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Abstract
The sirtuin family is a heterogeneous group of proteins that play a critical role in many cellular activities. Several degenera-
tive diseases have recently been linked to aberrant sirtuin expression and activity because of the involvement of sirtuins in 
maintaining cell longevity and their putative antiaging function. Idiopathic pulmonary fibrosis and progressive pulmonary 
fibrosis associated with systemic autoimmune disorders are severe diseases characterized by premature and accelerated 
exhaustion and failure of alveolar type II cells combined with aberrant activation of fibroblast proliferative pathways leading 
to dramatic destruction of lung architecture. The mechanisms underlying alveolar type II cell exhaustion in these disorders are 
not fully understood. In this review, we have focused on the role of sirtuins in the pathogenesis of idiopathic and secondary 
pulmonary fibrosis and their potential as biomarkers in the diagnosis and management of fibrotic interstitial lung diseases.

1  Introduction

Chronic interstitial lung diseases (ILDs) are a heterogene-
ous group of disorders. They are a leading cause of mor-
bidity and mortality in respiratory medicine. Idiopathic 
pulmonary fibrosis (IPF) is the most prevalent idiopathic 
interstitial lung disease and is more common in the elderly 
[1]. IPF has a median survival of 2–5 years and though 
currently available antifibrotic agents slow the decline in 
lung function [2, 3]. Several researches have shown that 
other interstitial lung disorders, such as connective tissue 
disease-related interstitial lung disorders (CTD-ILDs), 
fibrotic hypersensitivity pneumonitis (F-HP), sarcoidosis, 
and other less common diseases, can develop a progressive 
fibrotic phenotype, resulting in gradual functional, clinical, 
and radiographic decline [4]. Among the various systemic 
autoimmune diseases, systemic sclerosis (SSc), mixed 
connective tissue disease (MCTD), and inflammatory idi-
opathic myopathies are commonly associated with ILD, 
whereas the prevalence of pulmonary involvement is less 
common in other CTDs such as rheumatoid arthritis (RA), 

Sjögren’s syndrome (SS), and systemic lupus erythemato-
sus (SLE) [5]. Despite the differences in prevalence and 
extent, the presence of ILD is often the leading cause of 
death in patients with systemic autoimmune disorders [6].

IPF and systemic autoimmune ILDs are now often con-
sidered ageing-related conditions similar to cardiovascular 
disease, cancer, and neurodegenerative diseases, although 
several differences in histopathology are well established. 
Common pathophysiological mechanisms have been pro-
posed including epithelial and endothelial cell injury, 
inadequate epithelial repair, oxidative stress, coagula-
tion abnormalities, immune dysregulation, and excessive 
transforming growth factor-β (TGF-β) activation, lead-
ing to excessive extracellular matrix (ECM) deposition 
by activated myofibroblasts, the hallmark of fibrosis [7, 
8]. Alveolar type II cell (AEC2) senescence is emerg-
ing as an early hallmark in the pathogenesis of chronic 
progressive fibrotic lung disease. Cellular senescence is 
defined as the permanent arrest of cell growth in which 
cells exhibit features of the “ageing phenotype” includ-
ing genomic instability, telomere shortening, epigenetic 
changes, abnormal proteostasis, mitochondrial dysfunc-
tion, and resistance to apoptosis signaling [9]. In IPF, it 
has been postulated that chronic exposure to risk factors 
(i.e., smoking, genetic factors, and gastroesophageal reflux 
disease) leads to alterations in the complex homeostasis of 
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Key Points 

Alveolar type II cell senescence represents an early hall-
mark in the pathogenesis of chronic progressive fibrotic 
lung disease.

SIRTs represent a family of NAD+-dependent deacety-
lases involved in telomere maintenance and DNA repair 
with potential antifibrotic activity.

Preclinical models suggest a reduction of SIRT-1, SIRT-
3, SIRT-6, and SIRT-7 activity in pulmonary fibrosis.

Further studies are needed on the impact of SIRTs in 
interstitial lung diseases associated with systemic auto-
immune disorders.

Modulators targeting SIRTs may offer new therapeutic 
perspective in the pulmonary fibrosis landscape.

AEC2s and fibroblasts, resulting in loss of the reparative 
response and activation of fibrogenetic pathways. How-
ever, the interplay of oxidative stress, genomic instability, 
telomere attrition, aberrant inflammation, autophagy, and 
epigenetic alterations appears to promote a self-expanding 
reservoir of senescent cells, ultimately leading to epithe-
lial–mesenchymal transition (EMT) [10–13].

In this review, we focus on a group of proteins, the sir-
tuins (SIRTs) and discuss their potential role in the patho-
genesis of lung fibrosis. We also explore their potential as 
biomarkers in the diagnosis and monitoring of fibrotic inter-
stitial lung diseases.

2 � Role of SIRTs in Cellular Senescence

The family of proteins known as SIRTs comprises 
NAD+-dependent deacetylases that are evolutionarily highly 
conserved across the eukaryotic, archaeal, eubacterial and, 
in particular, mammalian kingdoms. SIRTs are essential 
cellular mediators involved in various cellular activities, 
including cellular energy sensing, DNA repair, mitochon-
drial structure and metabolism modulation, telomere main-
tenance, inflammation, redox homeostasis, and cell death 
[14]. Due to their role in cellular longevity through telomere 
maintenance and DNA repair, a putative antiageing function 
has been proposed [14, 15].

A variety of degenerative, inflammatory, or proliferative 
disorders, including fibrosis and age-related degenerative 
diseases, obesity, diabetes, cancer, and neurological dis-
orders, have been associated with altered sirtuin activity 
[16–18]. Based on their enzymatic activity SIRTs have been 
subdivided into the following classes: class I: SIRT1, SIRT2, 
and SIRT3 are NAD+-dependent robust deacetylases; class 
II: the ADP-ribosyltransferase SIRT4: class III: the deacety-
lase and NAD+-dependent demalonylase and desuccinylase 
SIRT5; and class IV: the deacetylases SIRT6 and SIRT7 [19, 
20]. SIRT1, SIRT6, and SIRT7 are commonly referred to as 
nuclear sirtuins, SIRT3, SIRT4, and SIRT5 as mitochondrial 
sirtuins, and SIRT2 as cytosolic sirtuin [21–24] (Fig. 1).

SIRTs have been implicated in fibrosis in several organs. 
While SIRT1, SIRT3, SIRT6, and SIRT7 are known to play 
a protective role against the development and progression of 
pulmonary fibrosis, the modulatory functions of other SIRTs 
remain to be elucidated. Almost all the major signaling path-
ways activated during fibrosis are affected by SIRT activity, 
including the nuclear factor-κB (NF-κB), insulin-like growth 

Fig. 1   Sirtuins: cellular loca-
tion and molecular signaling 
pathways. COL collagen, EMT 
epithelial–mesenchymal transi-
tion, FoxO3 Forkhead box O3, 
LKB1 liver kinase B1, OGG1 
8-oxoguanine glycosylase, 
PPAR peroxisome proliferators-
activated receptor, SASP 
senescence-associated secretory 
phenotype, α-SMA α-smooth 
muscle actin, SIRT Sirtuine, 
TGF-β1 transforming growth 
factor-β1
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factor (IGF)/AKT, WNT/β-catenin, transforming growth 
factor (TGF)-β/Mothers against decapentaplegic homolog 
3 (Smad3), Forkhead box O (FOXO), and p53 [25–28]. 
SIRT1 deacetylates FOXO3 and FOXO4, potentiating the 
FOXO-induced cell cycle arrest additionally [29, 30] SIRT1 
removes acetyl groups from multiple sites on the p53 protein 
[31], reducing its activity and preventing cells from entering 
a senescent state triggered by oncogenes or stress. In addi-
tion, as histone deacetylases, SIRTs have been postulated to 
be key mediators of fibrosis pathways, including EMT and 
fibroblast proliferation and persistence, through epigenetic 
mechanisms [32].

3 � Sirtuins in Idiopathic Pulmonary Fibrosis: 
Focus on Putative Molecular Mechanisms

The development of pulmonary fibrosis is the result of a 
complex interplay of genetic and environmental factors. In 
this scenario, SIRTs may be involved as potential key media-
tors in the development of fibrosis (Fig. 2).

3.1 � Potential Mechanisms of Sirtuin‑1 
in the Pathogenesis of IPF

SIRT1 is involved in several cellular activities, including cell 
survival, senescence, oxidative homeostasis, DNA repair, 
inflammation, and autophagy. In addition, SIRT1 is a potent 
endogenous anti-fibrotic protein. In the nucleus, SIRT1 dea-
cetylates multiple targets, including histone, FoxO3, p53, 
peroxisome proliferator-activated receptor γ (PPAR γ), 
PPAR α, and liver kinase B1 (LKB1) [33]. Regarding lung 
fibrosis, there are reports in literature showing that SIRT1 
is reduced in bleomycin-induced lung fibrosis. Recently, 
Deskata et al. investigated the levels of SIRT1 in plasma, 
peripheral blood mononuclear cells (PBMCs), and the 
supernatant from the culture of PBMCs in patients with IPF 
and healthy controls. They showed that SIRT1 levels were 
statistically significantly lower in the supernatant of PBMCs 
from patients with IPF compared with those from controls. 
Furthermore, the likelihood of being in the IPF group was 
increased by older age and lower SIRT1 levels [34]. Nota-
bly, the activation or overexpression of SIRT1 by resvera-
trol treatment attenuates the TGF-β1-induced myofibroblast 

Fig. 2   Fibrogenic signaling and sirtuins. Upon binding to its cell sur-
face receptors, TGF-β1 triggers numerous pathways, with Smad sign-
aling emerging as a prominent driver of transcriptional upregulation 
of fibrogenic factors. Meanwhile, activation of the NF-κB pathway 
induces the expression of proinflammatory genes, while inflamma-
tion-induced intracellular and mitochondrial reactive oxygen species 
(ROS) inflict substantial damage to mitochondrial DNA (mtDNA). 
SIRT1 intervenes by inhibiting NF-κB activation and subsequent 
transcriptional activity through the inhibition of p300 histone acetyl-
transferase-mediated chromatin activation for transcription. Addi-
tionally, SIRT1 boosts the cellular NAD+/NADH ratio, promoting 

SIRT3 transcription via PGC-1α. SIRT6, on the other hand, impedes 
Smad phosphorylation and Smad signaling, thereby dampening fibro-
genic gene expression. It also facilitates SIRT3 transcription via the 
Nrf2-dependent pathway and inhibits profibrotic gene transcription 
through the deacetylation of histone 3 lysine 9 (H3K9). SIRT3 shields 
mtDNA from damage by deacetylating OGG1, thereby stabilizing 
it. Furthermore, SIRT3 preserves the function of isocitrate dehydro-
genase 2 (IDH2), mitochondrial aconitase (ACO2), and manganese 
super oxide dismutase (MnSOD) to mitigate lung fibrosis. Finally, 
SIRT7 curtails Smad3 expression and extracellular matrix production
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activation by regulating the expression of p300 [35]. In 
addition, SIRT1 suppresses the expression of senescence-
associated secretory phenotype (SASP) factors through his-
tone deacetylation in their promoter regions, resulting in an 
antifibrotic effect [36]. Lian et al. found decreased levels of 
the zinc transporter SLC39A8 (ZIP8) in IPF AEC2s, result-
ing in impaired renewal capacity dependent on the sirtuin 
SIRT1. Zinc treatment increased both SIRT1 expression and 
the renewal capacity of AEC2s [37].

3.2 � Potential Mechanisms of Sirtuin‑3 
in the Pathogenesis of IPF

SIRTs, particularly SIRT3, are also associated with mito-
chondrial dysfunction, altered NAD+/NADPH ratio, and 
increased reactive oxygen species (ROS) [38]. Increased 
expression of NADPH oxidase 4 (NOX4) has been reported 
in the lungs of patients with IPF, which may be key to 
modulating profibrotic signaling [39]. The NOX4 enzyme 
promotes the death of AEC2s and impairs mitochondrial 
function, increasing the production of mitochondrial ROS. 
This stimulates fibroblast-myofibroblast differentiation. 
NOX4 stimulates myofibroblast migration and differentia-
tion through a signaling pathway upstream of TGF-β1 via 
ALK5/Smad3 [40].

Conversely, SIRT3 expression may play a role in counter-
balancing the effects of NOX4, but SIRT3 is deficient AEC 
from patients with IPF [41]. It has been reported that the 
reduction in SIRT3 observed in ageing leads to increased 
mitochondrial ROS levels and mitochondrial DNA (mtDNA) 
damage [42, 43]. SIRT3 expression was found to be sig-
nificantly downregulated in isolated fibroblasts from lung 
explants of IPF human subjects as compared with control 
fibroblasts [44]. Furthermore, mice that are deficient in 
SIRT3 are more susceptible to asbestos- and bleomycin-
induced lung fibrosis [43]. SIRT3 deficiency would lead to 
inactivation of manganese superoxide dismutase (MnSOD) 
at lysine residue K68, a target of SIRT3 deacetylase that con-
tributes to mitochondrial integrity. Therefore, reduced levels 
of SIRT3 would significantly contribute to the development 
of IPF by promoting acetylation of MnSOD and 8-oxog-
uanine DNA glycosylase-1 (OGG1) in AEC2, resulting in 
mtDNA damage and apoptosis in AEC2 [42] and induction 
of TGF-β1 expression. TGF-β1 is a potent inducer of fibro-
sis and plays a central role in promoting the transforma-
tion of fibroblasts into myofibroblasts. In addition, SIRT3 
deficiency results in hyperacetylation of glycogen synthase 
kinase 3β (GSK3β) at residue K15 [45]. This hyperacetyla-
tion negatively regulates GSK3β activity. Reduced GSK3β 
activity leads to decreased phosphorylation of its substrates, 
such as Smad3 and β-catenin.

Conversely, studies have demonstrated that increased 
expression of SIRT3 mitigates pulmonary fibrosis by 

diminishing mitochondrial DNA (mtDNA) damage and 
enhancing the recruitment of fibrotic monocytes into the 
lungs [41]. In aged mice with bleomycin lung injury, res-
toration of SIRT3 via a cDNA overexpression plasmid 
significantly reduced lung fibrosis by attenuating myofibro-
blast differentiation [44]. It has been suggested that SIRT3 
modulates mtDNA damage by modulating acetylation of 
OGG1 [46]. Additionally, SIRT3 regulates the transition of 
fibroblasts into myofibroblasts by inhibiting the profibrotic 
TGF-β1 signaling pathway through deacetylation-dependent 
activation of GSK3β [45]. Elevated levels of SIRT3 lead to 
a reduction in Smad3 levels, thereby dampening the effects 
of TGF-β1 [47].

3.3 � Potential Mechanisms of Sirtuin‑6 
in the Pathogenesis of IPF

SIRT6 is another key modulator of fibrosis, blocking IGF/
AKT, NF-κB, Wnt/β-catenin, and TGFβ/Smad3 signaling 
[27, 48, 49]. Overexpression of SIRT6 was found to prevent 
the TGF-β1-induced epithelial-to-mesenchymal transition-
like phenotype [28]. Another study on the role of SIRT6 in 
human bronchial epithelial cells found that TGF-β-induced 
senescence was associated with increased p21 expression 
and IL-1β secretion, which in turn triggered cellular transdif-
ferentiation to myofibroblasts; however, SIRT6 overexpres-
sion prevented the development of profibrotic senescence 
via proteasomal degradation of p21 and depletion of IL-1β 
[50]. In addition, SIRT6 indirectly regulates the expression 
of the mitochondrial sirtuin (SIRT3) by controlling Nrf2 
activity [51].

3.4 � Potential Mechanisms of Sirtuin‑7 
in the Pathogenesis of IPF

Finally, another mechanism in the progression of IPF 
involves Smad3 signaling [52]. The antifibrotic effect of 
SIRT7 is partly due to a decrease in Smad3 levels. Over-
expression of SIRT7 in lung fibroblasts reduces COL1A1, 
COL1A2, and COL3A1 levels, thereby exerting an antifi-
brotic effect. Furthermore, SIRT7 overexpression attenuates 
the TGF-β-induced increase in collagen and α-smooth mus-
cle actin mRNA and protein levels. These observations sug-
gest that SIRT7 protects against fibrosis in adult human lung 
fibroblasts and supports the antifibrotic effects of SIRT1 and 
SIRT3. A significant reduction in SIRT7 expression was 
observed in the nucleus of lung fibroblasts from patients 
with IPF compared with healthy controls [53].

In conclusion, while some studies have shown an impor-
tant role for SIRT1, SIRT3, SIRT6, and SIRT7 in the devel-
opment and progression of lung fibrosis, the role of SIRT2, 
SIRT4, and SIRT5 needs to be further investigated [54].
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4 � Preclinical and Clinical Studies of SIRTs 
Pathways in Connective Tissue Disorders

Connective tissue diseases (CTDs) are a heterogeneous 
group of disorders characterized by a high mortality and 
morbidity burden and a huge impact on healthcare systems 
worldwide. With their pleiotropic functions, SIRTs have 
recently attracted increasing interest due to their significant 
role in the pathogenesis of CTDs and their potential involve-
ment in future therapeutic perspectives (Table 1) [55].

4.1 � Systemic Sclerosis

Systemic sclerosis (SSc) is a severe immune-mediated dis-
ease characterized by premature activation of the molecular 
mechanisms of ageing. This leads to fibrosis of the skin and 
internal organs and vasculopathy. While the accumulation of 
extracellular matrix components within the affected organs 
is considered the pathological hallmark, the alteration of 
both innate and adaptive immune responses to microvascu-
lar endothelial injury is a critical event for the development 
of systemic sclerosis [56–58]. In addition to their central 
role in ageing and cellular senescence, SIRTs may also play 
an important role in several pathways involved in fibro-
sis. In a cohort of ten patients with diffuse cutaneous SSc 
(dcSSc), significantly lower SIRT1 levels were found in SSc 
skin biopsies compared with five healthy controls [59]. To 
explore the underlying mechanisms, Wei et al. incubated 
explanted normal dermal fibroblasts with TGF-β or platelet-
derived growth factor (PDGF) for 24–96 h. They found a 
33% reduction in SIRT1 mRNA (P < 0.05) [59]. A similar 
result was obtained when fibroblasts were exposed to pro-
longed hypoxia (1.5% O2 for 24 h) or H2O2, resulting in a 
significant downregulation of SIRT1 protein (P < 0.005).

The relevant role of SIRT1 in fibrotic changes is sup-
ported by the ability of resveratrol to significantly inhibit 
the effects induced by TGF-β. Interestingly, in SIRT-/- mice, 
embryonic fibroblasts showed resistance to the effect of res-
veratrol when incubated with TGF-β [60]. In this regard, 
the authors proposed epigenetic changes involving the p300 
acetyltransferase and the Smad pathway as exploitable path-
ways [59]. It has been reported that the levels of SIRT3, 
similar to SIRT1, are reduced in the fibrotic area within the 
dermis of patients with SSc. In contrast, ectopic expression 
of SIRT3 in normal lung fibroblasts was sufficient to sup-
press the TGF-β-induced stimulation of collagen synthesis 
[61].

SSc is also associated with major systemic complications, 
although it is divided into three subgroups according to cuta-
neous involvement (diffuse cutaneous, limited cutaneous and 
sine scleroderma). Tissues potentially affected include the 
lungs, heart, and kidneys. Interstitial lung abnormalities are 
present in more than 80% of patients with SSc, with 25% 

of these showing a progressive pattern [62]. Significantly 
lower levels of mRNA transcript for SIRT1 in PBMCs have 
been observed in patients with SSc with pulmonary involve-
ment compared with patients with SSc without pulmonary 
involvement (P < 0.0006) [60]. Conversely, in a mouse 
model of bleomycin-induced pulmonary fibrosis, activa-
tion of SIRT1 by pretreatment with resveratrol significantly 
improved profibrotic changes such as collagen accumulation 
and disruption of alveolar units [60].

According to Manetti et al., patients with SSc had signifi-
cantly lower serum levels of SIRT1 and SIRT3 than controls 
[63]. In particular, the reduction in circulating SIRT1 and 
SIRT3 in patients with SSc was associated with a greater 
extent of cutaneous fibrosis, the presence of lung fibrosis 
on high-resolution computed tomography of the chest, and 
worse lung function. Wyman et al. also found a signifi-
cant decrease in SIRT7 expression in lung fibroblasts from 
patients with SSc–ILD [53].

Pulmonary arterial hypertension (PAH) is a severe 
complication in patients with SSc and is more common in 
patients with limited cutaneous systemic sclerosis. Interest-
ingly, reduced expression of SIRTs may play a role, although 
in a yet unidentified way. SIRT3 mRNA levels have been 
shown to be reduced in human pulmonary arterial smooth 
muscle cells from patients with idiopathic PAH. This 
decrease inhibits mitochondrial-dependent apoptosis and 
activates proliferative transcription factors that promote vas-
cular remodeling and PAH development. There is an urgent 
need to elucidate the role of SIRTs in CTD-related pulmo-
nary hypertension is urgently needed.

4.2 � Other Connective Tissue Disorders

Rheumatoid arthritis (RA) is a common chronic autoim-
mune disease with a global prevalence of 0.4–1.3% [64]. It 
is characterized by an inflammatory infiltration of the syno-
vial membrane with subsequent hyperplasia and destruction 
of cartilage and bone. Although the presence of rheumatoid 
factor (RF) and anticitrullinated protein antibodies (ACPA) 
is the first step in the development of RA, dysfunction of 
innate and adaptive immune cells is required for the transi-
tion from asymptomatic autoimmunity to tissue inflamma-
tion [65].

The role of SIRTs in RA remains controversial. While 
some studies have shown that SIRTs are downregulated in 
RA, others failed to show this [66, 67]. However, recent 
evidence has highlighted the potential role of SIRTs in the 
pathogenesis of RA. As shown by Park et al., resveratrol 
(0–50 μM), which, as noted, is a pharmacological activa-
tor of SIRT1, significantly reduced the adhesion of RA 
synovial fluid monocytes (RAMCs) incubated with phorbol 
12-myristate 13-acetate (PMA), a monocyte activator, in a 
concentration-dependent manner. Similarly, pretreatment 
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Table 1   SIRTs in systemic autoimmune disorders: main clinical and preclinical studies

FLS fibroblast-like synoviocytes, LN lupus nephritis, MRSS modified Rodnan skin score, PBMCs peripheral blood mononuclear cells, PF pul-
monary fibrosis, RA rheumatoid arthritis, SSc systemic sclerosis, TGFβ transforming growth factor beta

Authors (years) [Reference] Population Study aims Marker Main results

Wei et al. (2015) [59] SSc
n = 10

Expression of SIRTs in SSc SIRTs ↓ SIRT-1 mRNA in skin biopsy samples
SIRT-1 effects on fibrotic responses in vitro 

and in vivo
No significant difference mRNA levels for SIRT2 

through SIRT6
↑ SIRT-7 level
Expression of SIRT-1 mRNA negatively cor-

related with MRSS
Resveratrol markedly attenuated TGFβ induced 

alteration through SIRT-1
Resveratrol mitigated the activated phenotype of 

SSc fibroblasts
Akamata et al. (2016) [61] SSc

n = 29
Murine models

Expression and activity of SIRT-3 in skin and 
lung biopsies

SIRT-3 SIRT-3 expression and function are decreased in 
SSc and in fibrotic tissues in the mouse

SIRT3 negatively regulates fibrotic responses
Hexafluoro ameliorates experimentally-induced 

organ fibrosis in mouse through SIRT3 activa-
tion

Chu et al. (2018) [60] SSc–PF
n = 145

SIRT1 function and its links to proinflamma-
tory and profibrotic pathways in SSc-related 
lung fibrosis in clinical samples, in vitro and 
in vivo, and in a model of bleomycin-induced 
pulmonary fibrosis

SIRT-1 SIRT-1 mRNA decreased in PBMCs of patients 
with SSc with PF

Murine models SIRT-1 activation attenuates pulmonary fibrosis 
in bleomycin-treated mice

SIRT-1 activation attenuates pulmonary inflam-
mation in bleomycin-treated mice

SIRT-1 represses TNF-α and NF-κB induced 
inflammation

Li et al. (2021) [66] RA
n = 141

Clinical value of SIRT-1 in diagnosis of RA SIRT1 ↑ Serum SIRT-1 compared with controls
Cutoff value 49 ng/mLAUC 0.87Specificity 

97%Sensitivity 70.9%
Combined SIRT-1 and anti-CCP measurement 

have superior Youden index
Li et al. (2018) [67] RA

n = 12
Role of SIRT-1 in RA-FLS SIRT1 ↓ SIRT-1 in synovial tissue and RA-FLS

↓ RA-FLS proliferation
↓ proinflammatory cytokine secretion
↓ NF-κB family proteins
↑ RA-FLS apoptosis

Park et al. (2016) [68] RA
n = 9

SIRT-1 effect on differentiation of monocytes 
into macrophages

SIRT-1 ↓ monocyte to macrophage differentiation
↓ PU.1 phosphorylation
↓ NF-κB during monocyte differentiation

Hussain et al. (2021) [72] RA
n = 306

Expression and epigenetic variations of mito-
chondrial SIRTs

mSIRTs ↓ SIRT-3; SIRT-4; SIRT-5
↓ histone deacetylation compared with controls

Hisada et al. (2022) [77] SLE
n = 6
Murine models

SIRT-2 role in the pathogenesis of SLE SIRT-2 ↓ IL-2 production by CD4+ T cells via deacetyla-
tion of c-Jun and the Il-2 promoter

Induction of Th17-cell differentiation
Deacetylation of p70S6K and regulation of the 

mTORC1/HIF-1α/ RORγt pathway in Th17 
cells

Olivares et al. (2018) [78] SLE–LN SIRT-1 as biomarker of disease activity in LN SIRT-1 ↑ SIRT-1 mRNA in pts with active LN
↑ SIRT-1 expression in proliferative forms of LN

Yang et al. (2022) [79] SLE
n = 89

SIRT-1 levels in SLE pts SIRT-1 ↑ SIRT-1 levels compared with controls
SIRT-1 plasma concentration significantly 

associated with disease activity (cutoff value 
4.323 ng/ml, AUC 0.985, specificity 61.43%, 
sensitivity 95.51%)
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with resveratrol significantly reduced NF-κB acetylation 
(0.83 ± 0.08-fold, P < 0.01) as well as NF-κB binding 
activity (1.57 ± 0.16-fold, P < 0.01) in RAMCs exposed to 
PMA. Furthermore, PMA-induced elevated levels of tumor 
necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 were 
significantly reduced by pretreatment with resveratrol (50 
μM). Interestingly, pretreatment with sirtinol, a SIRT1 
inhibitor (20 μM), antagonized these suppressive effects of 
resveratrol [68].

Type B synoviocytes, called fibroblast-like synoviocytes 
(FLS), are a particular type of mesenchymal cells lining the 
synovium. FLS are critical for synovial homeostasis through 
the production of lubricin, whose function is to lubricate the 
synovium. Some unique surface markers expressed by FLS 
include CD55, vascular cell adhesion molecule 1 (VCAM-
1), integrins and their receptors [69]. Interestingly, FLS also 
plays a prominent role in the pathogenesis of RA [69]. This 
includes cytokine production, synovial hyperplasia, chon-
drocyte activation, and cartilage and bone destruction. Inhib-
iting the proliferation of FLS by promoting their apoptosis 
may be a mechanism for slowing the progression of RA. In 
this context, SIRT1 has been shown to induce the apopto-
sis of FLS via the caspase-3 and PI3K/Akt pathways and 
has emerged as a promising therapeutic target in RA. Con-
versely, it reduces inflammation and osteoblast apoptosis by 
downregulating NF-kB signaling and deacetylating p53 [70].

As mentioned above, in the SIRT family, SIRT3, SIRT4, 
and SIRT5 possess an N-terminal sequence that directs their 
translocation to the mitochondria. A significant downregu-
lation of all mitochondrial SIRTs has been reported in RA 
patients [71, 72]. A negative correlation between oxidative 
stress and the expression levels of mitochondrial SIRTs has 
also been reported [72]. In a mouse model, when animals 
with RA were treated with methotrexate and a high dose 
of adenovirus-SIRT5, there was significant suppression of 
the proinflammatory cytokines monocyte chemoattractant 
protein-1, TNF-α, IL-1β, and IL-6, as well as a reduction in 
erythrocyte sedimentation rate and serum C-reactive pro-
tein levels, highlighting the potential anti-inflammatory role 
of SIRTs in the treatment of RA [68]. The lung compart-
ment is the most common extra-articular site involved in 
RA with various potential clinical manifestations, including 
ILD, pleural effusion, cricoarytenoiditis, bronchiectasis, and 
pulmonary hypertension [73]. Despite the growing interest 
in SIRTs in the pathogenesis, diagnosis and treatment of 
RA, a comprehensive understanding of the role of SIRTs in 
the pulmonary involvement of RA patients is still lacking. 
Studies in this area are urgently needed.

Systemic lupus erythematosus (SLE) is an extremely het-
erogeneous autoimmune disease characterized by a complex 

interplay of genetic predisposition, environmental triggers, 
and an impairment of the innate and adaptive immune sys-
tems resulting in a widespread tissue inflammation [74]. 
Recently, there has been increasing interest in epigenetic 
modifications, such as DNA hypomethylation, DNA meth-
ylation, histone modification, and noncoding RNA modifi-
cation, in the maintenance of immune dysfunction in SLE 
pathogenesis.

Histone deacetylases (HDACs) regulate protein function 
and stability by deacetylating or promoting histone modi-
fications or DNA methylation [75]. As class III HDACs, 
SIRTs are central to several complex molecular mechanisms, 
such as the development and differentiation of the innate and 
adaptive immune systems [76].

The role of SIRTs in SLE is controversial. Hisada et al. 
reported that SIRT2 primarily drives Th17 differentiation 
rather than the other Th1, Th2, or T-reg cells. Levels of Th17 
cells are elevated in patients with SLE, leading to a sig-
nificant increase in inflammatory cytokines that can recruit 
inflammatory cells and promote tissue damage. In this con-
text, SIRT2 inhibitors have been shown to suppress IL-17A 
while promoting IL-2 production, thereby facilitating lupus-
like disease [77]. Similarly, SIRT1 levels, both mRNA and 
protein expression, correlated significantly with anti-dsDNA 
levels (r = 0.599, P = 0.01 and r = 0.483, P = 0.04, respec-
tively) in a cohort of 40 patients with SLE [78]. In addition, 
urinary levels of SIRT1 mRNA have been shown to signifi-
cantly discriminate not only between patients with SLE with 
and without lupus nephritis [area under the curve (AUC) 
0.845, P < 0.0001) but also the severity (active or remission) 
of lupus nephritis [AUC 0.732 (0.66–0.88, P = 0.007) [78].

Consistent with these data, Yang et al. showed that SIRT1 
plasma levels were significantly elevated in patients with 
SLE compared with healthy controls [6.28 (5.89–6.68) 
versus 2.42 (2.10–2.74) ng/mL, P < 0.001). Furthermore, 
SIRT1 plasma levels can help clinicians differentiate SLE 
from patients without SLE with a sensitivity and specificity 
of 95.51% and 61.43%, respectively, at an optimal cut-off of 
4.323 ng/mL [79]. Interestingly, SIRT1-null mice develop 
an autoimmune disease similar to SLE, with an accumula-
tion of immune complexes in the liver and kidneys [80]. Gan 
et al. demonstrated that B cell downregulation of SIRT1 can 
promote class-switched and hypermutated T-dependent and 
T-independent antibody responses and autoantibody genera-
tion [81].

Interestingly, resveratrol was protective against pristane-
induced lupus in mice, reducing proteinuria, renal immuno-
globulin deposition, and serum IgG1 and IgG2 [82]. Studies 
are needed to elucidate the potential effects of resveratrol in 
human SLE.
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5 � Therapeutic Perspective for Sirtuins 
Modulation in Pulmonary Fibrosis

HDACs represent novel therapeutic targets for controlling or 
reversing the major dysfunctional events leading to IPF [83]. 
Efforts to develop modulators have focused particularly on 
SIRT1 and SIRT2. Early compounds showed limited potency 
and poor selectivity for SIRT1 [84]. For example, resvera-
trol was the first activator identified and can simultaneously 
stimulate a number of SIRTs other than SIRT1 [32, 85]. 
Using rats with bleomycin-induced pulmonary fibrosis, Qian 
et al. showed that astragaloside IV (AS-IV), a compound 
extracted from astragalus root, attenuated pulmonary fibro-
sis by inhibiting TGF-β1-dependent EMT. In another study 
using A549 cells, a human adenocarcinoma cell line with 
type II alveolar epithelial characteristics, Andrographolide 
(Andro), a diterpenoid derived from Andrographis panicola 
(Chinese alfalfa), activates the antioxidant stress pathway 
SIRT1/FOXO3, resulting in increased expression of super-
oxide dismutase 2 (SOD2) and inhibits EMT by decreasing 
phosphorylation of extracellular protein signal-regulated 
kinase (ERK) 1/2 [86].

Other molecules that have been proposed to target SIRT1 
include YK-3-237, a combretastatin analogue that deacet-
ylates both mutant p53 and wild-type p53 and SRT1720, 
a potent synthetic SIRT1 stimulator that is structurally 
independent of resveratrol [87, 88]. Similar to resveratrol 
treatment and SIRT1 overexpression, SRT1720 induces 
mitochondrial biogenesis when used for prolonged periods. 
Carbazole compounds also seem promising. In fact, carba-
zole-3-carbohydrazide activates Sirt3 and reduces intracel-
lular ROS levels [89].

Furthermore, certain compounds serve to activate SIRT3. 
Metformin is able to increase the expression of SIRT3 [90]. 
Melatonin is another interesting compound that acts as an 
agonist of SIRT3. Mechanistically, melatonin enhances 
SIRT3 expression by activating the PI3K/Akt-PGC-1α 
signaling pathway and inhibition of the melatonin receptor 
(MT)-1 blocks melatonin-induced SIRT3 expression [91]. 
Additionally, melatonin promotes SIRT3 expression by 
inhibiting mammalian sterile 20-like kinase 1 phosphoryla-
tion [92]. Activated 5′AMP-activated protein kinase has also 
been shown to be involved in the SIRT3 activity activated by 
melatonin [93]. Moreover, 7-hydroxy-3-(4′-methoxyphenyl) 
coumarin (C12) has been identified as a new type of SIRT3 
agonist. C12 forms a complex with SIRT3 and MnSOD 
acetylated at Lys68, leading to SIRT3 activation and subse-
quent deacetylation and activation of the downstream mol-
ecule MnSOD [94]. Notably, C12 exhibits high specificity 
and affinity for SIRT3, making it the closest known positive 
regulator of SIRT3 to date.

As these compounds have potential in the field of pulmo-
nary fibrosis, their integration with currently available treat-
ments for pulmonary fibrosis would provide a broad range 
of strategies to limit the underlying fibrogenetic mechanism.

6 � Conclusions

SIRTs are currently being considered with increasing inter-
est as a potential tool for the treatment of fibrotic interstitial 
lung diseases, as they are key cellular mediators of ageing 
and fibrosis. Preclinical and clinical data have begun to sug-
gest a role for the SIRT family in the pathogenesis of pul-
monary fibrosis and CTD with or without ILD. However, 
more extensive studies are needed to better understand the 
potential role of SIRTs in the therapeutic scenario of these 
diseases.
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