versus 
placebo for 2 years, and a trial (MET-PREVENT) [109] 
enrolling older people with probable sarcopenia, testing 
metformin 500 mg three times a day versus placebo for 
4 months. The results of these trials are necessary to test 
whether the potential advantages of metformin outweigh 
any adverse effects of metformin on appetite, food intake, 
weight and exercise benefits.

3.3 � Sulphonylureas and Insulin Secretagogues

Sulphonylureas are another class of drug that have been used 
for decades to treat DM [110]. Glinides are a more-recently 
introduced, molecularly distinct class of compounds with 
faster onset and offset of action [111]. Both work by closing 
adenosine triphosphate (ATP)-sensitive potassium channels 
(KATP channels), a mechanism that parallels the effect of 
ATP on channel closure. The closure of the KATP channel 
triggers membrane depolarization, calcium influx and insu-
lin release from pancreatic beta cells [112]. A number of 
different subtypes of the KATP channel exist, with differential 
expression across a wide range of tissues, including skeletal 
muscle [113]. Individual members of the sulphonylurea and 
glinide drug classes bind with differential potency to these 
subtypes of KATP channel [114], which may lead to effects 
outwith the primary mechanism of action based on insulin 
release.

Although many of the actions of sulphonylureas and gli-
nides are therefore attributable to the actions of endogenous 
insulin, additional actions may also be mediated by direct 
effects on skeletal muscle KATP channels. Not all sulphony-
lureas bind to skeletal muscle KATP channels, but for those 
that do (e.g. glibenclamide), this may represent a further 
mechanism of action. Open KATP channels are postulated to 
protect skeletal muscle against energy depletion in fatigue 
[115]; closure of these channels has also been shown to pre-
cipitate muscle atrophy in animal models [116]. Conversely, 
sulphonylureas may also enhance glucose uptake by enhanc-
ing glucose transporter type 4 (GLUT-4) expression at the 
cell membrane [117].

Because sulphonylureas and glinide medications lower 
blood glucose and precipitate hypoglycaemia, studies 
examining the effect of these medications on muscle func-
tion in patients without T2DM have not been performed. 
Observational studies in patients with T2DM are difficult 
to interpret; in many studies, sulphonylureas are the com-
parator class of medication, and it is difficult to dissect out 
whether sulphonylureas have deleterious effects on mus-
cle function or whether comparator agents have beneficial 
effects [101–103]. For example, falls were more frequent in 
patients with T2DM taking sulphonylureas than other drugs 
for T2DM in a recent observational study [118]. Skeletal 
muscle weakness is known to be an important risk factor for 
falls [119], but this study was not able to ascertain how much 
of the effect was attributable to skeletal muscle dysfunc-
tion and how much to hypoglycaemic episodes. The current 
evidence does not support a beneficial effect of these drug 
classes on muscle function, and their hypoglycaemic effects 
in people without diabetes mean that they are unlikely to be 
practical to test further.
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3.4 � Thiazolidinediones (Glitazones)

Thiazolidinediones (glitazones) activate the peroxisome 
proliferator-activated receptor (PPAR) gamma, triggering 
a complex set of metabolic changes centred around lipid 
metabolism, primarily in adipocytes but also in a wide 
range of other tissues, including skeletal muscle [120]. 
Theoretically, these changes in lipid metabolism, including 
reductions in free fatty acid concentrations, could reduce 
intramyocellular lipid deposition, leading to improvements 
in mitochondrial function and insulin sensitivity [53, 54] that 
could be beneficial to skeletal muscle function. Human stud-
ies show a reduction in intramyocellular lipid deposition in 
patients with T2DM treated with glitazones [121]. However, 
data from laboratory studies on glitazones is less encourag-
ing; in a young non-diabetic mouse model, pioglitazone did 
not improve mitochondrial function or grip strength alone 
or as an adjunct to exercise training [122].

Observational data from the MrOS study suggested that 
men with T2DM treated with glitazones showed slower 
loss of total and appendicular lean mass over time as meas-
ured by DXA than those not treated with insulin-sensitising 
agents [102]. Uncontrolled muscle biopsy studies enrolling 
patients with T2DM show that 12 weeks of pioglitazone 
30 mg once daily improved skeletal muscle mitochondrial 
respiration measured by high-resolution respirometry of 
muscle biopsies, whereas 12 weeks of rosiglitazone 4 mg 
once daily worsened mitochondrial respiration [123]; 
this was despite both agents improving insulin resistance. 
Beneficial effects were also seen in a randomised trial of 
pioglitazone 45 mg once daily versus diet for 6 months in 
patients with T2DM. Both groups showed similar improve-
ments in HbA1c and insulin sensitivity, but the pioglitazone 
group additionally showed increased levels of mitochondrial 
gene expression and AMPK phosphorylation [124]. Simi-
lar increases in mitochondrial proteins involved in oxida-
tive phosphorylation were observed in a placebo-controlled 
trial of pioglitazone 15 mg once daily given for 6 months 
[125]. However, another placebo-controlled randomised 
controlled trial (RCT) using a higher dose of pioglitazone 
(30–45 mg once a day for 12 weeks) in T2DM failed to 
find any improvement in maximal ATP synthesis measured 
using 31P magnetic resonance spectroscopy [126] despite a 
decrease in intramyocellular lipids in the pioglitazone arm 
relative to placebo.

Although no clinical trial has yet evaluated the effect 
of glitazone therapy on skeletal muscle mass or strength 
in humans as a standalone therapy, pioglitazone has been 
tested as an adjunctive therapy in older people with impaired 
physical function undergoing a weight loss programme. In 
this trial, 30 mg per day of pioglitazone was associated with 
less loss of muscle mass measured by computed tomography 

(CT) and DXA over the 16 week follow-up [127], although 
the difference compared with the control group did not reach 
statistical significance. In women, the pioglitazone group 
showed a greater increase in leg press power with resist-
ance training than did the placebo group, but this effect 
was not seen in men [128]. Glitazones may have additional 
beneficial effects on skeletal muscle beyond effects on lipid 
metabolism; for example, troglitazone up to 600 mg per day 
improved skeletal muscle capillarisation and glucose dis-
posal to a greater extent than metformin up to 2550 mg per 
day in patients with T2DM [57]. The broader balance of 
benefits and risks from glitazone therapy may not support 
use of these agents to prevent or treat sarcopenia however. 
Although glitazone therapy can reduce cardiovascular events 
in selected populations [129], these agents also increase the 
risk of clinically apparent heart failure and of fractures [129, 
130], which in turn may reduce physical function and worsen 
sarcopenia.

3.5 � Glucagon‑Like Peptide 1 (GLP‑1) Receptor 
Agonists

GLP-1 is released by cells in the gut in response to a meal 
and enhances the release of insulin from pancreatic beta 
cells and inhibits release of glucagon by pancreatic alpha 
cells in response to circulating glucose [131]. GLP-1 recep-
tors are also present on a range of other cell types, includ-
ing adipocytes and endothelial cells [132, 133]. As well as 
effects mediated by insulin release, GLP-1 receptor agonists 
improve endothelial function in healthy individuals and 
stimulate angiogenesis and endothelial cell proliferation 
[134]. These effects are also seen in patients with T2DM 
and in other insulin-resistant states such as obesity [135, 
136] and may be mediated in part by restoration of vascular 
insulin sensitivity [137]. In addition, GLP-1 receptor ago-
nists reduce expression of myostatin and pro-inflammatory 
cytokines in animal models [138].

In patients with T2DM, GLP-1 receptor agonists cause 
significant weight loss [139] – an action often viewed as 
beneficial, as many patients with T2DM have obesity. How-
ever, a recent review of studies of body composition sug-
gests that up to 50% of the weight loss seen from GLP-1 
receptor agonist use in patients with T2DM is attributable 
to a loss of lean body mass [140]. It is not known at pre-
sent whether GLP-1 receptor agonist use in patients with or 
without T2DM causes a clinically significant change in skel-
etal muscle strength; the loss in total body weight might be 
expected to facilitate improved mobility, but any loss of lean 
body mass might attenuate or even negate this benefit. The 
most relevant evidence comes from three recent randomised 
controlled trials of liraglutide. The FIGHT trial enrolled 300 
patients with chronic heart failure; T2DM was not an inclu-
sion criterion in this trial. Participants had been recently 
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hospitalised and had poor endurance (the mean 6-min walk 
distance at baseline was only 220 m) [141]. No difference 
was seen in 6-min walk distance between the group receiv-
ing liraglutide 1.8 mg once a day and the placebo group 
after 6 months of treatment (between-group difference 5 m; 
p = 0.79) but skeletal muscle strength was not tested in 
this trial. A small trial comparing liraglutide 1.8 mg once a 
day with placebo in 24 participants with T2DM measured 
maximal and submaximal measures of endurance but not 
measures of skeletal muscle strength [142]. Six months of 
treatment did not lead to a clinically or statistically signifi-
cant improvement in maximal oxygen uptake (VO2 max) in 
the liraglutide group (liraglutide versus placebo: 18.0 ver-
sus 17.0 ml/min/kg; p = 0.31). Additionally, no significant 
between-group differences were seen in the improvement 
in cycle ergometry time or 6-min walk distance during the 
study. Finally, the large (n = 3731) SCALE randomised trial 
of liraglutide 3.0 mg once a day versus placebo to facilitate 
weight loss in patients with obesity showed a significant 
improvement in self-reported physical function measured 
using the SF-36 health status questionnaire over the 1-year 
follow-up, but objective measures of physical performance 
were not obtained in this trial [143]. It is possible that adju-
vant interventions to preserve muscle mass and strength (e.g. 
resistance exercise and provision of adequate protein intake 
[144]) may need to be given alongside GLP-1 receptor ago-
nists if they are to be used effectively for sarcopenia, and 
research on this class of treatments may be best targeted to 
patients with sarcopenic obesity rather than those of normal 
or low body mass index. To date, there have been no trials 
reporting the effect of GLP-1 receptor agonists on skeletal 
muscle mass or strength in older people with sarcopenia; no 
such trials are currently registered at either ISRCTN.com or 
Clinicaltrials.gov

3.6 � Dipeptidyl Peptidase 4 (DPP4) Inhibitors

DPP4 inhibitors (‘gliptins’) exert their effects by prevent-
ing the inactivation of GLP-1 by the Dipeptidyl peptidase 
4 (DPP4) enzyme [145]. There is therefore considerable 
overlap between the potential actions of DPP4 on skeletal 
muscle and the actions of GLP-1 receptor agonists, and the 
data presented above in relation to GLP-1 receptor agonists 
are likely to be relevant. Animal models suggest that DPP4 
inhibitors increase circulating concentrations of the myokine 
irisin as well as peroxisome proliferator-activated receptor 
γ coactivator-1-alpha [146], a key component of the muscle 
response to exercise.

Two small observational studies suggest an association 
between DPP4 inhibitor use and better indices of muscle 
mass and strength in older people with T2DM. One study 
showed faster walk speed, greater muscle strength meas-
ured by handgrip dynamometry and higher fat free mass 

measured by bioimpedance (adjusted for height squared) in 
DPP4 users than those on sulphonylureas [147], although it 
is unclear whether this was due to beneficial effects of DPP4 
inhibitors or deleterious effects of sulphonylureas. Another 
study found that patients with T2DM taking DPP4 inhibi-
tors had a slower decline in skeletal muscle index measured 
by DXA than those not taking DPP4 inhibitors [148]. In 
contrast, pharmacovigilance studies have found a higher rate 
of arthralgia and myalgia (including rare reports of rhabdo-
myolysis in conjunction with statin medications) in users of 
DPP4 inhibitors [149]; the pathophysiological mechanisms 
underpinning this observation are unclear.

3.7 � Sodium–Glucose Co‑transporter 2 (SGLT2) 
Inhibitors

Sodium–glucose co-transporter 2 (SGLT2) inhibitors work 
by partly blocking reabsorption of filtered glucose in the 
proximal convoluted tubule of the kidney [150]. Although 
the SGLT2 transporter is localised to the kidney, a series of 
knock-on metabolic effects in patients with T2DM have been 
described. These include a degree of weight loss (thought to 
be due to glucose excretion and fluid depletion), but also a 
reduction in blood pressure as a result of volume depletion, 
sodium excretion, weight loss and reduction in renin–angi-
otensin–aldosterone system (RAAS) activity [151, 152]. 
Intriguingly, in other organ systems, SLGT2 inhibitors also 
appear to drive changes that are potentially relevant to skel-
etal muscle dysfunction, for example, increasing lipolysis 
and ketogenesis, reducing inflammatory cytokines in liver 
[153], the aforementioned reduction in RAAS activity [154] 
and upregulation of AMPK via the sestrin pathway with con-
sequent inhibition of mTOR in cardiac myocytes [153]. Off-
target effects via inhibition of the related SGLT1 transport 
protein may also mediate reductions in oxidative stress seen 
in cardiac tissue [155]. Although SGLT2 does not appear 
to be expressed in skeletal muscle, the related transporter 
SGLT3 is expressed near the neuromuscular junction [156]. 
Its physiological function is unclear, but it may play the role 
of a glucose sensor [157]; furthermore, phlorizin (the parent 
compound from which currently marketed SGLT2 inhibitors 
are derived) is able to inhibit SGLT3 [158]

Although few studies have assessed the effects of SGLT2 
inhibitors in preclinical models, one recent study has shown 
that canagliflozin reduces inflammatory cytokine concen-
trations in skeletal muscle and improves skeletal muscle 
contractile force in an obese mouse model [159]. Similar 
improvements in skeletal muscle size and strength were seen 
with administration of luseoglifozin in another mouse model 
[160]. However, there is currently a lack of evidence from 
studies in humans. SGLT2 inhibitor use is associated with 
a reduction in both fat mass and lean body mass (measured 
using a range of techniques) similar to that caused by GLP-1 
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receptor agonists; between 20% and 50% of the weight loss 
seen with these agents may be due to loss of lean mass [140]. 
Preferential loss of fat mass may however improve the ratio 
of lean to fat mass, which would be expected to improve 
strength:weight ratio. Data on the effect of SGLT2 inhibi-
tors on muscle strength in humans are lacking, but there 
is at least one trial underway testing the impact of SGLT2 
inhibitors (empagliflozin 10 mg once daily versus placebo 
for 52 weeks) on both fat free mass (measured by bioim-
pedance) and muscle strength (handgrip strength and five 
times sit to stand test) in older patients with T2DM [161]. 
In patients with heart failure, it is also possible that SGLT2-
inhibitor-mediated improvements in cardiac function could 
translate into improved exercise capacity (a recent meta-
analysis suggests a modest 20 m improvement in 6-min walk 
distance with SGLT2 inhibitors in patients with heart failure 
[162], and hence into increased physical activity with conse-
quent benefit on deconditiong. This hypothesis requires test-
ing however. To date, no trials have been conducted using 
SGLT2 inhibitors as a treatment for sarcopenia in patients 
without T2DM.

3.8 � Insulin

Insulin is a key anabolic hormone, and acts both by the clas-
sical insulin receptor and indirectly by stimulating release 
and availability of insulin-like growth factor 1 (IGF-1) 
[163–165]. Insulin stimulates glucose uptake into skeletal 
muscle [166], thus lowering circulating glucose concentra-
tions. In addition, it inhibits glucose production via effects 
on glycogenolysis and gluconeogenesis, but also inhibits 
lipolysis and promotes fat synthesis [167, 168]. Perhaps 
most importantly for skeletal muscle health, insulin stimu-
lates muscle protein synthesis and reduces protein degra-
dation and autophagy [169]. Insulin also exerts important 
direct effects on the microvasculature, causing vasodilatation 
and reversing the endothelial dysfunction commonly seen 
in T2DM [45].

In patients with T2DM, insulin concentrations are often 
already supranormal, and treatment with exogenous insulin 
does not appear to increase protein synthesis, reduce mus-
cle protein breakdown or improve mitochondrial function 
[170–172]. Nevertheless, in a cohort of Japanese patients 
with T2DM, decreases in HbA1c resulting from insulin 
treatment were associated with increases in skeletal mus-
cle mass (measured by bioimpedance) and gait speed and, 
after adjusting for confounders, were associated with a 1.4% 
increase in skeletal muscle index over the 1-year follow-up 
period [77]. These findings suggest that, in patients with 
type 2 diabetes mellitus, it may be the reduction in hypergly-
caemia, rather than direct anabolic signalling of exogenous 
insulin, that is of benefit. A similar association between 
insulin use and a slower decline in skeletal muscle mass 

measured by bioimpedance over a 3-year follow-up period 
was found in a cohort of older people in Augsburg, Germany 
[173], although measures of muscle function (grip strength 
and timed up and go) did not show comparable benefit. One 
small study of 40 patients found no change in handgrip over 
the first 6 months after starting insulin therapy [174].

The benefits of insulin treatment on skeletal muscle may 
be more apparent in patients with type 1 diabetes mellitus 
(T1DM) [16]; in patients with T1DM, muscle protein break-
down is inhibited by insulin, and several studies suggest an 
increase in muscle mass over the first few months after start-
ing insulin therapy [175, 176], although it is unclear whether 
this is due to direct anabolic effects of insulin or to the reduc-
tion in hyperglycaemia. The effect on muscle strength of 
starting insulin therapy has not been studied in humans. The 
profound hypoglycaemia caused by administration of insulin 
to patients without DM means that the effects of insulin on 
muscle strength or muscle mass in patients without DM have 
not been able to be studied to date in humans.

4 � Conclusions and Future Directions

This review considers the current evidence on whether 
drugs used to treat diabetes mellitus could have potential as 
therapies to prevent or reverse the loss of muscle strength 
and mass that characterises sarcopenia. Although there is 
a considerable body of preclinical and clinical research on 
the effects of these agents in patients with diabetes mellitus, 
research on this topic in patients without diabetes is much 
more limited and is not sufficient to make clinical recom-
mendations about the use of any agent as a therapy for sar-
copenia in clinical practice.

Considering the strength of current evidence alongside 
the risk profile for different agents is key to informing the 
direction of future research. Whilst all drugs used to treat 
diabetes can potentially be used by patients with T2DM, 
some cannot be safely used in patients without diabetes 
due to their ability to induce hypoglycaemia. Insulin and 
sulphonylureas are the two classes of agent most likely to 
result in hypoglycaemia, but glinides are also associated 
with this complication. GLP-1 receptor agonists can cause 
hypoglycaemia, but rates of symptomatic or spontaneously 
reported hypoglycaemia in clinical trials enrolling patients 
without diabetes (and thus not taking other hypoglycaemic 
medications) are low, typically between 1% and 5% [145]. 
Other classes of agents (particularly metformin, but also 
incretins and SGLT2 inhibitors), do not cause hypoglycae-
mia in individuals who are normoglycaemic at baseline in 
the absence of other hypoglycemic agents; in the case of 
SGLT2 inhibitors, considerable clinical trial experience has 
now accrued using these agents in patients without T2DM 
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(only 22 instances of hypoglycaemia were noted in 5233 trial 
participants in a recent meta-analysis [177]).

All classes of agent used to treat T2DM have potential 
adverse effects other than hypoglycaemia. These include 
weight gain for insulin [178]; weight loss, gastrointestinal 
side effects and lactic acidosis for metformin [80, 82]; geni-
tal and urinary tract infections, weight loss and euglycaemic 
ketosis with SGLT2 inhibitors [179]; a possible association 
with bladder cancer for pioglitazone [180, 181] and with 
osteoporotic fracture [130]; and heart failure for glitazones 
as a class [129]. Balancing the risks of using these agents 
with any potential benefits on muscle function is therefore 
essential in selecting agents both for future study and for the 
design of trials examining their effects on skeletal muscle 
function in older people.

Of the agents discussed here, metformin, GLP-1 recep-
tor agonists, DPP4 inhibitors and SGLT2 inhibitors appear 
worthy of further evaluation in sarcopenia clinical stud-
ies; Table 1 summarises the strength of current evidence 
and suitability for each class of agent. Some care may be 
required in selecting which populations to target with which 
interventions – metformin, for example, might be a good 
choice to test for people with established sarcopenia but 
could worsen muscle function in healthy older people with-
out sarcopenia. Studies are needed for older people with 
sarcopenia but also for those at risk of sarcopenia. Although 
most studies to date have targeted patients with DM, there 
is also a need to target those without DM – either with 
impaired glucose tolerance or with normal glucose metabo-
lism. Fat infiltration into muscle and consequent lipotoxic-
ity is a potentially important mechanism driving sarcopenia 
which may be amenable to reversal by several agents used 
to treat diabetes, and patients with sarcopenic obesity are a 
particular group that may benefit from inclusion in future 
studies. The use of measures of physical performance (for 
example, five times sit to stand) and muscle mass (for exam-
ple, adjusting for weight rather than height squared) that take 
account of increased body mass should therefore be encour-
aged to facilitate inclusion of this patient group. The broad 
range of biological pathways affected by these agents holds 
the promise of therapeutic benefit across multiple disease 
states (as has been seen already for SGLT2 inhibitors [182, 
183]) but also necessitates careful assessment of potential 
harms across multiple organ systems. Given the intimate 
association between skeletal muscle function, glucose and 
fat metabolism in health and disease, these agents already 
marketed for DM deserve more thorough scrutiny as a poten-
tial therapeutic avenue for sarcopenia.
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