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Abstract
Cardiac arrhythmias remain a common cause of death and disability. Antiarrhythmic drugs (AADs) and antiarrhythmic agents 
remain a cornerstone of current cardiac arrhythmia management, despite moderate efficacy and the potential for significant 
adverse proarrhythmic effects. Due to conceptual, regulatory and financial considerations, the number of novel antiarrhythmic 
targets and agents in the development pipeline has decreased substantially during the last few decades. However, several 
promising candidates remain and there are exciting developments in repurposing and reformulating already existing drugs 
for indications related to cardiac arrhythmias. This review discusses the key conceptual considerations for the development 
of new antiarrhythmic agents, summarizes new compounds and formulations currently in clinical development for rhythm 
control of atrial fibrillation, and highlights the potential for drug repurposing. Finally, future directions in AAD development 
are discussed. Together with an ever-increasing understanding of the molecular mechanisms underlying cardiac arrhythmias, 
these components support a cautiously optimistic outlook towards improved pharmacological treatment opportunities for 
patients suffering from cardiac arrhythmias.

1  Introduction

Cardiac arrhythmias remain a common cause of death and 
disability [1, 2]. Antiarrhythmic drugs (AADs) and antiar-
rhythmic agents are prescribed for termination of atrial and 
ventricular arrhythmias (acute cardioversion) and/or pre-
vention of arrhythmia recurrence (long-term maintenance 
of normal sinus rhythm). Despite significant advances in 
device and catheter ablation-based therapies of cardiac 
arrhythmias over the last decades [3, 4], AADs remain a 

cornerstone of antiarrhythmic therapy. For example, the 
prescription rate of AADs nearly tripled between 2004 
and 2016 in a large retrospective nationwide study in the 
USA. This increase was mainly due to increased prescrip-
tion rates of amiodarone, sotalol, flecainide and dofetilide 
[5]. Similar results were observed in a Danish nationwide 
study, showing a 16% increase in the use of AADs over a 
19-year time period mainly due to increased use of ami-
odarone and flecainide [6]. The increased prescription 
rates of AADs are primarily driven by increased diag-
nosis rates of atrial arrhythmias such as atrial fibrillation 
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Key Points 

Cardiac arrhythmias remain a major clinical problem and 
although current antiarrhythmic drugs have significant 
limitations, pharmacological treatment is expected to 
remain a cornerstone of cardiac arrhythmia management.

Development of novel antiarrhythmic drugs has 
decreased over the last decades.

Repurposing and reformulating existing drugs may 
provide novel opportunities for management of cardiac 
arrhythmias.
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(AF) [7], which clinically is the most common cardiac 
arrhythmia [8]. The rising prevalence of AF can be partly 
attributed to an increase in AF prevalence and incidence 
promoted by an aging population, the obesity pandemic, 
and an increased number of patients living with chronic 
diseases [8]. However, the increasing use of screening 
modalities and improvements in AF detection by mobile 
health solutions have also contributed to the rising diag-
nosis rates [7, 9, 10]. Accumulating evidence suggests 
that (early) antiarrhythmic therapy to restore and maintain 
sinus rhythm (rhythm control) improves outcomes in AF 
patients [11–14]. However, despite the increased incidence 
of cardiac arrhythmias and the central role for AADs in 
arrhythmia therapy, the number of novel AADs has been 
very limited in recent years.

Initial AAD development efforts during the 1970s and 
1980s focused primarily on the treatment of ventricular 
arrhythmias. However, after the failures of the Cardiac 
Arrhythmia Suppression Trial (CAST) [15] and Survival 
With Oral D-Sotalol (SWORD) trial [16], which showed 
worse outcomes in patients treated with AADs compared to 
placebo control, the focus has shifted more to atrial arryth-
mias, notably AF [17, 18]. Nevertheless, ventricular pro-
arrhythmic side effects of novel AADs for rhythm control of 
AF have proven to be one of the hardest hurdles to overcome 
in AAD development, although recent trials showed a com-
parable rate of adverse effects between AADs and ablation, 
with AADs showing a trend towards a lower rate of adverse 
effects [19].

Prominent challenges for de novo development of AADs 
for the pharmaceutical industry include a costly and long 
process of preclinical development and large-scale clinical 
trials, concerns about drug safety, increased regulatory hur-
dles, and growing economic pressure from generics [20]. 
Furthermore, the initial success and clinical excitement for 
development of ablation therapy, which has significantly 
lowered arrhythmia recurrence rates than currently avail-
able AADs [21–23], has likely hampered the development 
of AADs. At present, the number of novel antiarrhythmic 
targets and agents in the development pipeline is limited. 
However, their results are promising and there are excit-
ing developments in repurposing and reformulating already 
approved drugs to novel therapeutic indications and delivery 
methods, which gives renewed hope for improved pharma-
cological treatment opportunities for patients suffering from 
cardiac arrhythmias.

In this review we aim to provide insights into conceptual 
considerations for AAD development and provide an over-
view of recent advances in pharmacological antiarrhythmic 
therapy for AF, including repurposing and reformulating 
already approved drug and agents.

2 � Conceptual Considerations 
for Antiarrhythmic Drug (AAD) 
Development

2.1 � Multi‑target Effects and Drug Combinations

There are several criteria that an ideal AAD must meet in 
order to become available clinically. The primary criterion 
is safety. Cardiac pro-arrhythmic effects and extracardiac 
side effects represent significant challenges when devel-
oping AADs and need to be carefully evaluated (Fig. 1). 
Significant efforts have been made to target ion channels 
selectively expressed in the atria, thereby reducing the 
risk of ventricular pro-arrhythmia. However, few chan-
nels are truly atrial selective and disease-related remod-
eling can differentially affect the regional expression of 
AAD targets. This ionic remodeling can negatively affect 
both therapeutic efficacy (in case of down-regulation of 
the primary therapeutic target in the atria, thereby reduc-
ing the drug-induced antiarrhythmic effect) and safety 
(due to up-regulation in the ventricles thereby increas-
ing the risk of pro-arrhythmia). Moreover, the majority of 
AADs do not only affect one ion channel, but, to a differ-
ent degree, target multiple membrane ion currents and/or 
intracellular ion fluxes (Fig. 1). This multi-channel effect 
can modulate the risk of pro-arrhythmic and extra-cardiac 
side effects depending on whether the multi-channel block 
effect is synergistic or antagonistic. For example, com-
bined inhibition of multiple repolarizing potassium chan-
nels can synergistically reduce repolarization reserve [24], 
whereas simultaneous inhibition of depolarizing and repo-
larizing currents by amiodarone limits excessive reverse 
rate-dependent repolarization prolongation compared to 
pure class III potassium channel blockers [25], contrib-
uting to its relatively low pro-arrhythmic potential [26]. 
Furthermore, targeting multiple channels at once could 
improve therapeutic efficacy and limit polypharmacy 
thereby increasing compliance and drug persistence. For 
example, the HARMONY trial showed that combining 
midrange doses of oral ranolazine with reduced doses 
of dronedarone synergistically reduced the AF burden in 
patients with paroxysmal AF and was well tolerated [27]. 
Similarly, the recent multinational randomized controlled 
Secondary Prevention of Cardiovascular Disease in the 
Elderly (SECURE) trial sought to investigate the efficacy 
of a polypill-based therapeutic strategy. The SECURE 
study included patients with a myocardial infarction within 
the previous 6 months and investigated a polypill compris-
ing aspirin, ramipril (an angiotensin-converting enzyme 
[ACE] inhibitor) and atorvastatin (a statin) versus routine 
care. The study found a significantly lower risk of major 
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adverse cardiovascular events including cardiovascular 
death, nonfatal ischemic stroke or urgent revasculariza-
tion in patients receiving the polypill [28]. The polypill 
approach also resulted in higher patient compliance [28], 
highlighting the opportunity to combine already existing 
therapies to reduce polypharmacy, increase compliance, 
and ideally increase efficacy. However, apart from the 
HARMONY trial, the combination of AADs to improve 
long-term rhythm control has not been systematically eval-
uated. Finally, it should be noted that drug combinations 
may increase the risk of adverse drug-drug interactions 
with other pharmacological therapies, which are common 
in patients with AF [29].

2.2 � Drug Formulation and Route of Administration

Other important criteria that require consideration in the 
development of AADs are the chemical drug design, drug 
formulation and route of administration. Numerous cardiac 
ion channels are also expressed in the brain, where they 

play a pivotal role in regulating the central nervous sys-
tem, which is why novel antiarrhythmic agents need to be 
designed in ways that prevent them from passing the protec-
tive blood-brain barrier in order to avoid serious neurologi-
cal side effects. In general, oral drug formulations are pre-
ferred over other types of formulations. Patient compliance 
is higher with oral formulation compared to other routes of 
administration, as this is more convenient for the patients, 
and oral formulations can easily be transferred to large-
scale production due to a higher cost-effectiveness for the 
pharmaceutical industry. However, oral bioavailability can 
be highly variable due to shifts in physiochemical and met-
abolic processes that dictate pharmacokinetics. Intestinal 
metabolism, reverse transport in the gut and the first-pass 
hepatic metabolism represent major obstacles that critically 
determine bioavailability of orally applied drugs. In addi-
tion, more targeted organ drug delivery needs to be consid-
ered using alternative routes of administration in order to 
obtain better therapeutic outcome and reduced side effects. 
This includes alternative routes of administration (Fig. 1), 

Fig. 1   Conceptual considerations for antiarrhythmic drugs (AADs)
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e.g., nasal administration or local cardiac injections, for 
which examples are given below.

2.3 � Direct Versus Indirect Modulation 
of the Vulnerable Electrophysiological 
Substrate

A conceptual distinction should be made between direct 
modulators of cardiac electrophysiology (typically inhibitors 
of cardiac ion channels) and targeting of key nodal signal-
ing pathways involved in proarrhythmic cardiac remodeling. 
Successful lifestyle and risk factor management have been 
shown to have antiarrhythmic potential—especially in AF 
[30]. Obesity, diabetes mellitus, sleep apnea and hyperten-
sion are all examples of factors that can be regulated suc-
cessfully to improve the management of AF. The PREVEn-
tion and RegReSsive Effect of weight-loss and risk factor 
modification on Atrial Fibrillation (REVERSE-AF) study 
showed that a weight loss of ≥ 10% could prevent further 
progression of AF and also reverse persistent to paroxysmal 
AF or no arrhythmia [31]. Upstream therapy similarly aims 
to prevent or reverse the progression of cardiac remodeling 
to prevent arrhythmia recurrence through pharmacological 
targeting of processes similar to those affected with suc-
cessful lifestyle and risk-factor management, e.g., hypertro-
phy, fibrosis and inflammation (Fig. 1). While traditional 
‘upstream therapy’, involving systemic inhibition of major 
receptor systems and pathways to prevent the development 
of a vulnerable substrate might represent a more causative 
therapy, its true effectiveness can only be evaluated with 
long-term follow-up and is likely limited when a substrate 
is already present [32, 33], presenting challenges for both 
clinical trial design and real-world application. Indeed, 
considering the fact that AF is often detected quite late in 
many patients, traditional upstream therapy has proven to 
be only moderately effective for primary prevention and 
even less successful for secondary prevention of AF [34, 
35]. By contrast, selective molecular targeting of key sign-
aling molecules and nodal points could be an alternative to 

achieve both decent efficacy along with satisfactory reduc-
tion of symptoms and consequent improvement of quality of 
life. While this may also be partially achieved by targeting 
modifiable risk factors, we focus below on potential phar-
macological approaches.

3 � Recent Advances in AAD Therapies

It has been more than a decade since a novel AAD was mar-
keted for AF therapy and there are currently very few AADs 
in the development pipeline [36]. On the other hand, there 
are several promising developments related to new formu-
lations of already approved AADs, as well as repurposing 
of drugs used for other indications to the antiarrhythmic 
therapy regime. In this section, we review the novel targets 
and recent compounds that are currently in clinical develop-
ment. An overview of compounds, their primary therapeutic 
targets, and ongoing clinical trials is provided in Table 1.

3.1 � Novel AAD Targets

3.1.1 � Small Conductance Ca2+‑activated K+ (SK) Channels

Small conductance Ca2+-activated K+ (SK) channels have 
gained interest over the last two decades in the treatment 
of AF due to their apparent atrial selectivity. Although 
expressed in both atrial and ventricular tissue, under nor-
mal physiological conditions SK channels play a role in 
atrial, but not ventricular repolarization [37, 38]. Numerous 
preclinical studies have demonstrated clear antiarrhythmic 
effects of SK-channel inhibition on the termination of AF 
as well as prevention of arrhythmia reinduction due to pro-
longation of the action potential duration and the effective 
refractory period [39–45], even in the presence of relatively 
advanced forms of AF that were refractory to cardiover-
sion by currently approved and rather effective AADs [43]. 
Recent work demonstrated that SK current is up-regulated in 
patients with persistent AF due to a functional up-regulation 

Table 1   Novel antiarrhythmic agents

Agent (developer) Main antiarrhythmic target Indication Formulation Current clinical status

AP30663 (Acesion Pharma ApS) SK channels Cardioversion of recent-onset 
atrial fibrillation (AF) [3 h–7 
d]

Intravenous Phase 2 completed 
(NCT04571385)

AP31969 (Acesion Pharma ApS) SK channels Sinus rhythm maintenance Oral Phase 1 planned in 2023
HSY244 (Novartis) Undisclosed Cardioversion of recent onset  

AF
Intravenous Phase 2 terminated [business 

decision] (NCT04582409)
HBI-3000 (Huyabio Interna-

tional, LLC)
Multi-channel blocker 

(INa,peak, INa,late, ICa,L  
and IKr)

Cardioversion of recent onset  
AF (>2 h and <72 h)

Intravenous Phase 2 ongoing
(NCT04680026)
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resulting from phosphatase-2A-dependent calmodulin-Thr80 
dephosphorylation and enhanced SK-channel trafficking to 
the sarcolemma. The action potential duration shortening 
resulting from the enhanced SK channels current promotes 
re-entry and AF, supporting the importance of further devel-
opment of SK-channel blockers for both cardioversion and 
maintenance of SR in AF patients [46]. In Phase 1 clinical 
trials, the SK-channel blocker AP30663 proved to be safe 
and well-tolerated when given intravenously. Apart from the 
reported infusion site-related side-effects, which were mild 
and temporary, the blocker induced small and transient QTc 
prolongation of approximately 18 ms, which did not give 
rise to serious concerns [47]. Recently, Acesion Pharma 
announced that the Phase 2 clinical trial for AP30663 suc-
cessfully met the efficacy and safety end-points for phar-
macological cardioversion of patients with recent-onset AF 
(NCT04571385). This novel SK-channel blocker showed a 
dose-dependent effect and exceeded 50% cardioversion rate 
to SR within 90 min of infusion start. The trial included 63 
patients who were followed for 30 days. No serious adverse 
events including ventricular arrhythmias were observed. 
Acesion Pharma has also announced that their 2nd genera-
tion oral lead compound AP31969 indicated for SR mainte-
nance is planned for a Phase 1 clinical trial starting in 2023 
[48] (Table 1).

3.1.2 � Acetylcholine‑Activated Inward‑Rectifier K+ Channel 
Blockers

The autonomic nervous system plays a critical role in AF 
pathophysiology [49] and the acetylcholine-dependent 
inward-rectifier K+-current (IK,ACh) has been shown to 
be constitutively active during caffeine phosphodiester-
ase (cAF) inhibition [50, 51]. The constitutively-active 
IK,ACh has been attributed to increased phosphorylation 
of protein kinase C epsilon type (PKCε), increased activ-
ity of the nucleoside diphosphate kinase B and changes in 
channel stoichiometry [52–54]. Despite promising antiar-
rhythmic effects for acute cardioversion of AF in numerous 
large animal models [55–59], the clinical effects of IK,ACh 
blockers in human subjects have not yet been proven and 
many development programs for IK,ACh blockers have been 
terminated (Table 1).

3.1.3 � HSY244

HSY244 is a novel AAD with undisclosed mechanism of 
action. It is currently investigated in a randomized, placebo-
controlled, double-blinded study to evaluate the efficacy for 
cardioversion of AF, safety, tolerability, and pharmacokinet-
ics of HSY244 in patients with AF (NCT04582409) [36]. 
However, the trial was terminated in April 2023 based on 
business decisions (NCT04582409) (Table 1).

3.1.4 � Multi‑channel Blocker

HBI-3000 is a multi-channel blocker currently investigated 
in a Phase 2 trial for acute intravenous cardioversion of 
patients with recent-onset AF (NCT04680026). In vitro 
HBI-3000 shows inhibitory effects on INa,peak, INa,late, ICa,L 
and IKr in ventricular cardiomyocytes [60]. HBI-3000 was 
well-tolerated in the Phase 1 clinical trial and showed 
no pro-arrhythmic effects, despite dose-dependent ECG 
changes (prolonged QRS, P wave duration, PR interval), 
which are suspected to be due to the potent multi-channel 
block. The Phase 2 trial is estimated to be completed in 
December 2023 (NCT04680026) (Table 1).

3.2 � Novel AAD Formulations

3.2.1 � Flecainide

Flecainide is a Na+ blocker approved for prevention of both 
atrial and ventricular arrhythmias and cardioversion of 
recent-onset AF in patients without known relevant struc-
tural heart disease [61]. The cardioversion rate of intrave-
nous flecainide is 51–55% and high-dose oral flecainide is 
available as a ‘pill-in-the-pocket approach’ for more con-
venient pharmacological cardioversion [61, 62]. Recently, 
inhaled flecainide acetate has been developed to achieve a 
superior administration form that can produce faster and 
higher plasma concentrations for acute pharmacological 
cardioversion than orally administered flecainide. A recent 
dose-escalation study investigated the feasibility, tolerability 
and efficacy of inhaled flecainide acetate given in doses of 
30, 60, 90 and 120 mg for cardioversion of patients with 
recent-onset AF [63]. Conversion rates were dose-dependent 
and correlated with plasma concentrations. Patients given 
the highest dose of flecainide that achieved a plasma concen-
tration > 200 ng/mL had a cardioversion rate of 50% within 
90 minutes [63]. The latter is comparable to that reported for 
oral and intravenous administration of flecainide. Adminis-
tration of flecainide via oral inhalation might provide a safe 
and effective alternative to intravenous or pill-in-the-pocket 
cardioversion, reducing the need for hospital admissions of 
AF patients (Table 2).

3.2.2 � Etripamil

Etripamil is an L-type Ca2+-blocker, which is still under 
development for termination of atrioventricular nodal-
dependent paroxysmal supraventricular tachycardia (PSVT). 
The recently conducted Phase 3 trial ‘Efficacy and Safety 
of Intranasal MSP-2017 (Etripamil) for the Conversion of 
PSVT to Sinus Rhythm (NODE-301) of 70 mg nasal spray 
used during systematic sustained PSVT failed to meet the 
primary endpoint, which was cardioversion within 5 hours. 
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However, at earlier timepoints, e.g., 30 min, the cardiover-
sion rated reached 53.7% compared to 34.7% with placebo 
[64]. Nasal administration of etripamil has been evaluated 
to be safe and well tolerated, but further investigations are 
necessary to identify effective and convenient options for 
cardioversion of patients with PSVT [65] (Table 2).

3.2.3 � Bisoprolol

Bisoprolol is a selective β1-receptor blocker used for the 
treatment of hypertension. In a retrospective study includ-
ing 61 patients undergoing non-cardiac surgery treated with 
bisoprolol transdermal patches, 77% cardioverted to sinus 
rhythm within 24 hours following development of post-
operative AF [66]. The major limitation of this study was 
the lack of a control group confirming that this high cardio-
version rate was not partly due to spontaneous cardiover-
sion in some patients [66]. In a different retrospective study 

investigating the difference in post-operative AF between 
orally administered bisoprolol and transdermal patches in 
patients undergoing cardiac surgery, the investigators found 
that only 24% of patients treated with transdermal patches 
developed AF compared to 46% of patients treated with oral 
bisoprolol [67]. Both studies were retrospective and enrolled 
a relatively low number of patients, therefore it remains to be 
validated whether bisoprolol patches provide a therapeutic 
option for prevention of post-operative AF (Table 2).

3.2.4 � Amiodarone

Amiodarone is the most effective AAD to date and is avail-
able in oral and intravenous formulations. Although still in 
a preclinical stage, the epicardial application of amiodar-
one-eluting patches is an interesting approach for targeted 
drug delivery in patients at risk of developing post-opera-
tive AF. The targeted delivery in theory makes it possible 

Table 2   Reformulation of already approved AADs

AADS antiarrhythmic drugs, AF atrial fibrillation

Antiarrhythmic  
drug

Original formulation Original indication Reformulation Indication Current clinical status

Flecainide Solution for intrave-
nous injection or 
infusion and tablets

Prevention of both 
atrial and ventricular 
arrhythmias and car-
dioversion of recent-
onset AF in patients 
without known 
relevant structural 
heart disease

Flecainide acetate 
inhalation solution

Acute cardioversion of 
recent-onset sympto-
matic AF

Phase 2 terminated 
NCT05039359 
(RESTORE-1 study)

Phase 3 completed 
NCT03539302 
(INSTANT study)

Etripamil Intranasal administra-
tion

Terminate atrioventric-
ular nodal-dependent 
paroxysmal supraven-
tricular tachycardia

Phase 2 completed
NCT02296190 (NODE-1 

study)
Phase 2 ongoing
NCT04467905
Phase 3 completed
NCT03464019 (The RAPID 

study)
Phase 3 completed
NCT04072835 (NODE-3 

study)
Phase 3 completed
NCT03635996
Phase 3 ongoing
NCT04952610
Phase 3 ongoing
NCT05410860

Bisoprolol Tablets Hypertension Bisoprolol transder-
mal patches

Prevention of AF post-
non-cardiac surgery

Retrospective studies

Amiodarone Prevention of atrial 
and ventricular 
arrhythmias. Main-
tenance of sinus 
rhythm in patients 
with AF

Atrial and ventricular 
arrhythmias

Epicardial ami-
odarone-eluting 
bi-layered patches

Prevention of post-
operative AF

Preclinical
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to achieve therapeutic doses of amiodarone locally in the 
atrial tissue, minimizing the systemic exposure to the drug 
and thereby the long list of extracardiac adverse effects of 
amiodarone. In goats, the epicardial application of bi-layered 
amiodarone-eluting patches resulted in increased effective 
refractory period and conduction time, as well as reduced 
vulnerability to burst pacing-induced atrial arrhythmia up to 
28 days post-implantation of the patches [68]. Future clini-
cal studies in patients undergoing open heart surgery are 
needed to evaluate the true antiarrhythmic potential of this 
approach (Table 2).

3.3 � Repurposing of Approved Agents

3.3.1 � Doxapram

The two-pore-domain K+ channels or K2P channels are 
among the most recently discovered therapeutic targets for 
AF. K2P channels are a large family of K+ channels respon-
sible for an instantaneous and non-inactivating ‘leak’ cur-
rent [69]. TASK-1 (K2P3.1) channels are predominantly 
expressed in atrial tissue and appear to be up-regulated both 
in terms of expression level and function in AF patients [70, 
71]. This makes them an interesting atrial-selective target in 
AF therapy [72]. Doxapram is a potent TASK-1 inhibitor. 
Traditionally, doxapram has been used as a respiratory stim-
ulant in patients with moderate to severe ventilatory failure 
and in patients with chronic obstructive pulmonary disease 
[72]. However, doxapram is rarely applied today for these 
indications because of development of other pharmacologi-
cal approaches. Preclinical studies have shown the antiar-
rhythmic potential of doxapram in pigs [73]. Doxapram is 
currently being investigated for cardioversion of paroxysmal 
or persistent non-valvular AF in patients in the DOxapram 
Conversion TO Sinus rhythm (DOCTOS-Trial) (EudraCT 
No: 2018-002978-17) (Table 3).

3.3.2 � Botulinum Toxin A

Botulinum toxin A is a neurotoxin that reduces the exo-
cytotic release of acetylcholine from nerve endings and is 
commonly used for cosmetic treatments but is also used for 
medical indications such as neurological conditions and 
bladder disorders. Recent and ongoing clinical trials have 
investigated the antiarrhythmic potential of botulinum toxin 
A injections into the ganglionated plexi-enriched fat pads 
during open heart surgery for prevention of post-operative 
AF [74]. Although the first two large randomized clinical 
trials showed a reduced relative risk and an absolute dif-
ference in the occurrence of post-operative AF [75, 76], 
only one of the studies could demonstrate a significant dif-
ference between botulinum toxin A injections and placebo 
[75, 77, 78]. The recently completed Phase 2 trial (NOVA 

study, NCT03779841) investigating botulinum toxin type A 
(AGN-151607) for the prevention of post-operative AF in 
patients undergoing open-chest cardiac surgery [79] revealed 
no differences in the prevalence of post-operative AF upon 
injection of AGN-151607. In a sub-group analysis, lower 
rates of post-operative AF and re-hospitalization were found 
in patients aged ≥ 65 years undergoing coronary artery 
bypass grafting [80]. The current ongoing Prevention of 
Atrial Fibrillation by Botulinum Toxin Injections (BOTAF) 
study (NCT04075981) will further clarify the safety and 
efficacy of botulinum toxin A injection for prevention of 
post-operative AF.

Of note, botulinum toxin A has not only drawn attention 
for the prevention of post-operative AF but has also been 
proposed for prevention of ventricular arrhythmias post-
myocardial infarction. Recently, a preclinical study dem-
onstrated that injection of botulinum toxin A into the left 
stellate ganglion in a canine model of chronic myocardial 
infarction lead to inhibition of left stellate ganglion func-
tion, which improved heart rate variability and alleviated 
ventricular remodeling, ameliorated cardiac function, and 
prevented ventricular arrhythmias 30 days after induction of 
myocardial infarction. The ultrasound-guided percutaneous 
injection of botulinum toxin is noninvasive and therefore 
constitutes a clinically relevant approach [81] (Table 3).

3.3.3 � Colchicine

Colchicine is a well-known drug used for decades to treat 
gout and familial Mediterranean fever [82]. Due to its micro-
tubule-disrupting properties, colchicine is able to inhibit the 
assembly and activation of the NLRP3-inflammasome [83, 
84]. Therapeutic low-dose colchicine has been shown to be 
safe and its therapeutic potential within the cardiovascular 
field has greatly expanded to atherosclerosis, pericarditis, 
heart failure and myocardial infarction [85]. In addition, 
colchicine has found its way into clinical use as an AAD. 
In particular, colchicine has been tested for the prevention 
of post-operative AF following both open-heart surgery and 
catheter ablation. Although some trials have demonstrated 
positive outcomes [86, 87], others were unable to repro-
duce these results [88, 89]. Currently, four clinical trials are 
investigating the antiarrhythmic potential of colchicine in 
AF patients (Table 3).

3.3.4 � Metformin

Metformin is a 5′adenosine monophosphate-activated kinase 
activator widely used as oral antidiabetic drug [90]. Obser-
vational studies indicate that metformin use is associated 
with a lower risk of AF compared to other oral antidiabetic 
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drugs such as sulfonylureas [91]. In a mouse model of ble-
omycin-induced lung fibrosis the anti-fibrotic properties 
of metformin were clearly demonstrated [92], but whether 
the same effects apply to cardiac fibrosis is unknown. Met-
formin was in a recent transcriptomics-based network med-
icine-based analysis of drug gene signatures and functional 
analysis in human inducible pluripotent stem cell-derived 
cardiomyocytes identified as promising candidates for AF 
therapy by reducing the risk of AF compared to standard 
anti-diabetic therapy [93, 94]. Currently, three clinical trials 
are investigating metformin as an upstream therapy against 
AF (Table 3).

3.3.5 � Canakinumab

Increasing evidence suggests an important role for inflam-
mation in AF. Serum inflammatory biomarkers correlate 
with low atrial voltages in patients with AF [95]. Similarly, 
COVID-19 infection causes AF [96] and AF is a risk fac-
tor for major adverse cardiovascular events in COVID-19 
patients [97]. A potentially promising anti-inflamma-
tory target is the multimeric protein complex, NLRP3 

inflammasome (NACHT, LRR, and PYD domain-containing 
protein 3). Enhanced cardiomyocyte-specific NLRP3 inflam-
masome activation was recently reported in patients with AF 
[99], as well as those who go on to develop post-operative 
AF [98], which established the NLRP3 inflammasome as 
a potential novel AF target [99, 100]. Currently there are 
no NLRP3 inflammasome inhibiting drugs in development 
pipeline for AF prevention. However, downstream effects 
of NLRP3-activation can be targeted. Canakinumab is 
a monoclonal IL-1β antibody that reduced major cardiac 
events in patients with atherosclerosis in the CANTOS 
trial (The Canakinumab Anti-Inflammatory Thrombosis 
Outcome Study) [101]. The effects of canakinumab for AF 
were investigated in the small pilot clinical trial CONVERT-
AF, which evaluated the recurrence rate of AF after elec-
trical cardioversion of patients with persistent AF treated 
with either canakinumab or placebo [102]. Atrial fibrilla-
tion recurrence at 6 months was 77% in the placebo group 
and 36% in the canakinumab group [102], but this did not 
reach conventional statistical significance, most likely due 
to the very small sample size of the study population. The 
promising results of this pilot trial require further proof and 

Table 3   Repurposing of already approved agents for antiarrhythmic purposes

5′AMP 5′adenosine monophosphate, AF atrial fibrillation, ARNI angiotensin receptor-neprilysin inhibitor, COPD chronic obstructive pulmonary 
disease, HF heart failure, IL interleukin, MI myocardial infarction, NLRP3 NOD-, LRR- and pyrin domain-containing protein 3, SGLT2i sodium 
glucose co-transporter 2 inhibitors

Drug Target Original indication Repurposed indication Current clinical status

Doxapram TASK-1 channels Respiratory stimulant in 
patients with moderate to 
severe ventilatory failure 
and in patients with COPD

Cardioversion of  
paroxysmal or persistent, 
non-valvular AF

Phase 2 ongoing
2018-002979-17

Canakinumab Monoclonal IL-1β antibody Atherosclerosis The recurrence rate of AF 
after electrical cardio-
version of patients with 
persistent AF

Phase 2 terminated
NCT01805960 

(CONVERT-AF study)

Colchicine NLRP3 inflammasome 
inhibitor through microtu-
bule-disrupting properties

Gout and Mediterranean 
fever

Atherosclerosis, pericarditis, 
HF, MI, and post- 
operative AF

Phase 2 and 3 ongoing trials

Metformin 5′AMP-activated kinase 
activator

Diabetes Upstream therapy in AF Phase 2 and 3 ongoing trials

Botulinum toxin 
type A

Exocytotic release of 
acetylcholine from nerve 
endings

Cosmetic treatments,  
neurological conditions 
and bladder disorders

Prevention of ventricular 
arrhythmia post-MI

Prevention of post-operative 
AF

Preclinical
Phase 1 and 2 completed
NCT02498769
Phase 2 completed
NCT01842529
Phase 2 completed
NCT03779841
Phase 3 ongoing
NCT04075981 (BOTAF)

Sacubitril/valsartan ARNI HF Reduced burden of atrial 
and ventricular  
arrhythmias

No clinical trials

Dapagliflozin, 
empagliflozin

SGLT2i Diabetes AF Phase 2 and 3 ongoing trials
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verification in future studies investigating the potential of 
NLRP3-inflammasome inhibitors [83] (Table 3).

3.3.6 � Sodium Glucose Co‑transporter Inhibitors (SGLTi)

Sodium glucose co-transporter inhibitors (SGLTi) are 
known to reduce cardiovascular outcomes including mor-
tality. A recent meta-analysis including 31 trials and 75,279 
participants revealed a moderately lower risk of total and 
serious AF-associated events with SGLTi and a lower risk 
of heart failure hospitalization and cardiovascular disease-
related deaths [103, 104]. Preclinical studies have also dem-
onstrated a direct effect of SGLT2i on cardiomyocytes. A 
recent study employing mice with heart failure with pre-
served ejection fraction has demonstrated that the SGLT2i 
empagliflozin reduces the late Na+ current and prevents pro-
arrhythmic action potential prolongation [105]. Currently 
there are six ongoing clinical trials investigating the effect 
of SGLTi in patients with persistent AF (NCT05252624), 
AF and type 2 diabetes mellitus (NCT05029115, 
NCT05174052, NCT04583813) or in patients undergoing 
catheter ablation therapy to investigate the reoccurrence of 
AF (NCT04780438, NCT04792190) (Table 3).

3.3.7 � Angiotensin Receptor‑Neprilysin Inhibitor (ARNI)

Angiotensin receptor-neprilysin inhibitors (ARNIs) such as 
the combination of sacubitril and valsartan appear to have 
beneficial effects on both atrial and ventricular arrhythmias 
in several studies [106]. While a few studies point towards 
a reduced burden and recurrence of atrial arrhythmias in 
patients with heart failure with reduced ejection fraction 
(HFrEF) [107, 108], others do not observe this effect [109, 
110]. However, it should be noted that these studies were 
not explicitly designed to focus on rhythm monitoring, 
which is why the burden of AF might be underestimated. 
Furthermore, studies showing a reversed cardiac remodeling 
by sacubitril/valsartan treatment in terms of increased left-
ventricular ejection fraction (LVEF) and other ventricular 
functional measures reported a lower incidence of ven-
tricular arrhythmias and sudden cardiac death [111–113]. 
Preclinical studies have shown that sacubitril/valsartan can 
reverse the reduction of L-type Ca2+ current, atrial and ven-
tricular effective refractory period (ERP) shortening as well 
as fibrosis in the setting of atrial pacing induced AF in a 
rabbit model [106]. Together, these data suggest that ARNI 
might sufficiently reverse cardiac remodeling to show anti-
arrhythmic efficacy. Clearly, further prospective studies are 
required to test and validate the antiarrhythmic potential of 
ARNI in different patient populations (Table 3).

4 � Future Directions

The clinical excitement of technological advances and 
changing patterns of medical practice in combination with 
a relatively lenient device legislation gave patients in Europe 
fast and constantly changing access to new device-based 
therapies. However, this development has also resulted 
in approval of new devices without direct evidence from 
clinical trials to show whether the manufacturer could pro-
vide evidence that the new device was similar to an already 
approved device. These regulations stand in contrast to the 
large amount of evidence required for approval of a novel 
pharmacological agent. However, the new European medi-
cal device legislation, which became fully effective from 
May 2021, may change the industrial development of device 
therapies and might reduce the number of approvals based 
on the principle of equivalence compared to what has been 
the case so far [114]. Perhaps this will make a shift towards 
development of novel AADs an appealing task once again.

Moreover, there is evidence for socioeconomic disparities 
in the use of rhythm-control therapies in patients with AF, 
particularly for ablation [115], which suggests that besides 
increasing our efforts to develop novel AADs, making them 
broadly accessible to all patients should be another impor-
tant future objective.

Unlike ventricular fibrillation, AF is not an immediately 
life-threatening disease. Therefore, novel AADs to be used in 
AF therapy have to have a high efficacy, a high safety profile, 
and be well tolerated. In contrast to anticancer drugs where 
prolongation of life even for a few months is the therapeutic 
end-point, for atrial arrhythmias the quality of life is currently 
the most frequently used primary end-point. It is much more 
difficult to develop effective approaches against a complex 
disease such as AF [116]. Because of these considerations, 
the regulations are much stricter for drug development against 
arrhythmias than against cancer. Favoring small molecules 
over complex genetic approaches and repurposing or refor-
mulating already existing drugs with a known safety profile 
might therefore be preferable. Alternatively, local delivery 
with cardiac-specific cargo of viruses directed against defined 
molecular targets and gene-editing might provide highly-spe-
cific mechanism-based antiarrhythmic therapies in the future. 
For example, novel nano delivery systems may enable target-
oriented delivery of drugs [117]. Nanoparticles can be either 
organic or inorganic structures less than 100 nm. The use of 
nanoparticles in different cardiovascular diseases is currently 
being explored for more target-oriented delivery [118]. For 
example, silica nanoparticles containing adenosine have been 
shown to reduce infarct size post-myocardial infarction, while 
the adverse effects such as hypotension and slow heart rate, 
commonly observed by systemic application, are avoided 
[119]. The nano delivery approach could potentially improve 
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both the efficacy and safety profiles of novel and already exist-
ing antiarrhythmic agents.

For many years, anti-fibrotic therapy has been an appeal-
ing approach to prevent or even reverse the progression of 
cardiac diseases and cardiac arrhythmias. However, the dif-
ficulties of targeting the complex mechanism of pro-fibrotic 
signaling has hindered progression in the development of 
anti-fibrotic drugs. Promising targets include the NLRP3-
inflammasome [98, 120] and the renin-angiotensin-aldoster-
one system (RAAS), which could prove to reduce the fibrotic 
remodeling in humans [121, 122].

The complex nature of atrial arrhythmias combined with 
the fact that patients are highly heterogeneous, elderly, and 
comorbid requires careful selection and design of clinically 
relevant and measurable outcomes in the clinical trials when 
developing novel antiarrhythmic agents [123, 124] (Fig. 1).

5 � Outlook

Development of novel antiarrhythmic agents has declined 
over the last decades. However, despite the advances in abla-
tion therapy there remains an unmet need for arrhythmia 
management with antiarrhythmic agents showing sufficient 
efficacy and good safety, as evidenced in recent large clini-
cal trials. Although there are only a few new drugs in the 
development pipeline, their initial results appear promising 
and some might make it to the clinical setting. Importantly, 
the repurposing and reformulating of already approved drugs 
to novel therapeutic indications along with new and ideally 
atrial-selective delivery methods offer new avenues for the 
development of novel antiarrhythmic therapies that may help 
reduce the cardiac arrhythmia-related morbidity and mortal-
ity and improve the quality of life of millions of patients.
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