Skip to main content
Log in

Acute Graft-versus-Host Disease: An Update on New Treatment Options

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Acute graft-versus-host disease (GVHD) occurs in approximately 50% of patients and remains a primary driver of non-relapse and transplant-related mortality. The best treatment remains prevention with either in vivo or ex vivo T-cell depletion, with multiple strategies used worldwide based on factors such as institution preference, ability to perform graft manipulation, and ongoing clinical trials. Predicting patients at high risk for developing severe acute GVHD based on clinical and biomarker-based criteria allows for escalation or potential de-escalation of therapy. Modern therapies for treatment of the disease include JAK/STAT pathway inhibitors, which are standard of care in the second-line setting and are being investigated for upfront management of non-severe risk based on biomarkers. Salvage therapies beyond the second-line remain suboptimal. In this review, we will focus on the most clinically used GVHD prevention and treatment strategies, including the accumulating data on JAK inhibitors in both settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferrara JL, Levine JE, Reddy P, Holler E. Graft-versus-host disease. Lancet. 2009;373(9674):1550–61. https://doi.org/10.1016/S0140-6736(09)60237-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zeiser R, Blazar BR. Acute graft-versus-host disease—biologic process, prevention, and therapy. N Engl J Med. 2017;377(22):2167–79. https://doi.org/10.1056/NEJMra1609337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Barnes DW, Loutit JF. Treatment of murine leukaemia with x-rays and homologous bone marrow. II. Br J Haematol. 1957;3(3):241–52. https://doi.org/10.1111/j.1365-2141.1957.tb05793.x.

    Article  CAS  PubMed  Google Scholar 

  4. Appelbaum FR. Haematopoietic cell transplantation as immunotherapy. Nature. 2001;411(6835):385–9. https://doi.org/10.1038/35077251.

    Article  CAS  PubMed  Google Scholar 

  5. Welniak LA, Blazar BR, Murphy WJ. Immunobiology of allogeneic hematopoietic stem cell transplantation. Annu Rev Immunol. 2007;25:139–70. https://doi.org/10.1146/annurev.immunol.25.022106.141606.

    Article  CAS  PubMed  Google Scholar 

  6. Ghimire S, Weber D, Mavin E, Wang XN, Dickinson AM, Holler E. Pathophysiology of GvHD and other HSCT-related major complications. Front Immunol. 2017;8:79. https://doi.org/10.3389/fimmu.2017.00079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bertaina A, Roncarolo MG. Graft engineering and adoptive immunotherapy: new approaches to promote immune tolerance after hematopoietic stem cell transplantation. Front Immunol. 2019;10:1342. https://doi.org/10.3389/fimmu.2019.01342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gooptu M, Koreth J. Translational and clinical advances in acute graft-versus-host disease. Haematologica. 2020;105(11):2550–60. https://doi.org/10.3324/haematol.2019.240309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Billingham RE. The biology of graft-versus-host reactions. Harvey Lect. 1966;62:21–78.

    PubMed  Google Scholar 

  10. Bleakley M, Riddell SR. Molecules and mechanisms of the graft-versus-leukaemia effect. Nat Rev Cancer. 2004;4(5):371–80. https://doi.org/10.1038/nrc1365.

    Article  CAS  PubMed  Google Scholar 

  11. Jagasia M, et al. Risk factors for acute GVHD and survival after hematopoietic cell transplantation. Blood. 2012;119(1):296–307. https://doi.org/10.1182/blood-2011-06-364265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. MacMillan ML, et al. A refined risk score for acute graft-versus-host disease that predicts response to initial therapy, survival, and transplant-related mortality. Biol Blood Marrow Transplant. 2015;21(4):761–7. https://doi.org/10.1016/j.bbmt.2015.01.001.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Martin PJ, et al. First- and second-line systemic treatment of acute graft-versus-host disease: recommendations of the American Society of Blood and Marrow Transplantation. Biol Blood Marrow Transplant. 2012;18(8):1150–63. https://doi.org/10.1016/j.bbmt.2012.04.005.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Martin PJ. How I treat steroid-refractory acute graft-versus-host disease. Blood. 2020;135(19):1630–8. https://doi.org/10.1182/blood.2019000960.

    Article  PubMed  Google Scholar 

  15. Westin JR, et al. Steroid-refractory acute GVHD: predictors and outcomes. Adv Hematol. 2011;2011: 601953. https://doi.org/10.1155/2011/601953.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Toubai T, Magenau J. Immunopathology and biology-based treatment of steroid-refractory graft-versus-host disease. Blood. 2020;136(4):429–40. https://doi.org/10.1182/blood.2019000953.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Khoury HJ, et al. Improved survival after acute graft. Haematologica. 2017;102(5):958–66. https://doi.org/10.3324/haematol.2016.156356.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Malard F, Huang XJ, Sim JPY. Treatment and unmet needs in steroid-refractory acute graft-versus-host disease. Leukemia. 2020;34(5):1229–40. https://doi.org/10.1038/s41375-020-0804-2.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gooptu M, Antin JH. GVHD Prophylaxis 2020. Front Immunol. 2021;12: 605726. https://doi.org/10.3389/fimmu.2021.605726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Abboud R, et al. Insights into the role of the JAK/STAT signaling pathway in graft-. Ther Adv Hematol. 2020;11:2040620720914489. https://doi.org/10.1177/2040620720914489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Choi J, et al. Pharmacologic blockade of JAK1/JAK2 reduces GvHD and preserves the graft-versus-leukemia effect. PLoS ONE. 2014;9(10): e109799. https://doi.org/10.1371/journal.pone.0109799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zeiser R, et al. Ruxolitinib in corticosteroid-refractory graft-versus-host disease after allogeneic stem cell transplantation: a multicenter survey. Leukemia. 2015;29(10):2062–8. https://doi.org/10.1038/leu.2015.212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Spoerl S, et al. Activity of therapeutic JAK 1/2 blockade in graft-versus-host disease. Blood. 2014;123(24):3832–42. https://doi.org/10.1182/blood-2013-12-543736.

    Article  CAS  PubMed  Google Scholar 

  24. Choi J, et al. Baricitinib-induced blockade of interferon gamma receptor and interleukin-6 receptor for the prevention and treatment of graft-versus-host disease. Leukemia. 2018;32(11):2483–94. https://doi.org/10.1038/s41375-018-0123-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ashami K, DiPersio JF, Choi J. Targeting IFNGR/IL6R or downstream JAK1/JAK2 to control GvHD. Oncotarget. 2018;9(87):35721–2. https://doi.org/10.18632/oncotarget.26291.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Schroeder MA, Choi J, Staser K, DiPersio JF. The role of janus kinase signaling in graft-versus-host disease and graft versus leukemia. Biol Blood Marrow Transplant. 2018;24(6):1125–34. https://doi.org/10.1016/j.bbmt.2017.12.797.

    Article  CAS  PubMed  Google Scholar 

  27. Jagasia M, Zeiser R, Arbushites M, Delaite P, Gadbaw B, Bubnoff NV. Ruxolitinib for the treatment of patients with steroid-refractory GVHD: an introduction to the REACH trials. Immunotherapy. 2018;10(5):391–402. https://doi.org/10.2217/imt-2017-0156.

    Article  CAS  PubMed  Google Scholar 

  28. Jagasia M, et al. Ruxolitinib for the treatment of steroid-refractory acute GVHD (REACH1): a multicenter, open-label phase 2 trial. Blood. 2020;135(20):1739–49. https://doi.org/10.1182/blood.2020004823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zeiser R, et al. Efficacy and safety of itacitinib versus placebo in combination with corticosteroids for initial treatment of acute graft-versus-host disease (GRAVITAS-301): a randomised, multicentre, double-blind, phase 3 trial. Lancet Haematol. 2022;9(1):e14–25. https://doi.org/10.1016/S2352-3026(21)00367-7.

    Article  CAS  PubMed  Google Scholar 

  30. Schroeder MA, et al. A phase 1 trial of itacitinib, a selective JAK1 inhibitor, in patients with acute graft-versus-host disease. Blood Adv. 2020;4(8):1656–69. https://doi.org/10.1182/bloodadvances.2019001043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Harris AC, et al. International, multicenter standardization of acute graft-versus-host disease clinical data collection: a report from the mount Sinai acute GVHD international consortium. Biol Blood Marrow Transplant. 2016;22(1):4–10. https://doi.org/10.1016/j.bbmt.2015.09.001.

    Article  PubMed  Google Scholar 

  32. Hamilton BK. Updates in chronic graft-versus-host disease. Hematology Am Soc Hematol Educ Program. 2021;2021(1):648–54. https://doi.org/10.1182/hematology.2021000301.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cooke KR, et al. The biology of chronic graft-versus-host disease: a task force report from the national institutes of health consensus development project on criteria for clinical trials in chronic graft-versus-host disease. Biol Blood Marrow Transplant. 2017;23(2):211–34. https://doi.org/10.1016/j.bbmt.2016.09.023.

    Article  PubMed  Google Scholar 

  34. Schroeder MA, DiPersio JF. Mouse models of graft-versus-host disease: advances and limitations. Dis Model Mech. 2011;4(3):318–33. https://doi.org/10.1242/dmm.006668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hill GR, Koyama M. Cytokines and costimulation in acute graft-versus-host disease. Blood. 2020;136(4):418–28. https://doi.org/10.1182/blood.2019000952.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Villarino AV, Kanno Y, O’Shea JJ. "Mechanisms and consequences of Jak-STAT signaling in the immune system. Nat Immunol. 2017;18(4):374–84. https://doi.org/10.1038/ni.3691.

    Article  CAS  PubMed  Google Scholar 

  37. Wilhelm K, et al. Graft-versus-host disease is enhanced by extracellular ATP activating P2X7R. Nat Med. 2010;16(12):1434–8. https://doi.org/10.1038/nm.2242.

    Article  CAS  PubMed  Google Scholar 

  38. Schreiber HA, et al. Intestinal monocytes and macrophages are required for T cell polarization in response to Citrobacter rodentium. J Exp Med. 2013;210(10):2025–39. https://doi.org/10.1084/jem.20130903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ferrara JL, Abhyankar S, Gilliland DG. Cytokine storm of graft-versus-host disease: a critical effector role for interleukin-1. Transplant Proc. 1993;25(1 Pt 2):1216–7.

    CAS  PubMed  Google Scholar 

  40. Ferrara JL. Cytokine dysregulation as a mechanism of graft versus host disease. Curr Opin Immunol. 1993;5(5):794–9. https://doi.org/10.1016/0952-7915(93)90139-j.

    Article  CAS  PubMed  Google Scholar 

  41. Krensky AM, Weiss A, Crabtree G, Davis MM, Parham P. T-lymphocyte-antigen interactions in transplant rejection. N Engl J Med. 1990;322(8):510–7. https://doi.org/10.1056/NEJM199002223220805.

    Article  CAS  PubMed  Google Scholar 

  42. Beilhack A, et al. In vivo analyses of early events in acute graft-versus-host disease reveal sequential infiltration of T-cell subsets. Blood. 2005;106(3):1113–22. https://doi.org/10.1182/blood-2005-02-0509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Braun MY, Lowin B, French L, Acha-Orbea H, Tschopp J. Cytotoxic T cells deficient in both functional fas ligand and perforin show residual cytolytic activity yet lose their capacity to induce lethal acute graft-versus-host disease. J Exp Med. 1996;183(2):657–61. https://doi.org/10.1084/jem.183.2.657.

    Article  CAS  PubMed  Google Scholar 

  44. Graubert TA, DiPersio JF, Russell JH, Ley TJ. Perforin/granzyme-dependent and independent mechanisms are both important for the development of graft-versus-host disease after murine bone marrow transplantation. J Clin Invest. 1997;100(4):904–11. https://doi.org/10.1172/JCI119606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Choi J, et al. IFNgammaR signaling mediates alloreactive T-cell trafficking and GVHD. Blood. 2012;120(19):4093–103. https://doi.org/10.1182/blood-2012-01-403196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rowlings PA, et al. IBMTR Severity Index for grading acute graft-versus-host disease: retrospective comparison with Glucksberg grade. Br J Haematol. 1997;97(4):855–64. https://doi.org/10.1046/j.1365-2141.1997.1112925.x.

    Article  CAS  PubMed  Google Scholar 

  47. Martino R, et al. Comparison of the classic Glucksberg criteria and the IBMTR Severity Index for grading acute graft-versus-host disease following HLA-identical sibling stem cell transplantation. International Bone Marrow Transplant Registry. Bone Marrow Transplant. 1999;24(3):283–7. https://doi.org/10.1038/sj.bmt.1701899.

    Article  CAS  PubMed  Google Scholar 

  48. Ali AM, DiPersio JF, Schroeder MA. The role of biomarkers in the diagnosis and risk stratification of acute graft-versus-host disease: a systematic review. Biol Blood Marrow Transplant. 2016;22(9):1552–64. https://doi.org/10.1016/j.bbmt.2016.04.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ali AM, DiPersio JF, Schroeder MA. A proposed biology- and biomarker-based algorithm for management of acute GvHD. Bone Marrow Transplant. 2017;52(2):337–40. https://doi.org/10.1038/bmt.2016.289.

    Article  CAS  PubMed  Google Scholar 

  50. Gergoudis SC, et al. Biomarker-guided preemption of steroid-refractory graft-versus-host disease with α-1-antitrypsin. Blood Adv. 2020;4(24):6098–105. https://doi.org/10.1182/bloodadvances.2020003336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Levine JE, et al. Acute graft-versus-host disease biomarkers measured during therapy can predict treatment outcomes: a blood and marrow transplant clinical trials network study. Blood. 2012;119(16):3854–60. https://doi.org/10.1182/blood-2012-01-403063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Paczesny S, et al. A biomarker panel for acute graft-versus-host disease. Blood. 2009;113(2):273–8. https://doi.org/10.1182/blood-2008-07-167098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Srinagesh HK, Levine JE, Ferrara JLM. Biomarkers in acute graft-. Ther Adv Hematol. 2019;10:2040620719891358. https://doi.org/10.1177/2040620719891358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Major-Monfried H, et al. MAGIC biomarkers predict long-term outcomes for steroid-resistant acute GVHD. Blood. 2018;131(25):2846–55. https://doi.org/10.1182/blood-2018-01-822957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. MacMillan ML, DeFor TE, Holtan SG, Rashidi A, Blazar BR, Weisdorf DJ. Validation of Minnesota acute graft-. Haematologica. 2020;105(2):519–24. https://doi.org/10.3324/haematol.2019.220970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Srinagesh HK, et al. The MAGIC algorithm probability is a validated response biomarker of treatment of acute graft-versus-host disease. Blood Adv. 2019;3(23):4034–42. https://doi.org/10.1182/bloodadvances.2019000791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tominaga SI, Ohta S, Tago K. Soluble form of the ST2 gene product exhibits growth promoting activity in NIH-3T3 cells. Biochem Biophys Rep. 2016;5:8–15. https://doi.org/10.1016/j.bbrep.2015.11.020.

    Article  PubMed  Google Scholar 

  58. Hamilton BK. Current approaches to prevent and treat GVHD after allogeneic stem cell transplantation. Hematol Am Soc Hematol Educ Progr. 2018;1:228–35. https://doi.org/10.1182/asheducation-2018.1.228.

    Article  Google Scholar 

  59. Aversa F, Pierini A, Ruggeri L, Martelli MF, Velardi A. The evolution of T cell depleted haploidentical transplantation. Front Immunol. 2019;10:2769. https://doi.org/10.3389/fimmu.2019.02769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ho VT, Soiffer RJ. The history and future of T-cell depletion as graft-versus-host disease prophylaxis for allogeneic hematopoietic stem cell transplantation. Blood. 2001;98(12):3192–204. https://doi.org/10.1182/blood.v98.12.3192.

    Article  CAS  PubMed  Google Scholar 

  61. Nash RA, et al. Phase 3 study comparing methotrexate and tacrolimus with methotrexate and cyclosporine for prophylaxis of acute graft-versus-host disease after marrow transplantation from unrelated donors. Blood. 2000;96(6):2062–8.

    CAS  PubMed  Google Scholar 

  62. Ratanatharathorn V, et al. Phase III study comparing methotrexate and tacrolimus (prograf, FK506) with methotrexate and cyclosporine for graft-versus-host disease prophylaxis after HLA-identical sibling bone marrow transplantation. Blood. 1998;92(7):2303–14.

    CAS  PubMed  Google Scholar 

  63. Perkins J, et al. A randomized phase II trial comparing tacrolimus and mycophenolate mofetil to tacrolimus and methotrexate for acute graft-versus-host disease prophylaxis. Biol Blood Marrow Transplant. 2010;16(7):937–47. https://doi.org/10.1016/j.bbmt.2010.01.010.

    Article  CAS  PubMed  Google Scholar 

  64. Gragert L, et al. HLA match likelihoods for hematopoietic stem-cell grafts in the US registry. N Engl J Med. 2014;371(4):339–48. https://doi.org/10.1056/NEJMsa1311707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bashey A, et al. T-cell-replete HLA-haploidentical hematopoietic transplantation for hematologic malignancies using post-transplantation cyclophosphamide results in outcomes equivalent to those of contemporaneous HLA-matched related and unrelated donor transplantation. J Clin Oncol. 2013;31(10):1310–6. https://doi.org/10.1200/JCO.2012.44.3523.

    Article  CAS  PubMed  Google Scholar 

  66. O’Donnell PV, et al. Nonmyeloablative bone marrow transplantation from partially HLA-mismatched related donors using posttransplantation cyclophosphamide. Biol Blood Marrow Transplant. 2002;8(7):377–86. https://doi.org/10.1053/bbmt.2002.v8.pm12171484.

    Article  CAS  PubMed  Google Scholar 

  67. Luznik L, et al. HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol Blood Marrow Transplant. 2008;14(6):641–50. https://doi.org/10.1016/j.bbmt.2008.03.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Raiola AM, et al. Unmanipulated haploidentical bone marrow transplantation and posttransplantation cyclophosphamide for hematologic malignancies after myeloablative conditioning. Biol Blood Marrow Transplant. 2013;19(1):117–22. https://doi.org/10.1016/j.bbmt.2012.08.014.

    Article  CAS  PubMed  Google Scholar 

  69. Rimando JC, McCurdy SR, Luznik L. How we prevent GVHD in high risk patients: post transplant cyclophosphamide and beyond. Blood. 2022. https://doi.org/10.1182/blood.2021015129.

    Article  Google Scholar 

  70. Ganguly S, et al. Donor CD4+ Foxp3+ regulatory T cells are necessary for posttransplantation cyclophosphamide-mediated protection against GVHD in mice. Blood. 2014;124(13):2131–41. https://doi.org/10.1182/blood-2013-10-525873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kanakry CG, et al. Aldehyde dehydrogenase expression drives human regulatory T cell resistance to posttransplantation cyclophosphamide. Sci Transl Med. 2013;5(211):211. https://doi.org/10.1126/scitranslmed.3006960.

    Article  CAS  Google Scholar 

  72. Prem S, et al. Low rates of acute and chronic GVHD with ATG and PTCy in matched and mismatched unrelated donor peripheral blood stem cell transplants. Eur J Haematol. 2019;102(6):486–93. https://doi.org/10.1111/ejh.13230.

    Article  CAS  PubMed  Google Scholar 

  73. Symons HJ, et al. Myeloablative haploidentical BMT with posttransplant cyclophosphamide for hematologic malignancies in children and adults. Blood Adv. 2020;4(16):3913–25. https://doi.org/10.1182/bloodadvances.2020001648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bolaños-Meade J, et al. Three prophylaxis regimens (tacrolimus, mycophenolate mofetil, and cyclophosphamide; tacrolimus, methotrexate, and bortezomib; or tacrolimus, methotrexate, and maraviroc) versus tacrolimus and methotrexate for prevention of graft-versus-host disease with haemopoietic cell transplantation with reduced-intensity conditioning: a randomised phase 2 trial with a non-randomised contemporaneous control group (BMT CTN 1203). Lancet Haematol. 2019;6(3):e132–43. https://doi.org/10.1016/S2352-3026(18)30221-7.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Holtan SG, Hamadani M, Wu J, et al. Post-transplant cyclophosphamide, tacrolimus, and mycophenolate mofetil as the new standard for graft-versus-host disease (GVHD) prophylaxis in reduced intensity conditioning: results from phase III BMT CTN 1703. In: Presented at: 2022 ASH Annual Meeting and Exposition; December 10–13, 2022; New Orleans, LA. Abstract LBA-4.

  76. Ueda Oshima M, et al. Impact of GVHD prophylaxis on CMV reactivation and disease after HLA-matched peripheral blood stem cell transplantation. Blood Adv. 2023;7(8):1394–403. https://doi.org/10.1182/bloodadvances.2022009112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Goldsmith SR, et al. Posttransplant cyclophosphamide is associated with increased cytomegalovirus infection: a CIBMTR analysis. Blood. 2021;137(23):3291–305. https://doi.org/10.1182/blood.2020009362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Goldsmith SR, et al. Cytomegalovirus viremia, disease, and impact on relapse in T-cell replete peripheral blood haploidentical hematopoietic cell transplantation with post-transplant cyclophosphamide. Haematologica. 2016;101(11):e465–8. https://doi.org/10.3324/haematol.2016.149880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rambaldi B, et al. Impaired T- and NK-cell reconstitution after haploidentical HCT with posttransplant cyclophosphamide. Blood Adv. 2021;5(2):352–64. https://doi.org/10.1182/bloodadvances.2020003005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yeh AC, et al. CMV exposure drives long-term CD57+ CD4 memory T-cell inflation following allogeneic stem cell transplant. Blood. 2021;138(26):2874–85. https://doi.org/10.1182/blood.2020009492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Baron F, et al. Anti-thymocyte globulin as graft-versus-host disease prevention in the setting of allogeneic peripheral blood stem cell transplantation: a review from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Haematologica. 2017;102(2):224–34. https://doi.org/10.3324/haematol.2016.148510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Feng X, et al. Rabbit ATG but not horse ATG promotes expansion of functional CD4+CD25highFOXP3+ regulatory T cells in vitro. Blood. 2008;111(7):3675–83. https://doi.org/10.1182/blood-2008-01-130146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bacigalupo A, et al. Antithymocyte globulin for graft-versus-host disease prophylaxis in transplants from unrelated donors: 2 randomized studies from Gruppo Italiano Trapianti Midollo Osseo (GITMO). Blood. 2001;98(10):2942–7. https://doi.org/10.1182/blood.v98.10.2942.

    Article  CAS  PubMed  Google Scholar 

  84. Bacigalupo A, et al. Thymoglobulin prevents chronic graft-versus-host disease, chronic lung dysfunction, and late transplant-related mortality: long-term follow-up of a randomized trial in patients undergoing unrelated donor transplantation. Biol Blood Marrow Transplant. 2006;12(5):560–5. https://doi.org/10.1016/j.bbmt.2005.12.034.

    Article  PubMed  Google Scholar 

  85. Finke J, et al. Standard graft-versus-host disease prophylaxis with or without anti-T-cell globulin in haematopoietic cell transplantation from matched unrelated donors: a randomised, open-label, multicentre phase 3 trial. Lancet Oncol. 2009;10(9):855–64. https://doi.org/10.1016/S1470-2045(09)70225-6.

    Article  CAS  PubMed  Google Scholar 

  86. Watkins B, et al. Phase II trial of costimulation blockade with abatacept for prevention of acute GVHD. J Clin Oncol. 2021;39(17):1865–77. https://doi.org/10.1200/JCO.20.01086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Blazar BR, Taylor PA, Linsley PS, Vallera DA. In vivo blockade of CD28/CTLA4: B7/BB1 interaction with CTLA4-Ig reduces lethal murine graft-versus-host disease across the major histocompatibility complex barrier in mice. Blood. 1994;83(12):3815–25.

    Article  CAS  PubMed  Google Scholar 

  88. Abboud R, Gao F, Rettig MP, et al. A single-arm, open-label, pilot study of the JAK1 selective inhibitor itacitinib for the prophylaxis of graft-versus-host disease and cytokine release syndrome in T-Cell replete haploidentical peripheral blood hematopoietic cell transplantation. Blood. 2021;138(Supplement 1):100. https://doi.org/10.1182/blood-2021-144591

  89. Etra A, et al. Effective treatment of low-risk acute GVHD with itacitinib monotherapy. Blood. 2023;141(5):481–9. https://doi.org/10.1182/blood.2022017442.

    Article  CAS  PubMed  Google Scholar 

  90. Hobbs G, Kim HT, Bottoms AJS, et al. A phase II study of ruxolitinib pre-, during- and post-hematopoietic celltransplantation for patients with primary or secondary myelofibrosis. Blood. 2021;138(Supplement 1):169. https://doi.org/10.1182/blood-2021-146330

  91. Sandmaier BM, et al. Addition of sirolimus to standard cyclosporine plus mycophenolate mofetil-based graft-versus-host disease prophylaxis for patients after unrelated non-myeloablative haemopoietic stem cell transplantation: a multicentre, randomised, phase 3 trial. Lancet Haematol. 2019;6(8):e409–18. https://doi.org/10.1016/S2352-3026(19)30088-2.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Schroeder MA, Choi J, Atluri H, et al. Phase I study of baricitinib Gvhd prophylaxis in HLA-matched, peripheral blood allogeneic hematopoietic cell transplant. Blood. 2022;140(Supplement 1):1875–6. https://doi.org/10.1182/blood-2022-157214

  93. Aversa F, et al. Treatment of high-risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLA haplotype. N Engl J Med. 1998;339(17):1186–93. https://doi.org/10.1056/NEJM199810223391702.

    Article  CAS  PubMed  Google Scholar 

  94. Choe H, Shah NN, Chevallier P, et al. A single-arm, open-label phase 1 study of itacitinib (ITA) with calcineurin inhibitor (CNI)–based interventions for prophylaxis of graft-versus-host disease (GVHD; GRAVITAS-119). Blood. 2020;136(Supplement 1):50–1.

  95. Bleakley M, et al. Naive T-cell depletion to prevent chronic graft-versus-host disease. J Clin Oncol. 2022;40(11):1174–85. https://doi.org/10.1200/JCO.21.01755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chaleff S, et al. A large-scale method for the selective depletion of alphabeta T lymphocytes from PBSC for allogeneic transplantation. Cytotherapy. 2007;9(8):746–54. https://doi.org/10.1080/14653240701644000.

    Article  CAS  PubMed  Google Scholar 

  97. Bertaina A, et al. Unrelated donor vs HLA-haploidentical α/β T-cell- and B-cell-depleted HSCT in children with acute leukemia. Blood. 2018;132(24):2594–607. https://doi.org/10.1182/blood-2018-07-861575.

    Article  CAS  PubMed  Google Scholar 

  98. Martelli MF, et al. HLA-haploidentical transplantation with regulatory and conventional T-cell adoptive immunotherapy prevents acute leukemia relapse. Blood. 2014;124(4):638–44. https://doi.org/10.1182/blood-2014-03-564401.

    Article  CAS  PubMed  Google Scholar 

  99. MacMillan ML, et al. First-in-human phase 1 trial of induced regulatory T cells for graft-versus-host disease prophylaxis in HLA-matched siblings. Blood Adv. 2021;5(5):1425–36. https://doi.org/10.1182/bloodadvances.2020003219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Luznik L, et al. Randomized phase III BMT CTN trial of calcineurin inhibitor-free chronic graft-versus-host disease interventions in myeloablative hematopoietic cell transplantation for hematologic malignancies. J Clin Oncol. 2022;40(4):356–68. https://doi.org/10.1200/JCO.21.02293.

    Article  CAS  PubMed  Google Scholar 

  101. Hoeg AT, Moroz A, Gandhi A, et al. Orca-T results in high Gvhd-free and relapse-free survival following myeloablative conditioning for hematological malignancies: results of a single center phase 2 and a multicenter phase 1b study. Blood. 2021;138(Supplement 1):98.

  102. Ruutu T, et al. Prophylaxis and treatment of GVHD: EBMT-ELN working group recommendations for a standardized practice. Bone Marrow Transplant. 2014;49(2):168–73. https://doi.org/10.1038/bmt.2013.107.

    Article  CAS  PubMed  Google Scholar 

  103. Mielcarek M, et al. Effectiveness and safety of lower dose prednisone for initial treatment of acute graft-versus-host disease: a randomized controlled trial. Haematologica. 2015;100(6):842–8. https://doi.org/10.3324/haematol.2014.118471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Deeg HJ. How I treat refractory acute GVHD. Blood. 2007;109(10):4119–26. https://doi.org/10.1182/blood-2006-12-041889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Pidala J, et al. Randomized multicenter trial of sirolimus vs prednisone as initial therapy for standard-risk acute GVHD: the BMT CTN 1501 trial. Blood. 2020;135(2):97–107. https://doi.org/10.1182/blood.2019003125.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Arai S, Margolis J, Zahurak M, Anders V, Vogelsang GB. Poor outcome in steroid-refractory graft-versus-host disease with antithymocyte globulin treatment. Biol Blood Marrow Transplant. 2002;8(3):155–60. https://doi.org/10.1053/bbmt.2002.v8.pm11939605.

    Article  PubMed  Google Scholar 

  107. Carniti C, et al. Pharmacologic inhibition of JAK1/JAK2 signaling reduces experimental murine acute GVHD while preserving GVT effects. Clin Cancer Res. 2015;21(16):3740–9. https://doi.org/10.1158/1078-0432.CCR-14-2758.

    Article  CAS  PubMed  Google Scholar 

  108. Zeiser R, et al. Ruxolitinib for glucocorticoid-refractory acute graft-versus-host disease. N Engl J Med. 2020;382(19):1800–10. https://doi.org/10.1056/NEJMoa1917635.

    Article  PubMed  Google Scholar 

  109. Jagasia M, et al. Extracorporeal photopheresis versus anticytokine therapy as a second-line treatment for steroid-refractory acute GVHD: a multicenter comparative analysis. Biol Blood Marrow Transplant. 2013;19(7):1129–33. https://doi.org/10.1016/j.bbmt.2013.04.018.

    Article  CAS  PubMed  Google Scholar 

  110. Mankarious M, Matthews NC, Snowden JA, Alfred A. Extracorporeal photopheresis (ECP) and the potential of novel biomarkers in optimizing management of acute and chronic graft vs host disease (GvHD). Front Immunol. 2020;11:81. https://doi.org/10.3389/fimmu.2020.00081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhang H, Chen R, Cheng J, Jin N, Chen B. Systematic review and meta-analysis of prospective studies for ECP treatment in patients with steroid-refractory acute GVHD. Patient Prefer Adherence. 2015;9:105–11. https://doi.org/10.2147/PPA.S76563.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Modemann F, et al. Ruxolitinib plus extracorporeal photopheresis (ECP) for steroid refractory acute graft-versus-host disease of lower GI-tract after allogeneic stem cell transplantation leads to increased regulatory T cell level. Bone Marrow Transplant. 2020;55(12):2286–93. https://doi.org/10.1038/s41409-020-0952-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Newell LF, Holtan SG. Acute GVHD: think before you treat. Hematol Am Soc Hematol Educ Program. 2021;1:642–7. https://doi.org/10.1182/hematology.2021000300.

    Article  Google Scholar 

  114. Bejanyan N, et al. A phase 2 trial of GVHD prophylaxis with PTCy, sirolimus, and MMF after peripheral blood haploidentical transplantation. Blood Adv. 2021;5(5):1154–63. https://doi.org/10.1182/bloodadvances.2020003779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Cutler C, et al. Tacrolimus/sirolimus vs tacrolimus/methotrexate as GVHD prophylaxis after matched, related donor allogeneic HCT. Blood. 2014;124(8):1372–7. https://doi.org/10.1182/blood-2014-04-567164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hamilton BK, et al. Inferior outcomes with cyclosporine and mycophenolate mofetil after myeloablative allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2019;25(9):1744–55. https://doi.org/10.1016/j.bbmt.2019.05.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Törlén J, et al. A prospective randomized trial comparing cyclosporine/methotrexate and tacrolimus/sirolimus as graft-versus-host disease prophylaxis after allogeneic hematopoietic stem cell transplantation. Haematologica. 2016;101(11):1417–25. https://doi.org/10.3324/haematol.2016.149294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Storb R, et al. FK-506 and methotrexate prevent graft-versus-host disease in dogs given 9.2 Gy total body irradiation and marrow grafts from unrelated dog leukocyte antigen-nonidentical donors. Transplantation. 1993;56(4):800–7. https://doi.org/10.1097/00007890-199310000-00005.

    Article  CAS  PubMed  Google Scholar 

  119. Storb R, et al. Methotrexate and cyclosporine compared with cyclosporine alone for prophylaxis of acute graft versus host disease after marrow transplantation for leukemia. N Engl J Med. 1986;314(12):729–35. https://doi.org/10.1056/NEJM198603203141201.

    Article  CAS  PubMed  Google Scholar 

  120. Aversa F, et al. Immune tolerance induction by nonmyeloablative haploidentical HSCT combining T-cell depletion and posttransplant cyclophosphamide. Blood Adv. 2017;1(24):2166–75. https://doi.org/10.1182/bloodadvances.2017009423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. McCurdy SR, Fuchs EJ. Comparable outcomes for hematologic malignancies after HLA-haploidentical transplantation with posttransplantation cyclophosphamide and HLA-matched transplantation. Adv Hematol. 2015;2015: 431923. https://doi.org/10.1155/2015/431923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Massoud R, et al. Comparison of immune reconstitution between anti-T-lymphocyte globulin and posttransplant cyclophosphamide as acute graft-versus-host disease prophylaxis in allogeneic myeloablative peripheral blood stem cell transplantation. Haematologica. 2022;107(4):857–67. https://doi.org/10.3324/haematol.2020.271445.

    Article  CAS  PubMed  Google Scholar 

  123. Radojcic V, Luznik L. Mechanism of action of posttransplantation cyclophosphamide: more than meets the eye. J Clin Invest. 2019;129(6):2189–91. https://doi.org/10.1172/JCI128710.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Radojcic V, Luznik L. PTCY keeps on giving! Blood. 2019;134(11):848–9. https://doi.org/10.1182/blood.2019002284.

    Article  CAS  PubMed  Google Scholar 

  125. Radojcic V, Luznik L. PTCy and “the story of the three bears.” Bone Marrow Transplant. 2021;56(4):765–6. https://doi.org/10.1038/s41409-020-01123-7.

    Article  PubMed  Google Scholar 

  126. Slade M, DiPersio JF, Westervelt P, Vij R, Schroeder MA, Romee R. Haploidentical hematopoietic cell transplant with post-transplant cyclophosphamide and peripheral blood stem cell grafts in older adults with acute myeloid leukemia or myelodysplastic syndrome. Biol Blood Marrow Transplant. 2017;23(10):1736–43. https://doi.org/10.1016/j.bbmt.2017.06.019.

    Article  CAS  PubMed  Google Scholar 

  127. Wachsmuth LP, Patterson MT, Eckhaus MA, Venzon DJ, Gress RE, Kanakry CG. Post-transplantation cyclophosphamide prevents graft-versus-host disease by inducing alloreactive T cell dysfunction and suppression. J Clin Invest. 2019;129(6):2357–73. https://doi.org/10.1172/JCI124218.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Schäfer H, et al. A prospective single-center study on CNI-free GVHD prophylaxis with everolimus plus mycophenolate mofetil in allogeneic HCT. Ann Hematol. 2021;100(8):2095–103. https://doi.org/10.1007/s00277-021-04487-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Shapiro RM, Antin JH. Therapeutic options for steroid-refractory acute and chronic GVHD: an evolving landscape. Expert Rev Hematol. 2020;13(5):519–32. https://doi.org/10.1080/17474086.2020.1752175.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Schroeder.

Ethics declarations

Author contributions

DP wrote the manuscript and the table. MC edited the table. MC, IP, and MS provided a conceptual overview for the topics discussed and provided edits on both the manuscript and table.

Conflict of interest

DP does not have any conflicts of interest. MC does not have any conflicts. IP has the following conflicts (Advisory board for Syndax Pharmaceuticals and Incyte). MS has the following conflicts (Advisory boards and received honorary or consulting fees: Equillium Inc, GSK, and Incyte).

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

No datasets were generated or analyzed during the current study.

Code availability

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, D.A., Crain, M., Pusic, I. et al. Acute Graft-versus-Host Disease: An Update on New Treatment Options. Drugs 83, 893–907 (2023). https://doi.org/10.1007/s40265-023-01889-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-023-01889-2

Navigation