Skip to main content
Log in

Pharmacological Treatments for Presbyopia

  • Leading Article
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

Accommodation is the change in dioptric power of the eye. It is a dynamic process that allows focusing on an object at all distances. In order to focus sharply, three physiological responses, known as the triad of accommodation, are produced by a change in pupil size, a change in shape and position of the lens, and ocular convergence. This is modulated by the autonomic nervous system, mainly the parasympathetic nervous system. Presbyopia is a refractive condition that occurs with aging, usually manifesting around 40–50 years of age, and is a result of the loss of accommodation in the eye, causing loss of visual performance when focusing on objects placed at different distances, starting with near vision. Glasses, contact lenses, surgical approaches and now pharmacological treatments are accepted methods of treating presbyopia. Pharmacological treatment is a promising new noninvasive option for treating presbyopia. Currently there are three pharmacological approaches to the treatment of presbyopia. The first one aims to produce miosis and, from a pinhole effect, increase depth of focus, and therefore improve uncorrected near visual acuity (UNVA). The second one addresses rehabilitating accommodation in a binocular way, allowing good vision at all distances. Finally, the third strategy uses lipoic acid to restore the lost elasticity of the lens. All of these pharmacological treatments are topical non-invasive eyedrops, with no serious adverse effects having been reported with any of the strategies, and require the right patient selection process to fulfill expectations and needs. The aim of this article is to provide an update on recent advances in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Charman WN. Virtual Issue Editorial: presbyopia—grappling with an age-old problem. Ophthalmic Physiol Opt. 2017;37(6):655–60. https://doi.org/10.1111/opo.12416.

    Article  PubMed  Google Scholar 

  2. Park H, Park IK, Shin JH, Chun YS. Objective verification of physiologic changes during accommodation under binocular, monocular, and pinhole conditions. J Korean Med Sci. 2019;34:1–10. https://doi.org/10.3346/jkms.2019.34.e32.

    Article  Google Scholar 

  3. Benozzi G, Perez C, Leiro J, Facal S, Orman B. Presbyopia treatment with eye drops: an eight year retrospective study. Transl Vis Sci Technol. 2020;9:1–8. https://doi.org/10.1167/tvst.9.7.25.

    Article  Google Scholar 

  4. Von Helmhotz HH. Handbuch der Physiolgishen Optik. In: Southall JPC (Translator), Helmholtz’s treatise on physiological optics. New York: Dover; 1962. p. 143–72.

  5. Martin H, Guthoff R, Terwee T, Schmitz KP. Comparison of the accommodation theories of Coleman and of Helmholtz by finite element simulations. Vis Res. 2005;45:2910–5. https://doi.org/10.1016/j.visres.2005.05.030.

    Article  PubMed  Google Scholar 

  6. Fincham E. The mechanism of accommodation. Br J Ophthalmol. 1937;21(suppl. 8):1–80.

    Google Scholar 

  7. Schachar R. Cause and treatment of presbyopia with a method for increasing the amplitude of accommodation. Ann Ophthalmol. 1992;24:445–52.

    CAS  PubMed  Google Scholar 

  8. Orman B, Benozzi G. Pharmacological strategies for treating presbyopia. Curr Opin Ophthalmol. 2021;32:319–23. https://doi.org/10.1097/ICU.0000000000000770.

    Article  PubMed  Google Scholar 

  9. Feil M, Moser B, Abegg M. The interaction of pupil response with the vergence system. Graefes Arch Clin Exp Ophthalmol. 2017;255:2247–53. https://doi.org/10.1007/s00417-017-3770-2.

    Article  PubMed  Google Scholar 

  10. Szabadi E. Functional organization of the sympathetic pathways controlling the pupil: light-inhibited and light-stimulated pathways. Front Neurol. 2018. https://doi.org/10.3389/fneur.2018.01069.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Leigh RJDSZ. The neurology of eye movements, 5th edn. Oxford: Contemporary Neurology Series (New York, 2015; online edn, Oxford Academic, 1 June 2015); 2015.

  12. Zhang X, Hernandez MR, Yang H, Erickson K. Expression of muscarinic receptor subtype mRNA in the human ciliary muscle. Investig Ophthalmol Vis Sci. 1995;36:1645–57.

    CAS  Google Scholar 

  13. Gil DW, Krauss HA, Bogardus AM, WoldeMussie E. Muscarinic receptor subtypes in human iris-ciliary body measured by immunoprecipitation. Investig Ophthalmol Vis Sci. 1997;38:1434–42.

    CAS  Google Scholar 

  14. Orman B, Benozzi G. Overview of pharmacological treatments for presbyopia. Med Hypothesis Discov Innov Optom. 2021;1:67–77. https://doi.org/10.51329/mehdioptometry110.

    Article  Google Scholar 

  15. Liu C, Drew SA, Borsting E, Escobar A, Stark L, Chase C. Tonic accommodation predicts closed-loop accommodation responses. Vis Res. 2016;129:25–32. https://doi.org/10.1016/j.visres.2016.08.010.

    Article  PubMed  Google Scholar 

  16. Esteve-Taboada JJ, Ferrer-Blasco T, Aloy MA, Adsuara JE, Cerdá-Durán P, Mimica P, et al. Ocular anatomic changes for different accommodative demands using swept-source optical coherence tomography: a pilot study. Graefe’s Arch Clin Exp Ophthalmol. 2017;255:2399–406. https://doi.org/10.1007/s00417-017-3801-z.

    Article  Google Scholar 

  17. Tamm S, Tamm E, Rohen J. Age-related changes of the human ciliary muscle. A quantitative morphometric study. Mech Ageing Dev. 1992;62:209–21. https://doi.org/10.1016/0047-6374(92)90057-K.

    Article  CAS  PubMed  Google Scholar 

  18. Benozzi J, Benozzi G, Orman B. Presbyopia: a new potential pharmacological treatment. Med hypothesis, Discov Innov Ophthalmol J. 2012;1:3–5. Available from: http://mehdijournal.com/index.php/mehdiophthalmol/article/view/67.

  19. Lograno MD, Reibaldi A. Receptor-responses in fresh human ciliary muscle. Br J Pharmacol. 1986;87:379–85. https://doi.org/10.1111/j.1476-5381.1986.tb10827.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Van Alphen GW. The adrenergic receptors of the intraocular muscles of the human eye. Invest Ophthalmol Vis Sci. 1976;502–5.

  21. Zetterström C, Hahnenberger R. Pharmacological characterization of human ciliary muscle adrenoceptors in vitro. Exp Eye Res. 1988;46:421–30. https://doi.org/10.1016/S0014-4835(88)80030-7.

    Article  PubMed  Google Scholar 

  22. Gilmartin B. A review of the role of sympathetic innervation of the ciliary muscle in ocular accommodation. Ophthal Physiol Opt. 1986;6:23–37.

    Article  CAS  Google Scholar 

  23. Cambridge D. UK-14,304, a potent and selective α2-agonist for the characterisation of α-adrenoceptor subtypes. Eur J Pharmacol. 1981;72:413–5. https://doi.org/10.1016/0014-2999(81)90588-4.

    Article  CAS  PubMed  Google Scholar 

  24. Adkins JC, Balfour JA. Brimonidine. A review of its pharmacological properties and clinical potential in the management of open-angle glaucoma and ocular hypertension. Drugs Aging. 1998;12:225–41. https://doi.org/10.2165/00002512-199812030-00005.

    Article  CAS  PubMed  Google Scholar 

  25. Costagliola C, Dell’Omo R, Romano MR, Rinaldi M, Zeppa L, Parmeggiani F. Pharmacotherapy of intraocular pressure: Part I. Parasympathomimetic, sympathomimetic. Expert Opin Pharmacother. 2009;10:2663–77. https://doi.org/10.1517/14656560903300103.

    Article  CAS  PubMed  Google Scholar 

  26. Oh DJ, Chen JL, Vajaranant TS, Dikopf MS. Brimonidine tartrate for the treatment of glaucoma. Expert Opin Pharmacother. 2019;20:115–22. https://doi.org/10.1080/14656566.2018.1544241.

    Article  CAS  PubMed  Google Scholar 

  27. Wilcox CS, Heiser JF, Crowder AM, Wassom NJ, Katz BB, Dale JL. Comparison of the effects on pupil size and accommodation of three regimens of topical dapiprazole. Br J Ophthalmol. 1995;79(6):544–8. https://doi.org/10.1136/bjo.79.6.544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Moustafa FA, Sandoval LF, Feldman SR. Rosacea: New and emerging treatments. Drugs. 2014;74(13):1457–65. https://doi.org/10.1007/s40265-014-0281-x.

    Article  CAS  PubMed  Google Scholar 

  29. Erickson-Lamy K, Schroeder A. Dissociation between the effect of aceclidine on outflow facility and accommodation. Exp Eye Res. 1990;50:143–7. https://doi.org/10.1016/0014-4835(90)90224-i.

    Article  CAS  PubMed  Google Scholar 

  30. Zimmerman TJ, Wheeler TM. Miotics side effects and ways to avoid them. Ophthalmology. 1982;89:76–80. https://doi.org/10.1016/S0161-6420(82)34866-6.

    Article  CAS  PubMed  Google Scholar 

  31. Zimmerman TJ, Wheeler TM. Side effects and ways to avoid them. Ophthalmology. 1982;89:76–80. https://doi.org/10.1016/S0161-6420(82)34866-6.

    Article  CAS  PubMed  Google Scholar 

  32. Yang MC, Lin KY. Drug-induced acute angle-closure glaucoma: a review. J Curr Glaucoma Pract. 2019;13:1–6. https://doi.org/10.5005/jp-journals-10078-1261.

  33. McCluskey DJ, Douglas JP, O’Connor PS, Story K, Ivy LM, Harvey JS. The effect of pilocarpine on the visual field in normals. Ophthalmology. 1986;93:843–6. https://doi.org/10.1016/S0161-6420(86)33660-1.

    Article  CAS  PubMed  Google Scholar 

  34. Benozzi G, Perez C, Leiro J, Facal S, Orman B. Presbyopia treatment with eye drops: an eight year retrospective study. Transl Vis Sci Technol. 2020;9:25–25. https://doi.org/10.1167/tvst.9.7.25.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Esteve-Taboada JJ, Montés-Micó R, Ferrer-Blasco T. Schematic eye models to mimic the behavior of the accommodating human eye. J Cataract Refract Surg. 2018;44:627–41. https://doi.org/10.1016/j.jcrs.2018.02.024.

    Article  PubMed  Google Scholar 

  36. Nishida S, Mizutani S. Quantitative and morphometric studies of age-related changes in human ciliary muscle. Jpn J Ophthalmol. 1992;36:380–7.

    CAS  PubMed  Google Scholar 

  37. Pardue MT, Sivak JG. Age-related changes in human ciliary muscle. Optom Vis Sci. 2000;77:204–10. https://doi.org/10.1097/00006324-200004000-00013.

    Article  CAS  PubMed  Google Scholar 

  38. Strenk SA, Strenk LM, Guo S. Magnetic resonance imaging of the anteroposterior position and thickness of the aging, accommodating, phakic, and pseudophakic ciliary muscle. J Cataract Refract Surg. 2010;36:235–41. https://doi.org/10.1016/j.jcrs.2009.08.029.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sheppard AL, Davies LN. The effect of ageing on in vivo human ciliary muscle morphology and contractility. Investig Ophthalmol Vis Sci. 2011;52:1809–16. https://doi.org/10.1167/iovs.10-6447.

    Article  Google Scholar 

  40. Domínguez-Vicent A, Monsálvez-Romín D, Esteve-Taboada JJ, Montés-Micó R, Ferrer-Blasco T. Effect of age in the ciliary muscle during accommodation: sectorial analysis. J Optom. 2019;12:14–21. https://doi.org/10.1016/j.optom.2018.01.001.

    Article  PubMed  Google Scholar 

  41. Özyol E, Özyol P. Evaluating relaxed ciliary muscle tone in presbyopic eyes. Graefe’s Arch Clin Exp Ophthalmol. 2017;255:973–8. https://doi.org/10.1007/s00417-017-3621-1.

    Article  Google Scholar 

  42. Rohen JW. Scanning electron microscopic studies of the zonular apparatus in human and monkey eyes. 1979;133–44.

  43. Farnsworth PN, Shyne SE. Anterior zonular shifts with age. Exp Eye Res. 1979;28:291–7. https://doi.org/10.1016/0014-4835(79)90091-5.

    Article  CAS  PubMed  Google Scholar 

  44. Stachs O, Martin H, Behrend D, Schmitz KP, Guthoff R. Three-dimensional ultrasound biomicroscopy, environmental and conventional scanning electron microscopy investigations of the human zonula ciliaris for numerical modelling of accommodation. Graefe’s Arch Clin Exp Ophthalmol. 2006;244:836–44. https://doi.org/10.1007/s00417-005-0126-0.

    Article  Google Scholar 

  45. Bennett A. A method of determining the equivalent powers of the eye and its crystalline lens without resort to phakometry. Ophthalmic Physiol Opt. 1988;8:53–9. https://doi.org/10.1111/j.1475-1313.1988.tb01082.x.

    Article  CAS  PubMed  Google Scholar 

  46. Borja D, Manns F, Ho A, Ziebarth N, Rosen AM, Jain R, Amelinckx A, Arrieta E, Augusteyn RC, Parel J. Optical power of the isolated human crystalline lens. Invest Ophthalmol Vis Sci. 2008. https://doi.org/10.1167/iovs.07-1385.

    Article  PubMed  Google Scholar 

  47. Richdale K, Bullimore MA, Sinnott LT, Zadnik K. The effect of age, accommodation, and refractive error on the adult human eye. Optom Vis Sci. 2016;93:3–11. https://doi.org/10.1097/OPX.0000000000000757.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Atchison DA, Markwell EL, Kasthurirangan S, Pope JM, Smith G, Swann PG. Age-related changes in optical and biometric characteristics of emmetropic eyes. J Vis. 2008;8:21–20. https://doi.org/10.1167/8.4.29.

    Article  Google Scholar 

  49. Kasthurirangan S, Markwell EL, Atchison DA, Pope JM. MRI study of the changes in crystalline lens shape with accommodation and aging in humans. J Vis. 2011;3:1–16. https://doi.org/10.1167/11.3.1.

    Article  Google Scholar 

  50. Richdale K, Sinnott LT, Bullimore MA, Wassenaar PA, Schmalbrock P, Kao CY, Patz S, Mutti DO, Glasser A, Zadnik K. Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye. Invest Ophthalmol Vis Sci. 2013. https://doi.org/10.1167/iovs.12-10619.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Koretz JE, Strenk SA, Strenk LM, Semmlow JL. Scheimpflug and high- resolution magnetic resonance imaging of the anterior segment: a comparative study. J Opt Soc Am A Opt Image Sci Vis. 2004. https://doi.org/10.1364/josaa.21.000346.

    Article  PubMed  Google Scholar 

  52. Augusteyn RC. On the growth and internal structure of the human lens. Exp Eye Res. 2010. https://doi.org/10.1016/j.exer.2010.01.013.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Dubbelman M, Van der Heijde GL, Weeber HA, Vrensen GF. Changes in the internal structure of the human crystalline lens with age and accommodation. Vis Res. 2003;22:2363–75. https://doi.org/10.1016/s0042-6989(03)00428-0.

    Article  Google Scholar 

  54. Wang K, Pierscionek BK. Biomechanics of the human lens and accommodative system: functional relevance to physiological states. Prog Retin Eye Res. 2019;71:114–31. https://doi.org/10.1016/j.preteyeres.2018.11.004.

    Article  PubMed  Google Scholar 

  55. Pierscionek BK, Weale RA. The optics of the eye-lens and lenticular senescence—a review. Doc Ophthalmol. 1995;89:321–35. https://doi.org/10.1007/BF01203708.

    Article  CAS  PubMed  Google Scholar 

  56. Renna A, Vejarano LF, De la Cruz E, Alió JL. Pharmacological treatment of presbyopia by novel binocularly instilled eye drops: a pilot study. Ophthalmol Ther. 2016;5:63–73. https://doi.org/10.1007/s40123-016-0050-x.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Benozzi G, Facal S, Leiro J, Perez C, Orman B. Stereopsis restoration in patients under pharmacological treatment for presbyopia. Oftalmol Clínica y Exp. 2020;13:82–9. Available from: https://www.semanticscholar.org/paper/Stereopsis-Restoration-in-Patients-Under-Treatment-Benozzi-Facal/3be1f9c098dac46bfe2190a46a1c24ef0dda22c3.

  58. Korenfeld MS, Evans DG, Rauchman SH, Sall KN, Stein JM, Robertson SM, Whitfill T, Gordon J, Burns W, Glasser A. A Phase I/II clinical study evaluating the safety and efficacy of bilaterally dosed topical lipoic acid choline ester eye drops for the treatment of presbyopia. Invest Ophthalmol Vis Sci. 2017;58:331.

    Google Scholar 

  59. Horng C, Ma J, Shieh P. Improvement of presbyopia using a mixture of traditional Chinese herbal medicines, including cassiae semen, wolfberry, and Dendrobium huoshanense. Evid-Based Complement Altern Med. 2021. https://doi.org/10.1155/2021/9902211.

    Article  Google Scholar 

  60. Rowen S. Topical treatments for presbyopia on the horizon. Eye Care. 2019 [Internet]. AAO. 2019. Available from: https://www.practiceupdate.com/content/aao-2019-topical-treatments-for-presbyopia-on-the-horizon/91112.

  61. Donders FC. On the anomalies of accommodation and refraction of the eye. With a preliminary essay on physiological dioptrics. Br Foreign Med Chir Rev. 1864;34(68):443–5.

    Google Scholar 

  62. Montés-Micó R, Charman WN. Pharmacological strategies for presbyopia correction. J Refract Surg. 2019;35:803–14. https://doi.org/10.3928/1081597X-20191010-04.

    Article  PubMed  Google Scholar 

  63. Clinical trials. www.clinicaltrials.gov.

  64. AbbVie VUITYTM (Pilocarpine HCI Ophthalmic Solution) 1.25%, the first and only FDA-approved eye drop to treat age-related blurry near vision (Presbyopia), is now, available |AbbVie News Center. [Internet]. Available from: https://news.abbvie.com/news/press-releases/vuity-pilocarpine-hci-ophthalmic-solution-125-first-and-only-fda-approved-eye-drop-to-treat-age-related-blurry-near-vision-presbyopia-is-now-available.htm.

  65. Clinical Trial Identifier: NCT03804268. Efficacy study of pilocarpine HCl ophthalmic solution (AGN-190584) in participants with presbyopia (GEMINI 1). 2021.

  66. Clinical Trial Identifier: NCT03857542. A phase 3 efficacy study of AGN-190584 in participants with presbyopia (GEMINI 2). 2021.

  67. Viuty Prescribing Information [internet]. 2021. Available from: https://www.rxabbvie.com/pdf/vuity_pi.pdf.

  68. Waring GO, Price FW, Wirta D, McCabe C, Moshirfar M, Guo Q, et al. Safety and efficacy of AGN-190584 in individuals with presbyopia: the GEMINI 1 phase 3 randomized clinical trial. JAMA Ophthalmol. 2022;140:363–71. https://doi.org/10.1001/jamaophthalmol.2022.0059.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Waring IV GO, McCabe CM, Wirta DL, Safyan E, Guo Q, Robinson MRP. PA031—GEMINI 1 and 2 pooled phase 3 safety and efficacy: AGN-190584 primary and key secondary endpoints. https://registration.experientevent.com/showaao211/flow/Attendee#!/registrant//ShowItems/.

  70. Clinical Trial Identifier: NCT04837482. A study to assess the impact and adverse events of topical eyedrops of AGN-190584 on night-driving performance in participants, 40 to 55 years of age (TAURUS). Available from: https://clinicaltrials.gov/ct2/show/NCT04837482.

  71. Vuity FAQS [Internet]. Available from: https://www.vuity.com/frequently-asked-questions.

  72. Clinical Trial Identifier: NCT04403763. Phase 1/2 study of AGN-241622 in healthy participants and participants with presbyopia. 2021. Available from: https://clinicaltrials.gov/ct2/show/NCT04403763.

  73. Lipner M. A unique drop. Eyeworld [Internet]. 2014 [cited 2017 Nov 15]; Available from: www.eyeworld.org/article-a-unique-drop.

  74. Clinical Trial Identifier: NCT02197806. Safety and efficacy of AGN-199201 and AGN-190584 in patients with presbyopia [Internet]. Allergan; 2014. Available from: https://clinicaltrials.gov/ct2/show/NCT02197806.

  75. Clinical Trial Identifier: NCT02780115. A safety, efficacy and pharmacokinetic study of AGN-199201 and AGN-190584 in patients with presbyopia. 2017. Available from: https://clinicaltrials.gov/ct2/show/NCT02780115.

  76. Balal H, Gil-Cazorla R, Naroo Shehzad A, Sharma A, Shah S. Refractive surgery’s holy grail: eyedrops for presbyopia. Ophthalmol [Internet]. 2017;18–29. Available from: https://theophthalmologist.com/issues/0117.

  77. Grzybowski A, Markeviciute A, Zemaitiene R. a review of pharmacological presbyopia treatment. Asia-Pacific J Ophthalmol (Philadelphia, Pa). 2020;9:226–33. https://doi.org/10.1097/APO.0000000000000297.

    Article  Google Scholar 

  78. Clinical Trial Identifier: NCT03201562. A single-center, double-masked evaluation of the efficacy and safety of PRX-100 in the treatment of early to moderate presbyopia. 2017. Available from: https://clinicaltrials.gov/ct2/show/NCT03201562.

  79. Lenz Therapeutics [Internet]. Available from: https://lenz-tx.com/pipeline/aceclidine/.

  80. Abdelkader A. Improved presbyopic vision with miotics. Eye Contact Lens. 2015;41:323–7. https://doi.org/10.1097/ICL.0000000000000137.

    Article  PubMed  Google Scholar 

  81. Wolffsohn JS, Davies LN. Presbyopia: effectiveness of correction strategies. Prog Retin Eye Res. 2019;68:124–43. https://doi.org/10.1016/j.preteyeres.2018.09.004.

    Article  PubMed  Google Scholar 

  82. Abad J. Compositions and methods for treating presbyopia, mild hyperopia, and irregular astigmatism. WO2013041967A3. 2012.

  83. Pavan-Langston D. Manual of ocular diagnosis and therapy. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2008.

    Google Scholar 

  84. Kaufman S. Addressing presbyopia pharmacologically [Internet]. Ophthalmol. Times. 2012 [cited 2017 Oct 14]. Available from: http://ophthalmologytimes.modernmedicine.com/ophthalmologytimes/content/addressing-presbyopia-pharmacologically.

  85. Abdelkader A, Kaufman HE. Clinical outcomes of combined versus separate carbachol and brimonidine drops in correcting presbyopia. Eye Vis. 2016. https://doi.org/10.1186/s40662-016-0065-3.

    Article  Google Scholar 

  86. Abdelkader A. A novel pharmacological treatment of pseudophakic presbyopia. Int J Ophthalmic Res [Internet]. 2018;4:291–294. Available from: http://www.ghrnet.org/index.php/ijor/article/view/2442.

  87. Clinical Trial Identifier: NCT04774237. Safety and efficacy study of BRIMOCHOLTM, BRIMOCHOLTM F, and carbachol in subjects with emmetropic phakic and pseudophakic presbyopia. 2021. Available from: https://clinicaltrials.gov/ct2/show/NCT04774237.

  88. Clinical Trial Identifier: NCT05135286. Safety and efficacy study of BRIMOCHOLTM in subjects with emmetropic phakic and pseudophakic presbyopia. 2022. Available from: https://clinicaltrials.gov/ct2/show/NCT05135286.

  89. Croft M a, Kaufman PL, Erickson-Lamy K, Polansky JR. Accommodation and ciliary muscle muscarinic receptors after echothiophate. Invest Ophthalmol Vis Sci. 1991;32:3288–97. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1748559.

  90. Clinical Trial Identifier: NCT02965664. Safety, tolerability and efficacy of PresbiDrops (CSF-1) in presbyopic subjects [Internet]. 2017. Available from: https://clinicaltrials.gov/ct2/show/NCT02965664?cond=presbyopia&draw=10&rank=82.

  91. Clinical Trial Identifier: NCT03885011. A multi-center, double-masked evaluation of the efficacy and safety of CSF-1 in the treatment of presbyopia. Available from: https://clinicaltrials.gov/ct2/show/NCT03885011.

  92. Clinical Trial Identifier: NCT04599933. An evaluation of the efficacy and safety of CSF-1 in the temporary correction of presbyopia (NEAR-1). 2021. Available From: https://clinicaltrials.gov/ct2/show/NCT04599933.

  93. Clinical Trial Identifier: NCT04599972. An evaluation of the efficacy and safety of CSF-1 in the temporary correction of presbyopia (NEAR-2). 2021. Available from: https://clinicaltrials.gov/ct2/show/NCT04599972.

  94. Clinical Trial Identifier: NCT04675151. Safety and efficacy of nyxol with pilocarpine eye drops in subjects with presbyopia. 2021. Available from: https://clinicaltrials.gov/ct2/show/NCT04675151.

  95. Ocuphire Pharma Inc. [Internet]. Available from: https://www.ocuphire.com/news-media/press-releases/detail/370/ocuphire-announces-upcoming-clinical-presentations-at-arvo.

  96. Clinical Trial Identifier: NCT04657172. Safety and efficacy of pilocarpine eye solutions for temporary improvement of near vision in presbyopic adults (VISION-1). 2021. Available from: https://clinicaltrials.gov/ct2/show/NCT04657172.

  97. Clinical Trial Identifier: NCT05114486. Safety and efficacy of pilocarpine ophthalmic spray for temporary improvement of near vision in presbyopic adults (VISION-2). 2022. Available from: https://clinicaltrials.gov/ct2/show/NCT05114486.

  98. Clinical Trial Identifier: NCT05124275. Safety and efficacy of pilocarpine ophthalmic topical cream for the treatment of presbyopia. 2022. Available from: https://clinicaltrials.gov/ct2/show/NCT05124275.

  99. Clinical Trial Identifier: NCT05006911. Pilocarpine, brimonidine, oxymetazoline (PBO) compound to control presbyopia symptoms (PBO). 2022. Available from: https://clinicaltrials.gov/ct2/show/NCT05006911.

  100. Clinical Trial Identifier: NCT05001243. Comparison of a compound with pilocarpine and brimonidine to improve near vision in healthy presbyopic patients (PBOHB). 2022. Available from: https://clinicaltrials.gov/ct2/show/NCT05001243.

  101. Gualdi L, Gualdi F, Rusciano D, Ambrósio R, Salomão MQ, Lopes B, et al. Ciliary muscle electrostimulation to restore accommodation in patients with early presbyopia: preliminary results. J Refract Surg. 2017;33:578–83. https://doi.org/10.3928/1081597X-20170621-05.

    Article  PubMed  Google Scholar 

  102. Benozzi G, Cortina ME, Gimeno E, Vantesone DL, Solas AE, Lorda GM, et al. A multicentric study of pharmacological treatment for presbyopia. Graefe’s Arch Clin Exp Ophthalmol. 2021;259:2441–50. https://doi.org/10.1007/s00417-021-05138-8.

    Article  CAS  Google Scholar 

  103. Facal S, Leiro J, Gualtieri A, Perez C, Benozzi G, Orman B. Ocular surface evaluation in patients treated with pharmacological treatment for presbyopia. Int J Ophthalmic Pathol. 2018. https://doi.org/10.4172/2324-8599.1000218.

    Article  Google Scholar 

  104. Benozzi G, Orman B. Top ten: los tratamientos de la presbicia. Not Alaccsa-R LASCRS News [Internet]. 2022;17–20. Available from: https://alaccsa.com/top-ten-edicion50-2022/.

  105. Cortina M, Benozzi G, Orman B. Hyperopic LASIK enhanced by pharmacological treatment of presbyopia. J Ocul Pharmacol Ther. 2022. Advance online publication https://doi.org/10.1089/jop.2022.0095.

  106. Vargas V, Vejarano F, Alió JL. Near vision improvement with the use of a new topical compound for presbyopia correction: a prospective, consecutive interventional non-comparative clinical study. Ophthalmol Ther. 2019;8:31–9. https://doi.org/10.1007/s40123-018-0154-6.

    Article  PubMed  Google Scholar 

  107. Cerulli LP, Cavallotti CAP. Age-related changes of the human eye. Totowa: Humana Press; 2008. https://doi.org/10.1007/978-1-59745-507-7.

    Book  Google Scholar 

  108. Ghosh KS, Chauhan P. Crystallins and their complexes. In: Harris JMWJ, editor. Subcell biochem. Berlin: Springer; 2019. https://doi.org/10.1007/978-3-030-28151-9_14.

    Chapter  Google Scholar 

  109. Pescosolido N, Barbato A, Giannotti R, Komaiha C, Lenarduzzi F. Age-related changes in the kinetics of human lenses: prevention of the cataract. Int J Ophthalmol. 2016;9:1506–17. https://doi.org/10.18240/ijo.2016.10.23.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Nakazawa Y. Study of the mechanisms of maintaining the transparency of the lens and treatment of its related diseases for making anti-cataract and/or anti-presbyopia drugs. Yakugaku Zasshi. 2020;140:1095–9. https://doi.org/10.1248/yakushi.20-00120.

    Article  CAS  PubMed  Google Scholar 

  111. Nakazawa Y, Donaldson PJ, Petrova R. Verification and spatial mapping of TRPV1 and TRPV4 expression in the embryonic and adult mouse lens. Exp Eye Res. 2019. https://doi.org/10.1016/j.exer.2019.107707.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Crawford KS, Garner WH, Burns W. DioptinTM: a novel pharmaceutical formulation for restoration of accommodation in presbyopes. Invest Ophthalmol Vis Sci. 2014;55:3765.

    Google Scholar 

  113. Garner WH, Garner MH. Protein disulfide levels and lens elasticity modulation: applications for presbyopia. Investig Ophthalmol Vis Sci. 2016;57:2851–63. https://doi.org/10.1167/iovs.15-18413.

    Article  CAS  Google Scholar 

  114. Larkin H. PRESBYOPIA EYE DROPS. Anti-crosslinking drug may restore natural accommodation. EUROTIMES. 2017. Available from: https://www.escrs.org/eurotimes/presbyopia-eyedrops-lindstrom.

  115. Stein JM, Robertson SM, Evans DG, Rauchman SH, Sall KN, Korenfeld MS, et al. An observational follow-up study assessing the long-term effects of bilaterally dosed topical lipoic acid choline ester eye drops for the treatment of presbyopia. Invest Ophthalmol Vis Sci. 2017;58:330.

    Google Scholar 

  116. Korenfeld MS, Robertson SM, Stein JM, Evans DG, Rauchman SH, Sall KN, et al. Topical lipoic acid choline ester eye drop for improvement of near visual acuity in subjects with presbyopia: a safety and preliminary efficacy trial. Eye. 2021;35:3292–301. https://doi.org/10.1038/s41433-020-01391-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Clinical Trial Identifier: NCT03809611. A study of safety and efficacy of UNR844 chloride (UNR844-Cl) eye drops in subjects with presbyopia [Internet]. 2019. Available from: https://clinicaltrials.gov/ct2/show/study/NCT03809611.

  118. Clinical Trial Identifier: NCT04806503. A dose-ranging study to evaluate the safety and efficacy of UNR844 in subjects with presbyopia. 2021. Available from: https://clinicaltrials.gov/ct2/show/NCT04806503.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Betina Orman.

Ethics declarations

Funding

This research did not receive any specific Grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflict of interest

Giovanna Benozzi is the owner of the Patent US 8.524.758 B2- EP1.938.839 B1. Betina Orman has no conflicts to report.

Consent (to participate and for publication)

Not applicable.

Author contributions

BO: Conception, manuscript drafting, critical revision. GB: Conception, manuscript drafting, critical revision.

Ethics approval

Not applicable.

Code availability

Not applicable.

Data availability statement

All data generated or analyzed during this study are included in this published article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orman, B., Benozzi, G. Pharmacological Treatments for Presbyopia. Drugs Aging 40, 105–116 (2023). https://doi.org/10.1007/s40266-022-01002-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40266-022-01002-4

Navigation