Skip to main content

Advertisement

Log in

New Therapies on the Horizon for Primary Biliary Cholangitis

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Primary biliary cholangitis (PBC) is a chronic cholestatic liver disease that can progress to cirrhosis and hepatic failure if left untreated. Ursodeoxycholic acid (UDCA) was introduced as a first-line drug for PBC around 1990; it remarkably improved patient outcomes, leading to the nomenclature change of PBC in 2015, from primary biliary “cirrhosis” to primary biliary “cholangitis.” Nevertheless, 20–30% of patients exhibit an incomplete response to UDCA, resulting in significantly worse outcomes compared to those with a complete response. Therefore, improving the long-term outcomes of patients with an incomplete response to UDCA has been recognized as an unmet need. In addition, patients with PBC often suffer from a variety of debilitating symptoms, such as pruritus, fatigue and sicca syndrome, which significantly impair their health-related quality of life. Thus, appropriate management of these symptoms is currently regarded as another unmet need for PBC treatment. In this review, several compounds and drugs under clinical trials that can potentially solve these unmet needs are comprehensively discussed, and future directions of treatment policy of PBC are proposed for significantly improving long-term outcome as well as health-related quality of life of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lleo A, Wang GQ, Gershwin ME, Hirschfield GM. Primary biliary cholangitis. Lancet. 2020;396:1915–26. https://doi.org/10.1016/S0140-6736(20)31607-X.

    Article  PubMed  CAS  Google Scholar 

  2. Lleo A, Jepsen P, Morenghi E, Carbone M, Moroni L, Battezzati PM, et al. Evolving trends in female to male incidence and male mortality of primary biliary cholangitis. Sci Rep. 2016;6:25906. https://doi.org/10.1038/srep25906.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Tanaka A, Mori M, Matsumoto K, Ohira H, Tazuma S, Takikawa H. Increase trend in the prevalence and male-to-female ratio of primary biliary cholangitis, autoimmune hepatitis, and primary sclerosing cholangitis in Japan. Hepatol Res. 2019;49:881–9. https://doi.org/10.1111/hepr.13342.

    Article  PubMed  CAS  Google Scholar 

  4. Lleo A, Marzorati S, Anaya JM, Gershwin ME. Primary biliary cholangitis: a comprehensive overview. Hepatol Int. 2017;11:485–99. https://doi.org/10.1007/s12072-017-9830-1.

    Article  PubMed  Google Scholar 

  5. Poupon RE, Balkau B, Eschwège E, Poupon R. A multicenter, controlled trial of ursodiol for the treatment of primary biliary cirrhosis. UDCA-PBC study group. N Engl J Med. 1991;324:1548–54. https://doi.org/10.1056/NEJM199105303242204.

    Article  PubMed  CAS  Google Scholar 

  6. Poupon RE, Eschwège E, Poupon R. Ursodeoxycholic acid for the treatment of primary biliary cirrhosis. Interim analysis of a double-blind multicentre randomized trial. The UDCA-PBC study group. J Hepatol. 1990;11:16–21. https://doi.org/10.1016/0168-8278(90)90265-s.

    Article  PubMed  CAS  Google Scholar 

  7. Beuers U, Gershwin ME, Gish RG, Invernizzi P, Jones DE, Lindor K, et al. Changing nomenclature for PBC: from “cirrhosis” to “cholangitis.” J Hepatol. 2015;63:1285–7. https://doi.org/10.1016/j.jhep.2015.06.031.

    Article  PubMed  Google Scholar 

  8. European Association for the Study of the Liver. Electronic address: easloffice@easloffice.eu, European Association for the Study of the Liver. EASL clinical practice guidelines: the diagnosis and management of patients with primary biliary cholangitis. J Hepatol. 2017;67:145–72. https://doi.org/10.1016/j.jhep.2017.03.022

  9. Lindor KD, Bowlus CL, Boyer J, et al. Primary biliary cholangitis: 2018 practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 2019;69:394–419. https://doi.org/10.1002/hep.30145

  10. Nevens F, Andreone P, Mazzella G, Strasser SI, Bowlus C, Invernizzi P, et al. A placebo-controlled trial of obeticholic acid in primary biliary cholangitis. N Engl J Med. 2016;375:631–43. https://doi.org/10.1056/NEJMoa1509840.

    Article  PubMed  CAS  Google Scholar 

  11. Corpechot C, Chazouillères O, Rousseau A. Bezafibrate in primary biliary cholangitis. N Engl J Med. 2018;379:985. https://doi.org/10.1056/NEJMc1809061.

    Article  PubMed  Google Scholar 

  12. Tanaka A, Hirohara J, Nakano T, Matsumoto K, Chazouillères O, Takikawa H, et al. Association of bezafibrate with transplant-free survival in patients with primary biliary cholangitis. J Hepatol. 2021;75:565–71. https://doi.org/10.1016/j.jhep.2021.04.010.

    Article  PubMed  CAS  Google Scholar 

  13. Lleo A, Bowlus CL, Yang GX, Invernizzi P, Podda M, Van de Water J, et al. Biliary apotopes and anti-mitochondrial antibodies activate innate immune responses in primary biliary cirrhosis. Hepatology. 2010;52:987–98. https://doi.org/10.1002/hep.23783.

    Article  PubMed  CAS  Google Scholar 

  14. Lleo A, Selmi C, Invernizzi P, Podda M, Coppel RL, Mackay IR, et al. Apotopes and the biliary specificity of primary biliary cirrhosis. Hepatology. 2009;49:871–9. https://doi.org/10.1002/hep.22736.

    Article  PubMed  CAS  Google Scholar 

  15. Cordell HJ, Fryett JJ, Ueno K, Darlay R, Aiba Y, Hitomi Y, et al. An international genome-wide meta-analysis of primary biliary cholangitis: novel risk loci and candidate drugs. J Hepatol. 2021;75:572–81. https://doi.org/10.1016/j.jhep.2021.04.055.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Beuers U, Hohenester S, de Buy Wenniger LJ, Kremer AE, Jansen PL, Elferink RP. The biliary HCO(3)(−) umbrella: a unifying hypothesis on pathogenetic and therapeutic aspects of fibrosing cholangiopathies. Hepatology. 2010;52:1489–96. https://doi.org/10.1002/hep.23810.

    Article  PubMed  CAS  Google Scholar 

  17. Banales JM, Sáez E, Uriz M, Sarvide S, Urribarri AD, Splinter P, et al. Up-regulation of microRNA 506 leads to decreased Cl−/HCO3− anion exchanger 2 expression in biliary epithelium of patients with primary biliary cirrhosis. Hepatology. 2012;56:687–97. https://doi.org/10.1002/hep.25691.

    Article  PubMed  CAS  Google Scholar 

  18. Asselta R, Paraboschi EM, Gerussi A, Cordell HJ, Mells GF, Sandford RN, et al. X chromosome contribution to the genetic architecture of primary biliary cholangitis. Gastroenterology. 2021;160:2483-2495.e26. https://doi.org/10.1053/j.gastro.2021.02.061.

    Article  PubMed  CAS  Google Scholar 

  19. Poupon RE, Chrétien Y, Chazouillères O, Poupon R, Chwalow J. Quality of life in patients with primary biliary cirrhosis. Hepatology. 2004;40:489–94. https://doi.org/10.1002/hep.20276.

    Article  PubMed  Google Scholar 

  20. Newton JL, Bhala N, Burt J, Jones DE. Characterisation of the associations and impact of symptoms in primary biliary cirrhosis using a disease specific quality of life measure. J Hepatol. 2006;44:776–83. https://doi.org/10.1016/j.jhep.2005.12.012.

    Article  PubMed  Google Scholar 

  21. Selmi C, Gershwin ME, Lindor KD, Worman HJ, Gold EB, Watnik M, et al. Quality of life and everyday activities in patients with primary biliary cirrhosis. Hepatology. 2007;46:1836–43. https://doi.org/10.1002/hep.21953.

    Article  PubMed  Google Scholar 

  22. Mells GF, Pells G, Newton JL, Bathgate AJ, Burroughs AK, Heneghan MA, et al. Impact of primary biliary cirrhosis on perceived quality of life: the UK-PBC national study. Hepatology. 2013;58:273–83. https://doi.org/10.1002/hep.26365.

    Article  PubMed  Google Scholar 

  23. Dyson JK, Wilkinson N, Jopson L, Mells G, Bathgate A, Heneghan MA, et al. The inter-relationship of symptom severity and quality of life in 2055 patients with primary biliary cholangitis. Aliment Pharmacol Ther. 2016;44:1039–50. https://doi.org/10.1111/apt.13794.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Yagi M, Tanaka A, Abe M, Namisaki T, Yoshiji H, Takahashi A, et al. Symptoms and health-related quality of life in Japanese patients with primary biliary cholangitis. Sci Rep. 2018;8:12542. https://doi.org/10.1038/s41598-018-31063-8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Beuers U, Wolters F, Oude Elferink RPJ. Mechanisms of pruritus in cholestasis: understanding and treating the itch. Nat Rev Gastroenterol Hepatol. 2023;20:26–36. https://doi.org/10.1038/s41575-022-00687-7.

    Article  PubMed  Google Scholar 

  26. Düll MM, Kremer AE. Evaluation and management of pruritus in primary biliary cholangitis. Clin Liver Dis. 2022;26:727–45. https://doi.org/10.1016/j.cld.2022.06.009.

    Article  PubMed  Google Scholar 

  27. Lynch EN, Campani C, Innocenti T, Dragoni G, Biagini MR, Forte P, et al. Understanding fatigue in primary biliary cholangitis: from pathophysiology to treatment perspectives. World J Hepatol. 2022;14:1111–9. https://doi.org/10.4254/wjh.v14.i6.1111.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Phaw NA, Leighton J, Dyson JK, Jones DE. Managing cognitive symptoms and fatigue in cholestatic liver disease. Expert Rev Gastroenterol Hepatol. 2021;15:235–41. https://doi.org/10.1080/17474124.2021.1844565.

    Article  PubMed  CAS  Google Scholar 

  29. Harms MH, van Buuren HR, Corpechot C, Thorburn D, Janssen HLA, Lindor KD, et al. Ursodeoxycholic acid therapy and liver transplant-free survival in patients with primary biliary cholangitis. J Hepatol. 2019;71:357–65. https://doi.org/10.1016/j.jhep.2019.04.001.

    Article  PubMed  CAS  Google Scholar 

  30. Lindor KD, Bowlus CL, Boyer J, Levy C, Mayo M. Primary biliary cholangitis: 2018 practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 2019;69:394–419. https://doi.org/10.1002/hep.30145.

    Article  PubMed  Google Scholar 

  31. Lindor KD, Bowlus CL, Boyer J, Levy C, Mayo M. Primary biliary cholangitis: 2021 practice guidance update from the American Association for the Study of Liver Diseases. Hepatology. 2022;75:1012–3. https://doi.org/10.1002/hep.32117.

    Article  PubMed  Google Scholar 

  32. John BV, Schwartz K, Levy C, et al. Impact of obeticholic acid exposure on decompensation and mortality in primary biliary cholangitis and cirrhosis. Hepatol Commun. 2021;5:1426–36. https://doi.org/10.1002/hep4.1720.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. De Vincentis A, D’Amato D, Cristoferi L, et al. Predictors of serious adverse events and non-response in cirrhotic patients with primary biliary cholangitis treated with obeticholic acid. Liver Int. 2022;42:2453–65. https://doi.org/10.1111/liv.15386.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Roberts SB, Ismail M, Kanagalingam G, et al. Real-world effectiveness of obeticholic acid in patients with primary biliary cholangitis. Hepatol Commun. 2020;4:1332–45. https://doi.org/10.1002/hep4.1518.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. D’Amato D, De Vincentis A, Malinverno F, et al. Real-world experience with obeticholic acid in patients with primary biliary cholangitis. JHEP Rep (Online). 2021;3: 100248. https://doi.org/10.1016/j.jhepr.2021.100248.

    Article  Google Scholar 

  36. Gomez E, Garcia Buey L, Molina E, et al. Effectiveness and safety of obeticholic acid in a Southern European multicentre cohort of patients with primary biliary cholangitis and suboptimal response to ursodeoxycholic acid. Aliment Pharmacol Ther. 2021;53:519–30. https://doi.org/10.1111/apt.16181.

    Article  PubMed  CAS  Google Scholar 

  37. Harms MH, Hirschfield GM, Floreani A, et al. Obeticholic acid is associated with improvements in AST-to-platelet ratio index and GLOBE score in patients with primary biliary cholangitis. JHEP Rep (Online). 2021;3: 100191. https://doi.org/10.1002/hep.32117.

    Article  Google Scholar 

  38. Murillo Perez CF, Fisher H, Hiu S, Kareithi D, Adekunle F, Mayne T, et al. Greater transplant-free survival in patients receiving obeticholic acid for primary biliary cholangitis in a clinical trial setting compared to real-world external controls. Gastroenterology. 2022;163:1630-1642.e3. https://doi.org/10.1053/j.gastro.2022.08.054.

    Article  PubMed  CAS  Google Scholar 

  39. Honda A, Ikegami T, Nakamuta M, Miyazaki T, Iwamoto J, Hirayama T, et al. Anti-cholestatic effects of bezafibrate in patients with primary biliary cirrhosis treated with ursodeoxycholic acid. Hepatology. 2013;57:1931–41. https://doi.org/10.1002/hep.26018.

    Article  PubMed  CAS  Google Scholar 

  40. Iwasaki S, Tsuda K, Ueta H. Bezafibrate may have a beneficial effect in pre-cirrhotic primary biliary cirrhosis. Hepatol Res. 1999;16:12–8. https://doi.org/10.1016/S1386-6346(99)00033-9.

    Article  Google Scholar 

  41. Corpechot C, Chazouillères O, Rousseau A, Le Gruyer A, Habersetzer F, Mathurin P, et al. A placebo-controlled trial of bezafibrate in primary biliary cholangitis. N Engl J Med. 2018;378:2171–81. https://doi.org/10.1056/NEJMoa1714519.

    Article  PubMed  CAS  Google Scholar 

  42. de Vries E, Bolier R, Goet J, Parés A, Verbeek J, de Vree M, et al. Fibrates for itch (FITCH) in fibrosing cholangiopathies: a double-blind, randomized, placebo-controlled trial. Gastroenterology. 2021;160:734-743.e6. https://doi.org/10.1053/j.gastro.2020.10.001.

    Article  PubMed  CAS  Google Scholar 

  43. Hosonuma K, Sato K, Yamazaki Y, Yanagisawa M, Hashizume H, Horiguchi N, et al. A prospective randomized controlled study of long-term combination therapy using ursodeoxycholic acid and bezafibrate in patients with primary biliary cirrhosis and dyslipidemia. Am J Gastroenterol. 2015;110:423–31. https://doi.org/10.1038/ajg.2015.20.

    Article  PubMed  CAS  Google Scholar 

  44. Matsumoto K, Hirohara J, Takeuchi A, Miura R, Asaoka Y, Nakano T, et al. Determinants of the effectiveness of bezafibrate combined with ursodeoxycholic acid in patients with primary biliary cholangitis. Hepatol Res. 2023. https://doi.org/10.1111/hepr.13931.

    Article  PubMed  Google Scholar 

  45. Cheung AC, Lapointe-Shaw L, Kowgier M, Meza-Cardona J, Hirschfield GM, Janssen HL, et al. Combined ursodeoxycholic acid (UDCA) and fenofibrate in primary biliary cholangitis patients with incomplete UDCA response may improve outcomes. Aliment Pharmacol Ther. 2016;43:283–93. https://doi.org/10.1111/apt.13465.

    Article  PubMed  CAS  Google Scholar 

  46. Soret PA, Lam L, Carrat F, Smets L, Berg T, Carbone M, et al. Combination of fibrates with obeticholic acid is able to normalise biochemical liver tests in patients with difficult-to-treat primary biliary cholangitis. Aliment Pharmacol Ther. 2021;53:1138–46. https://doi.org/10.1111/apt.16336.

    Article  PubMed  CAS  Google Scholar 

  47. Yagi M, Tanaka A, Namisaki T, Takahashi A, Abe M, Honda A, et al. Is patient-reported outcome improved by nalfurafine hydrochloride in patients with primary biliary cholangitis and refractory pruritus? A post-marketing, single-arm, prospective study. J Gastroenterol. 2018;53:1151–8. https://doi.org/10.1007/s00535-018-1465-z.

    Article  PubMed  CAS  Google Scholar 

  48. Hirschfield GM, Beuers U, Kupcinskas L, Ott P, Bergquist A, Färkkilä M, et al. A placebo-controlled randomised trial of budesonide for PBC following an insufficient response to UDCA. J Hepatol. 2021;74:321–9. https://doi.org/10.1016/j.jhep.2020.09.011.

    Article  PubMed  CAS  Google Scholar 

  49. de Graaf KL, Lapeyre G, Guilhot F, Ferlin W, Curbishley SM, Carbone M, et al. NI-0801, an anti-chemokine (C-X-C motif) ligand 10 antibody, in patients with primary biliary cholangitis and an incomplete response to ursodeoxycholic acid. Hepatol Commun. 2018;2:492–503. https://doi.org/10.1002/hep4.1170.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Tanaka A, Abe M, Namisaki T, et al. Efficacy and Safety of E6011, anti-human fractalkine monoclonal antibody, in patients with primary biliary cholangitis with an incomplete response to ursodeoxycholic acid: a placebo-controlled double-blind comparison Phase 2 study. Hepatology. 2019;70:767A.

    Google Scholar 

  51. Bowlus CL, Yang GX, Liu CH, Johnson CR, Dhaliwal SS, Frank D, et al. Therapeutic trials of biologics in primary biliary cholangitis: an open label study of abatacept and review of the literature. J Autoimmun. 2019;101:26–34. https://doi.org/10.1016/j.jaut.2019.04.005.

    Article  PubMed  CAS  Google Scholar 

  52. Hirschfield GM, Gershwin ME, Strauss R, Mayo MJ, Levy C, Zou B, et al. Ustekinumab for patients with primary biliary cholangitis who have an inadequate response to ursodeoxycholic acid: a proof-of-concept study. Hepatology. 2016;64:189–99. https://doi.org/10.1002/hep.28359.

    Article  PubMed  Google Scholar 

  53. Schramm C, Wedemeyer H, Mason A, Hirschfield GM, Levy C, Kowdley KV, et al. Farnesoid X receptor agonist tropifexor attenuates cholestasis in a randomised trial in patients with primary biliary cholangitis. JHEP Rep. 2022;4: 100544. https://doi.org/10.1016/j.jhepr.2022.100544.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kowdley KV, Minuk GY, Pagadala MR, et al. The nonsteroidal farnesoid X receptor (FXR) agonist cilofexor improves liver biochemistry in patients with primary biliary cholangitis (PBC): a phase 2, randomized, placebo-controlled trial. Hepatology. 2019;70:31A-A32.

    Google Scholar 

  55. Kowdley KV, Bonder A, Heneghan MA, et al. Final data of the phase 2a intrepid study with edp-305, a non-bile acid farnesoid X receptor (FXR) agonist. Hepatology. 2020;72:746A-A747.

    Google Scholar 

  56. Colapietro F, Gershwin ME, Lleo A. PPAR agonists for the treatment of primary biliary cholangitis: old and new tales. J Transl Autoimmun. 2023;6: 100188. https://doi.org/10.1016/j.jtauto.2023.100188.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Tanaka N, Honda A. Pemafibrate for primary biliary cholangitis with dyslipidemia: a proposal of a new treatment from Japan. Hepatol Res. 2022;52:495–6. https://doi.org/10.1111/hepr.13770.

    Article  PubMed  Google Scholar 

  58. Dohmen K, Onohara SY, Harada S. Effects of switching from fenofibrate to pemafibrate for asymptomatic primary biliary cholangitis. Korean J Gastroenterol. 2021;78:227–34. https://doi.org/10.4166/kjg.2021.092.

    Article  PubMed  Google Scholar 

  59. Joshita S, Umemura T, Yamashita Y, Sugiura A, Yamazaki T, Fujimori N, et al. Biochemical and plasma lipid responses to pemafibrate in patients with primary biliary cholangitis. Hepatol Res. 2019;49:1236–43. https://doi.org/10.1111/hepr.13361.

    Article  PubMed  CAS  Google Scholar 

  60. Yamaguchi M, Asano T, Arisaka T, Mashima H, Irisawa A, Tamano M. Effects of pemafibrate on primary biliary cholangitis with dyslipidemia. Hepatol Res. 2022;52:522–31. https://doi.org/10.1111/hepr.13747.

    Article  PubMed  CAS  Google Scholar 

  61. Jones D, Boudes PF, Swain MG, Bowlus CL, Galambos MR, Bacon BR, et al. Seladelpar (MBX-8025), a selective PPAR-delta agonist, in patients with primary biliary cholangitis with an inadequate response to ursodeoxycholic acid: a double-blind, randomised, placebo-controlled, phase 2, proof-of-concept study. Lancet Gastroenterol Hepatol. 2017;2:716–26. https://doi.org/10.1016/S2468-1253(17)30246-7.

    Article  PubMed  Google Scholar 

  62. Bowlus CL, Galambos MR, Aspinall RJ, Hirschfield GM, Jones DEJ, Dörffel Y, et al. A phase II, randomized, open-label, 52-week study of seladelpar in patients with primary biliary cholangitis. J Hepatol. 2022;77:353–64. https://doi.org/10.1016/j.jhep.2022.02.033.

    Article  PubMed  CAS  Google Scholar 

  63. Hirschfield GM, Shiffman ML, Gulamhusein A, Kowdley KV, Vierling JM, Levy C, et al. Seladelpar efficacy and safety at 3 months in patients with primary biliary cholangitis: ENHANCE, a phase 3, randomized, placebo-controlled study. Hepatology. 2023;78:397–415. https://doi.org/10.1097/HEP.0000000000000395.

    Article  PubMed  Google Scholar 

  64. Watkins P. An independent blinded review of suspected druginduced liver injury (DILI) in nonalcoholic steatohepatitis (NASH) patients by a panel of pathologists and hepatologists: lessons learned from the seladelpar hepatoxicity review committee (SHRC). 2022; Available from: https://www.postersessiononline.eu/173580348_eu/congresos/ILC2021/aula/-PO_1504_ILC2021.pdf.

  65. Schattenberg JM, Pares A, Kowdley KV, Heneghan MA, Caldwell S, Pratt D, et al. A randomized placebo-controlled trial of elafibranor in patients with primary biliary cholangitis and incomplete response to UDCA. J Hepatol. 2021;74:1344–54. https://doi.org/10.1016/j.jhep.2021.01.013.

    Article  PubMed  CAS  Google Scholar 

  66. Vuppalanchi R, Caldwell SH, Pyrsopoulos N, deLemos AS, Rossi S, Levy C, et al. Proof-of-concept study to evaluate the safety and efficacy of saroglitazar in patients with primary biliary cholangitis. J Hepatol. 2022;76:75–85. https://doi.org/10.1016/j.jhep.2021.08.025.

    Article  PubMed  CAS  Google Scholar 

  67. Invernizzi P, Carbone M, Jones D, Levy C, Little N, Wiesel P, et al. Setanaxib, a first-in-class selective NADPH oxidase 1/4 inhibitor for primary biliary cholangitis: a randomized, placebo-controlled, phase 2 trial. Liver Int. 2023;43:1507–22. https://doi.org/10.1111/liv.15596.

    Article  PubMed  CAS  Google Scholar 

  68. Levy C, Kendrick S, Bowlus CL, Tanaka A, Jones D, Kremer AE, et al. GLIMMER: a randomized phase 2b dose-ranging trial of linerixibat in primary biliary cholangitis patients with pruritus. Clin Gastroenterol Hepatol. 2023;21:1902-1912.e13. https://doi.org/10.1016/j.cgh.2022.10.032.

    Article  PubMed  CAS  Google Scholar 

  69. Mayo MJ, Pockros PJ, Jones D, Bowlus CL, Levy C, Patanwala I, et al. A randomized, controlled, Phase 2 study of maralixibat in the treatment of itching associated with primary biliary cholangitis. Hepatol Commun. 2019;3:365–81. https://doi.org/10.1002/hep4.1305.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Silveira MG, Gossard AA, Stahler AC, Jorgensen RA, Petz JL, Ali AH, et al. A randomized, placebo-controlled clinical trial of efficacy and safety: modafinil in the treatment of fatigue in patients with primary biliary cirrhosis. Am J Ther. 2017;24:e167–76. https://doi.org/10.1097/MJT.0000000000000387.

    Article  PubMed  Google Scholar 

  71. Khanna A, Jopson L, Howel D, Bryant A, Blamire A, Newton JL, et al. Rituximab is ineffective for treatment of fatigue in primary biliary cholangitis: a phase 2 randomized controlled trial. Hepatology. 2019;70:1646–57. https://doi.org/10.1002/hep.30099.

    Article  PubMed  CAS  Google Scholar 

  72. Corpechot C, Abenavoli L, Rabahi N, Chrétien Y, Andréani T, Johanet C, et al. Biochemical response to ursodeoxycholic acid and long-term prognosis in primary biliary cirrhosis. Hepatology. 2008;48:871–7. https://doi.org/10.1002/hep.22428.

    Article  PubMed  CAS  Google Scholar 

  73. Corpechot C, Chazouillères O, Poupon R. Early primary biliary cirrhosis: biochemical response to treatment and prediction of long-term outcome. J Hepatol. 2011;55:1361–7. https://doi.org/10.1016/j.jhep.2011.02.031.

    Article  PubMed  CAS  Google Scholar 

  74. Kuiper EM, Hansen BE, de Vries RA, den Ouden-Muller JW, van Ditzhuijsen TJ, Haagsma EB, et al. Improved prognosis of patients with primary biliary cirrhosis that have a biochemical response to ursodeoxycholic acid. Gastroenterology. 2009;136:1281–7. https://doi.org/10.1053/j.gastro.2009.01.003.

    Article  PubMed  CAS  Google Scholar 

  75. Kumagi T, Guindi M, Fischer SE, Arenovich T, Abdalian R, Coltescu C, et al. Baseline ductopenia and treatment response predict long-term histological progression in primary biliary cirrhosis. Am J Gastroenterol. 2010;105:2186–94. https://doi.org/10.1038/ajg.2010.216.

    Article  PubMed  CAS  Google Scholar 

  76. Parés A, Caballería L, Rodés J. Excellent long-term survival in patients with primary biliary cirrhosis and biochemical response to ursodeoxycholic acid. Gastroenterology. 2006;130:715–20. https://doi.org/10.1053/j.gastro.2005.12.029.

    Article  PubMed  CAS  Google Scholar 

  77. Carbone M, Sharp SJ, Flack S, Paximadas D, Spiess K, Adgey C, et al. The UK-PBC risk scores: derivation and validation of a scoring system for long-term prediction of end-stage liver disease in primary biliary cholangitis. Hepatology. 2016;63:930–50. https://doi.org/10.1002/hep.28017.

    Article  PubMed  CAS  Google Scholar 

  78. Lammers WJ, Hirschfield GM, Corpechot C, Nevens F, Lindor KD, Janssen HL, et al. Development and validation of a scoring system to predict outcomes of patients with primary biliary cirrhosis receiving ursodeoxycholic acid therapy. Gastroenterology. 2015;149:1804-1812.e4. https://doi.org/10.1053/j.gastro.2015.07.061.

    Article  PubMed  Google Scholar 

  79. Lammers WJ, van Buuren HR, Hirschfield GM, Janssen HL, Invernizzi P, Mason AL, et al. Levels of alkaline phosphatase and bilirubin are surrogate end points of outcomes of patients with primary biliary cirrhosis: an international follow-up study. Gastroenterology. 2014;147:1338:e5. https://doi.org/10.1053/j.gastro.2014.08.029.

    Article  CAS  Google Scholar 

  80. Murillo Perez CF, Harms MH, Lindor KD, Van Buuren HR, Hirschfield GM, Corpechot C, et al. Goals of treatment for improved survival in primary biliary cholangitis: treatment target should be bilirubin within the normal range and normalization of alkaline phosphatase. Am J Gastroenterol. 2020;115:1066–74. https://doi.org/10.14309/ajg.0000000000000557.

    Article  PubMed  Google Scholar 

  81. Corpechot C, Lemoinne S, Soret PA, Hansen B, Hirschfield G, Gulamhusein A, et al. Adequate vs. deep response to UDCA in PBC: to what extent and under what conditions is normal ALP level associated with complication-free survival gain? Hepatology. 2023. https://doi.org/10.1097/HEP.0000000000000529.

    Article  PubMed  Google Scholar 

  82. Murillo Perez CF, Ioannou S, Hassanally I, Trivedi PJ, Corpechot C, van der Meer AJ, et al. Optimizing therapy in primary biliary cholangitis: alkaline phosphatase at six months identifies one-year non-responders and predicts survival. Liver Int. 2023;43:1497–506. https://doi.org/10.1111/liv.15592.

    Article  PubMed  CAS  Google Scholar 

  83. Danaei G, Rodríguez LA, Cantero OF, Logan R, Hernán MA. Observational data for comparative effectiveness research: an emulation of randomised trials of statins and primary prevention of coronary heart disease. Stat Methods Med Res. 2013;22:70–96. https://doi.org/10.1177/0962280211403603.

    Article  PubMed  Google Scholar 

  84. Food and Drug Administration. Submitting documents using real-world data and real-world evidence to FDA for drug and biological products guidance for industry. https://www.fda.gov/media/124795/download. Accessed 24 Aug 2023.

  85. Corpechot C, Carrat F, Gaouar F, Chau F, Hirschfield G, Gulamhusein A, et al. Liver stiffness measurement by vibration-controlled transient elastography improves outcome prediction in primary biliary cholangitis. J Hepatol. 2022;77:1545–53. https://doi.org/10.1016/j.jhep.2022.06.017.

    Article  PubMed  Google Scholar 

  86. Carbone M, Nardi A, Flack S, Carpino G, Varvaropoulou N, Gavrila C, et al. Pretreatment prediction of response to ursodeoxycholic acid in primary biliary cholangitis: development and validation of the UDCA Response Score. Lancet Gastroenterol Hepatol. 2018;3:626–34. https://doi.org/10.1016/S2468-1253(18)30163-8.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Jacoby A, Rannard A, Buck D, Bhala N, Newton JL, James OF, et al. Development, validation, and evaluation of the PBC-40, a disease specific health related quality of life measure for primary biliary cirrhosis. Gut. 2005;54:1622–9. https://doi.org/10.1136/gut.2005.065862.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Montali L, Tanaka A, Riva P, Takahashi H, Cocchi C, Ueno Y, et al. A short version of a HRQoL questionnaire for Italian and Japanese patients with primary biliary cirrhosis. Dig Liver Dis. 2010;42:718–23. https://doi.org/10.1016/j.dld.2010.01.004. (Epub ahead of print).

    Article  PubMed  Google Scholar 

  89. Alrubaiy L, Mells G, Flack S, Bosomworth H, Hutchings H, Williams J, et al. PBC-10: a short quality of life measure for clinical screening in primary biliary cholangitis. Aliment Pharmacol Ther. 2019;50:1223–31. https://doi.org/10.1111/apt.15554.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Tanaka.

Ethics declarations

Funding

This work was supported by a Health and Labor Sciences Research Grant (research on intractable hepatobiliary disease) issued by the Ministry of Health, Labor, and Welfare of Japan (Grant Number JPMH20FC1023). The sponsor had no role in the study.

Conflict of interest

Dr. A. Tanaka reports receiving consultant fees from EA Pharma, GlaxoSmithKline, Kowa Company Ltd., and Gilead Sciences.

Ethics approval

Not applicable.

Informed consent

Not applicable.

Data availability

Not applicable.

Author contributions

AT is the sole author of this manuscript

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, A. New Therapies on the Horizon for Primary Biliary Cholangitis. Drugs 84, 1–15 (2024). https://doi.org/10.1007/s40265-023-01979-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-023-01979-1

Navigation