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Abstract
Non-small-cell lung cancer (NSCLC) accounts for about 85% of all lung cancer cases and is the leading cause of cancer-
related deaths. Most NSCLC patients are diagnosed with advanced disease and require systemic treatment. Despite emerging 
advances in chemotherapy and immunotherapy, the prognosis of stage IV patients remains poor. However, the discovery of 
oncogenic driver mutations including mutations in the epidermal growth factor receptor (EGFR), the anaplastic lymphoma 
kinase (ALK) and others, characterize a subset of patients with the opportunity of targeted therapies. Fusions between the 
ALK and echinoderm microtubule-associated protein-like 4 (EML4) are present in ∼ 3–5% of patients with NSCLC. Sev-
eral first-, second-, and third-generation ALK tyrosine kinase inhibitors (TKIs) have been developed in the last decade and 
have tremendously changed treatment options and outcomes of ALK-positive NSCLC patients. With increasing treatment 
options, treatment sequence decisions have become more and more complex. ALK-mutations, fusion variants, or activation 
of by-pass pathways result in treatment resistance during the course of treatment in nearly all patients. Mutation-guided 
treatment sequencing can lead to better outcomes, and re-biopsy or liquid-biopsy should be performed whenever possible 
in case of disease progression in ALK-rearranged patients. In the future, combinational treatment of ALK TKIs with other 
pathway-inhibitors might further improve patients’ treatment options and outcomes. Here, we review the data for currently 
available ALK TKIs, discuss approaches of treatment sequencing, and give an outlook on emerging developments.
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Key Points 

About 3–5% of all lung cancers are driven by a distinct 
gene-rearrangement involving the anaplastic lymphoma 
kinase (ALK).

ALK tyrosine kinase inhibitors can be used to effectively 
treat these patients.

Distinct resistance mechanisms lead to treatment failure 
of these drugs.

Adapting the treatment sequence might improve patients’ 
outcome.

1 Introduction

In 1994, Morris and colleagues identified a novel fusion 
partner in the t(2;5) chromosomal translocation in anaplas-
tic large cell lymphoma (ALCL), and consequently named 
it anaplastic lymphoma kinase (ALK) [1]. Three years later 
the molecular structure of ALK was described as a full-
length tyrosine kinase with an extracellular binding domain, 
a transmembrane domain, and an intracellular domain 
with high similarity to the insulin receptor [2, 3]. Mainly 
expressed in neuronal tissue, ALK activates several down-
stream pathways as PI3K-AKT, CRKL-C3G, MEKK2/3-
MEK5-ERK5, JAK-STAT, and MAPK [4].

The oncogenic potential of ALK results mainly from 
ALK-fusion proteins. However, point mutations and over-
expression of ALK also have an oncogenic role in several 
cancer types [5]. While more than 30 fusion partners of ALK 
have been reported in different cancer types, NPM (nucle-
ophosmin-anaplastic lymphoma kinase)-ALK in ALCL and 
EML4 (echinoderm microtubule-associated protein-like 
4)-ALK in non-small-cell lung cancer (NSCLC) are the most 
extensively studied ones [5].
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Soda and colleagues first identified the EML4-ALK 
fusion protein as an oncogenic driver in NSCLC [6]. About 
3–5% of non-squamous NSCLCs harbour an ALK transloca-
tion, enriched in younger, female, and light- or never-smoker 
patients [7].

There are different ways to detect ALK aberrations. 
Immunohistochemistry (IHC) for ALK expression is a 
quick and easy examination method. Positive results in 
ALK IHC are highly predictive for the existence of ALK 
translocations, so IHC can serve as a potent screening tool. 
Fluorescence in situ hybridization (FISH) or next-generation 
sequencing (NGS) with RNA-sequencing technologies are 
used to confirm the presence of an ALK translocation [8].

Since the development of effective treatment options, all 
international guidelines recommend testing for ALK trans-
locations in all non-squamous NSCLC [9, 10].

2  Current Anaplastic Lymphoma Kinase 
(ALK) Tyrosine Kinase Inhibitors

Several ALK tyrosine-kinase inhibitors (TKIs) are already 
approved and others are in clinical development. Apart from 
ALK, varying targets are inhibited by these drugs.

2.1  Crizotinib

Crizotinib is a multikinase inhibitor initially developed to 
target c-MET [11]. Besides its activity against c-MET, addi-
tional inhibition of ALK and ROS-1 was found [11–13]. As 
ALK has been recognized as an important target in NSCLC 
since 2007, the clinical investigation of crizotinib focused 
initially on ALK-positive NSCLC patients. The first study 
evaluating a relevant number of ALK-positive NSCLC 
patients was the phase I/II PROFILE1001 study. Eighty-two 
patients were enrolled into an expanded cohort and were 
treated with 250 mg crizotinib twice a day. Most patients 
were heavily pre-treated. The overall response rate (ORR) 
was 57%, with 46 patients achieving a partial response (PR) 
and one patient a complete response (CR), while 27 patients 
had stable disease. Progression-free survival (PFS) after 6 
months was 72% (95% confidence interval (CI), 61–83) [14]. 
Additional enrolment of 143 patients into the PROFILE1001 
study led to an update of the initial data. Eighty-seven (61%) 
patients had an objective response. Median PFS was 9.7 
months, and estimated overall survival (OS) was 88% at 6 
months and 75% at 12 months [15].

For further evaluation of the activity of crizotinib in ALK-
positive NSCLC, 901 patients were enrolled into the phase II 
PROFILE1005 study. Only 255 patients were evaluable for 
response and showed an ORR of 53% and a median PFS of 

8.5 months, confirming the results of PROFILE1001 [16]. 
Due to the results of PROFILE1001 and PROFILE1005, the 
US Food and Drug Administration (FDA) granted acceler-
ated approval for crizotinib in 2011.

The results of these studies led to two phase III trials 
evaluating crizotinib in pre-treated (PROFILE1007) and pre-
viously untreated (PROFILE1014) patients with advanced 
ALK positive NSCLC. PROFILE1007 was an open-label, 
phase III study that compared crizotinib with chemotherapy 
(docetaxel or pemetrexed) in 347 patients with ALK-positive 
NSCLC who progressed after one line of platinum-based 
chemotherapy [17]. The ORR and the median PFS were sig-
nificantly prolonged in the crizotinib group (65% vs. 20% 
and 7.7 vs. 3.0 months). Median OS showed no significant 
difference between the crizotinib and the chemotherapy 
group, probably due to the high rate of subsequent crizotinib 
treatment in the chemotherapy cohort [17].

PROFILE1014 was an open-label, phase III study com-
paring crizotinib versus chemotherapy (cisplatin/carboplatin 
and pemetrexed) in patients with advanced ALK-positive 
NSCLC without any previous systemic therapy [18]. Median 
PFS was significantly longer with crizotinib (10.9 months) 
than with chemotherapy (7.0 months). Also, ORR was 
improved in the crizotinib group compared to the chemother-
apy group (74% vs. 45%; p < 0.001). As in PROFILE1007, 
there was no difference in OS, attributed to a high rate of 
crossover.

Crizotinib is generally well tolerated. Visual disorders, 
diarrhoea, oedema, vomiting, constipation, elevated liver 
transaminases, upper respiratory tract infection, dysgeusia 
and dizziness are frequent, but well manageable. The rate of 
de novo interstitial lung disease is rare (1.2%), but associated 
with high mortality rates (50%) [19].

These data underline the potent activity of crizotinib in 
ALK-positive NSCLC patients, and crizotinib was estab-
lished as a first-line TKI treatment for these patients. Real-
world data have been published in recent years, confirming 
the response rates and survival data from the pivotal studies 
[20, 21]. However, due to the poor intracranial activity and 
shorter PFS, crizotinib is now widely displaced in first-line 
by next-generation TKIs, and especially in patients with 
CNS involvement front-line use of alectinib, brigatinib or 
ceritinib is recommended [9].

2.2  Ceritinib

Ceritinib is a second-generation ALK-selective TKI [22]. 
Ceritinib was demonstrated to cross the blood-brain-bar-
rier, closing an important gap after approval compared to 
crizotinib [22]. Results from the ASCEND study program 
provided the data on which basis ceritinib was approved in 
2014 by the FDA and in 2015 by the European Medicines 
Agency (EMA).
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The ASCEND-1 study enrolled 255 ALK-positive 
patients after at least one line of chemotherapy with or 
without previous TKI treatment. ORR was 72% in patients 
without prior TKI exposure and 56% in patients pre-treated 
with an ALK inhibitor. The median PFS was 18.4 months in 
ALK inhibitor-naive patients and 6.9 months in ALK inhibi-
tor pre-treated patients [23, 24].

The single-arm, open-label, multicentre, phase II 
study ASCEND-2 was conducted to extend the results 
of ASCEND-1 in crizotinib pre-treated patients who had 
received at least one line of platinum-based chemotherapy. 
Many patients were heavily pre-treated (56% of patients had 
at least three lines of treatment). Results were consistent 
with the findings from ASCEND-1 with an ORR of 38.6%. 
The median PFS was 5.7 months, and the median OS was 
14.9 months [25].

Another open-label, single-arm, phase II trial 
(ASCEND-3) was conducted in patients who had previ-
ously received up to three lines of chemotherapy but were 
TKI naive. The ORR was 67.7%, the median PFS was 16.6 
months, and median OS was 51.3 months [26].

The ASCEND-4 trial was a phase III open-label study. 
Patients could be enrolled with ALK-rearranged NSCLC 
and no previous chemotherapy. Overall, 376 patients were 
randomized to receive either oral ceritinib 750 mg/day or 
platinum-based chemotherapy. Median PFS was signifi-
cantly prolonged in patients receiving ceritinib compared 
to chemotherapy (16.6 months vs. 8.1 months). ORR was 
also significantly improved (72.5% vs 26.7%) [27].

The phase III ASCEND-5 study was designed to compare 
ceritinib treatment with chemotherapy in the third-line set-
ting. 232 patients were randomized to receive either ceritinib 
or chemotherapy. Median PFS was significantly longer in the 
ceritinib group (5.4 months vs. 1.6 months), with an ORR 
of 39% versus 7% [28].

Despite good response rates and intracranial activity, 
ceritinib treatment is characterized by intense gastrointesti-
nal (GI) side effects. Nausea, vomiting, diarrhoea and liver 
enzyme elevation are very common with the recommended 
dosage of 750 mg per day. Most patients need dose reduction 
and supportive treatment to tolerate ceritinib. Other inves-
tigations were able to show that a lower dose of ceritinib 
(450 mg) taken with a low-fat meal showed similar efficacy 
with less severe GI adverse events (AEs) versus the 750 mg 
dose taken without food [29]. According to these results, the 
lower dose with food is now approved.

There is an adjusted indirect comparison with external 
controls between crizotinib and ceritinib in ALK-TKI-naïve 
patients, which demonstrates a statistically significant and 
clinically relevant advantage of ceritinib regarding PFS (HR 
0.52) and OS (HR 0.59) [30].

Ceritinib as a first type of second-generation ALK inhibi-
tor provided efficacy for patients with brain metastases. It is 

approved for first-line treatment and after failure of treatment 
with crizotinib. However, after approval of other TKIs with 
potent intracranial activity, ceritinib was widely replaced in 
first- and second-line treatment, mainly due its unfavourable 
safety profile.

2.3  Alectinib

Alectinib is a second-generation ALK TKI that also has 
inhibitory activity against RET fusion proteins [31]. Alec-
tinib demonstrated high efficacy with a favourable safety 
profile in several clinical trials.

Two single-arm, open-label phase II trials evaluated the 
efficacy and safety of alectinib in ALK-positive NSCLC 
patients who had progressed on crizotinib. Most patients in 
both studies had received chemotherapy before crizotinib 
(80% and 74%). In both studies, alectinib demonstrated 
meaningful clinical efficacy with an ORR of 51% and 52%, 
respectively. PFS was 8.9 months and 8.0 months, and OS 
was estimated with 26.0 months and 22.7 months, respec-
tively [32, 33].

The phase III J-ALEX study enrolled only in Japan and 
showed the efficacy of alectinib as a first-line therapy for 
ALK-positive NSCLC. Median (PFS) in patients receiv-
ing alectinib was significantly higher compared to patients 
treated with crizotinib (not reached vs. 10.2 months) [34]. 
Nevertheless, alectinib dosage in this trial was 300 mg twice 
a day, which is not the recommended dose in the Caucasian 
population.

The efficacy of alectinib compared to that of crizotinib in 
previously untreated patients with advanced ALK-positive 
NSCLC was evaluated in the global randomized, open-label 
phase III ALEX trial. 303 patients were randomly assigned 
to either alectinib 600 mg twice daily or crizotinib 250 mg 
twice daily. The median PFS was not reached at the time of 
analysis. The 12-month PFS was 68.4% with alectinib versus 
48.7% with crizotinib. ORR was 82.9% versus 75.5% [35]. 
An update was published by Camidge et al. in 2019 and by 
Mok et.al. in 2020, showing that the median PFS was esti-
mated at 34.8 months versus 10.9 months. ORR remained 
unchanged. The 5-year OS rate was 62.5% with alectinib and 
45.5% with crizotinib. Median OS data are still premature 
[36, 37].

The ALESIA trial was a randomized phase III study com-
paring alectinib versus crizotinib in untreated Asian patients 
(China, South Korea and Thailand). 187 ALK-positive 
patients were randomized (2:1) to receive either alectinib 
(600 mg twice daily) or crizotinib (250 mg twice daily). The 
independent review committee assessed the median PFS, 
which was significantly longer in the alectinib group com-
pared to the crizotinib group (not reached vs. 10.7 months). 
ORR was 91% with alectinib, and 77% with crizotinib, with 
a longer duration of response for alectinib. Time to CNS 
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progression and response to baseline brain metastases was 
significantly improved in the alectinib group. Furthermore, 
fewer patients had grade 3–5 adverse toxicities (29% vs. 
48%) or serious adverse events (15% vs. 26%) [38].

The randomized, open-label, phase III ALUR study com-
pared the efficacy of alectinib versus standard relapse chem-
otherapy in patients with stage IV ALK-positive NSCLC 
previously treated with two lines of systemic treatment: 
platinum-based doublet chemotherapy and crizotinib. 107 
patients were randomized 2:1 to alectinib 600 mg twice daily 
or chemotherapy (pemetrexed 500 mg/m2 for 3 weeks or 
docetaxel 75 mg/m2 every 3 weeks). ORR was 37.5% versus 
2.9% and median PFS was 9.6 months versus 1.4 months, 
demonstrating the clinical benefit of alectinib in later lines 
[39].

Most adverse events (AEs) with alectinib were of mild 
to moderate severity. AEs of grade ≥ 3 severity occur in < 
4% of patients. The most common AEs of any grade were 
GI disorders (e.g. constipation 35%, nausea 19%, diarrhoea 
16%, vomiting 11%); oedema (30%); increased levels of bili-
rubin (18%), aspartate aminotransferase (AST) (15%) and 
alanine aminotransferase (ALT) (14%); myalgia (28%), rash 
(18%), anaemia (17%) and increase in bodyweight (12%) 
[31]. The rate of alectinib-induced interstitial lung disease 
ranges between 1% and 8% [34, 35].

Alectinib was the first second-generation ALK TKI with a 
favourable safety profile and relevant intracranial efficacy to 
be approved for first-line treatment in ALK-positive patients. 
Thus, alectinib widely replaced ceritinib and also crizotinib 
in the first-line treatment. The first real-world data confirmed 
previous study results in second- as well as in first-line treat-
ment [40, 41].

2.4  Brigatinib

Brigatinib is a multikinase inhibitor with activity against 
ALK, proto-oncogene tyrosine-protein kinase ROS-1 
(ROS1), insulin-like growth factor-1 receptor (IGF-R)-1, 
and fms-like tyrosine kinase 3 (FLT-3), as well as epithelial 
growth factor receptor (EGFR) deletion and point mutations 
[42].

In a phase I/II study 137 patients were enrolled (79 with 
ALK-positive NSCLC of whom 71 had previously been 
treated with crizotinib). The phase I part of the study was 
designed to titrate the right dosage of brigatinib. The phase 
II part of the trial aimed at investigating the safety and effi-
cacy of the drug. ORR was 63% with a median PFS of 13.2 
months. Median PFS in crizotinib-naïve patients was 34.2 
months [43].

The second-line ALTA trial was a randomized two-
arm, open-label, multicentre clinical trial to investigate the 
efficacy and safety of brigatinib (Arm A: 90 mg/day; Arm 
B: 180 mg/day following a 7-day lead-in with 90 mg) in 

patients with crizotinib-refractory advanced ALK positive 
NSCLC. The 7-day lead-in reduced the pulmonary side 
effects markedly. 154 patients (69%) had brain metasta-
ses at baseline, and 164 patients (74%) had received prior 
chemotherapy. ORR at 8-month median follow-up was 45% 
in arm A and 54% in arm B. Median PFS was 9.2 months 
in arm A and 12.9 months in arm B. The 1-year OS prob-
ability was 71% in arm A and 80% in arms B, respectively 
[44]. These results were confirmed at the 2-year follow-up, 
including a high intracranial response rate [45]. As arm B 
was consistently more effective than arm A, 180 mg once 
daily with a 7-day lead-in of 90 mg was designated to be the 
recommended dose.

The open-label, phase III trial ALTA 1L randomly 
assigned 275 untreated ALK-positive NSCLC patients to 
receive either brigatinib or crizotinib. Twelve months’ PFS 
was significantly higher with brigatinib than with crizotinib 
(67% vs. 43%). The confirmed ORR was 71% with brig-
atinib and 60% with crizotinib [46]. Estimated median PFS 
for patients treated with brigatinib was 24 months (95% CI: 
18.5, NE) compared with 11 months (95% CI 9.2, 12.9) for 
those treated with crizotinib (HR 0.49; 95% CI 0.35, 0.68; 
p < 0.0001). Confirmed ORR was 74% (95% CI 66, 81) and 
62% (95% CI 53, 70), respectively [47].

Based on these data brigatinib was approved in 2017 by 
the FDA as second-line treatment after crizotinib failure, 
followed by approval for untreated ALK-positive NSCLC 
patients in 2019 [48]. Approvals were also granted by the 
EMA.

Brigatinib showed an acceptable safety profile with a risk 
of early pulmonary events in about 3% of patients receiving 
brigatinib as first-line therapy, according to results of the 
phase III ALTA-1L trial [46]. The toxicity can be reduced 
by a lead-in phase with 90 mg daily. Additionally, myositis 
may occur.

In summary, brigatinib showed good efficacy, including 
intracranial activity, and a favourable safety profile in first 
and later lines. Pulmonary toxicity is rare but potentially a 
severe event that can occur early after treatment initiation. 
The first real-world data have been published in the last year, 
confirming the promising results from the pivotal studies 
[49–51].

2.5  Lorlatinib

Lorlatinib is a third-generation small-molecule TKI with 
selective activity against ALK and ROS1 [52]. In Europe 
and the USA, lorlatinib is approved for ALK-positive 
NSCLC after failure of either alectinib or ceritinib, or cri-
zotinib and another ALK-TKI.

In an international multicentre, open-label, single-arm, 
first-in-man phase I dose-escalation study, 41 patients with 
ALK-positive NSCLC were treated with lorlatinib. Most 
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patients had received at least two TKIs and suffered from 
brain metastases. The ORR was 46%, and in patients who 
had received two or more TKIs the ORR was 42%. Median 
PFS in all ALK patients was 9.6 months [53].

Based on the promising phase I data, a phase II study 
was designed to include ALK-positive NSCLC patients in 
six different expansion cohorts depending on their previous 
treatments. All together 276 patients were enrolled: 30 of 
them were ALK positive and treatment naive (Exp. 1); 59 
were ALK positive and received previous crizotinib without 
(n = 27; Exp. 2) or with (n = 32; Exp. 3A) previous chemo-
therapy; 28 were ALK positive and received one previous 
non-crizotinib ALK TKI, with or without chemotherapy 
(Exp. 3B); 112 were ALK positive with two (n = 66; Exp. 
4) or three (n = 46; Exp. 5) previous ALK TKIs with or 
without chemotherapy [54]. Patients without prior therapy 
showed an ORR of 90%, and pre-treated patients (pooled 
Exps. 2–5) had an ORR of 47%, demonstrating the potent 
role of lorlatinib in later treatment lines.

The first results of the CROWN study have been pre-
sented at the European Society for Medical Oncology 
(ESMO) 2020 congress. Lorlatinib was compared to cri-
zotinib in the first-line setting. Lorlatinib demonstrated a 
significantly longer PFS (HR 0.28) than crizotinib, along 
with intracranial efficacy and no new safety signals [55].

The most common AEs with lorlatinib treatment were 
hypercholesterolemia (82.4%), hypertriglyceridemia 
(60.7%), oedema (51.2%), peripheral neuropathy (43.7%), 
bodyweight gain (20.7%), cognitive effects (23.1%), mood 
effects (21%), fatigue (23.1%), diarrhoea (17.6%), and 
arthralgia (19.7%); rare but potentially fatal side effects were 
pneumonitis (3.4%) and respiratory failure (1.4%) [54, 56].

Lorlatinib has the potential to overcome TKI resistance 
in many, in part heavily pre-treated, patients. Furthermore, 
lorlatinib shows potent activity in patients with brain metas-
tases. Thus, lorlatinib may be established as a good option in 
patients pre-treated with one or two ALK TKIs. Currently, 
the first real-world data confirm the meaningful results from 
the pivotal studies [57, 58].

Results of the discussed studies are summarized in 
Table 1.

3  New Options and Developments 
on the Horizon

The approval of potent ALK TKIs has tremendously 
changed the treatment options and outcomes of ALK-
positive NSCLC patients. Nevertheless, mechanisms of 
resistance and the optimal sequencing of treatment needs 
further investigation. This includes development of further 
next-generation TKIs with potentially better efficacy and 
intracranial activity, as well as improved safety profiles. Two 

new substances are currently on the way to complement the 
approved ALK TKIs.

Ensartinib (X-393) is a novel next-generation ALK inhib-
itor demonstrating increased preclinical activity compared to 
crizotinib, alectinib and ceritinib against mutations leading 
to resistance to crizotinib [59]. The eXalt2 study is a phase 
II trial investigating the activity of 225 mg ensartinib daily 
in several cohorts of ALK-positive NSCLC patients (ALK-
TKI naïve, relapsed after crizotinib or second-generation 
TKI, patients with stable untreated brain metastases) [59]. 
The ORR in this trial was 58%. In patients who were TKI 
naïve the ORR was 87% with a PFS of 23.8 months (95% 
CI 6.2–40.5). Recently, a Chinese phase II study aimed at 
investigating the efficacy and safety of ensartinib in 160 
crizotinib-resistant patients [60]. The ORR was 52% (95% 
CI 43–60), median PFS was 9.6 months (95% CI 7.4–11.6). 
Furthermore, an objective intracranial response was noted in 
70% (95% CI 53–83) of patients [60]. The first results of the 
randomised phase IIII eXalt3 trial in ALK-inhibitor-naïve 
patients were recently presented. A superior efficacy versus 
crizotinib was demonstrated in the brain. The OS was not 
different [61].

Repotrectinib is a rationally designed TKI developed 
to inhibit ALK, ROS-1 and TRKA-C, with activity espe-
cially in point-mutated tyrosine kinase fusion products [62]. 
Repotrectinib is smaller in size and more rigid in structure, 
which is supposed to be favourable in penetrating the blood-
brain barrier and binding the mutated receptor kinases [62]. 
Repotrectinib demonstrated promising activity in ALK, 
ROS-1 and NTRK rearranged preclinical models [62], lead-
ing to an ongoing first-in-human dose-escalation phase I/
II trial (NCT03093116) in patients with advanced ALK-, 
ROS1- or NTRK1–3-rearranged cancers.

Potentially, these and other ALK inhibitors will comple-
ment and probably change the treatment landscape of ALK-
positive NSCLC patients. Nevertheless, much further effort 
is needed to find the best drug, treatment sequence, and bio-
markers to provide an effective and tailored treatment for 
each individual ALK-positive patient.

4  Intracranial Activity of ALK‑TKIs

Brain metastases are known to be a common complication 
in patients with ALK-translocated NSCLC. About 30% of 
patients harbour brain metastases and 15% even show more 
than four cerebral metastases at initial diagnosis [63]. Cri-
zotinib was the first approved TKI in the first-line setting. 
Nevertheless, many patients treated with crizotinib progress 
over time with development of brain metastases because of 
poor intracranial efficacy of crizotinib [64]. The reduced 
intracranial control by crizotinib results from P-glycopro-
tein-mediated efflux across the blood-brain barrier [65]. 
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Next-generation ALK inhibitors were designed to pass the 
blood-brain barrier; however, the development or progres-
sion of brain metastases pose significant problems in ALK-
positive lung cancer patients.

Ceritinib was the first approved second-generation TKI 
demonstrating potent intracranial activity in patients with 
brain metastases previously treated with crizotinib. The 
intracranial response rate in patients from the ASCEND-2 
trial was 45% (95% CI 23.1–68.5) [25].

The intracranial activity of brigatinib was evaluated in an 
exploratory study including all patients from the phase I/II 
ALTA trials [66]. Most patients with ALK-positive NSCLC 
having brain metastases at initial diagnosis were treated with 
crizotinib. Confirmed intracranial ORR was 53%. Intracra-
nial response was similar in patients without prior radiation 
or progression after radiotherapy. Among patients with any 
baseline brain metastases, median intracranial PFS was 14.6 
months (95% CI 12.7–36.8) [66].

Gadgeel and colleagues evaluated the cumulative inci-
dence rates (CIRs) of central nervous system (CNS) pro-
gression in patients from the phase II alectinib trials. They 
found that in patients with baseline brain metastases, CIRs 
of CNS and non-CNS progression at 24 months were 43.9% 
and 31.0%, respectively. In patients without baseline CNS 
metastases, the CIR of CNS progression was 8.0% at 24 
months. These patients progressed at a higher rate in organs 
other than the brain (50.9%) [67].

The good intracranial activity of alectinib compared to 
crizotinib was also shown in an explorative analysis of the 
J-ALEX study [68]. The hazard ratio for time to CNS pro-
gression in patients with and without baseline CNS metas-
tases was 0.51 (95% CI 0.16–1.64; p = 0.2502) and 0.19 
(95% CI 0.07–0.53; p = 0.0004), respectively. The CIRs of 
CNS progression and non-CNS progression were lower in 
the alectinib group compared to the crizotinib group. The 
12-month CIRs of CNS progression were 16.8% and 5.9% 
with crizotinib and alectinib, respectively. The 1-year CIRs 
of non-CNS progression were 38.4% and 17.5% [68].

The third-generation ALK TKI lorlatinib was specifically 
designed to penetrate the blood-brain barrier and was proven 
to result in relevant drug concentrations in the cerebrospinal 
fluid [53]. Bauer et al. reported the results regarding the 
intracranial activity of lorlatinib from the ongoing phase 
II trial discussed above [54, 69]. 198 patients were evalu-
able, 59 only received previous crizotinib treatment and 139 
received at least one second-generation TKI. The CIR of 
non-CNS-progression was consistently higher compared to 
the CIR of CNS-progression, indicating a potent and dura-
ble intracranial activity of lorlatinib in heavily pre-treated 
patients [69].

A current investigation presented at the ASCO 2020 
assessed 22 patients with ALK-positive lung cancer with 
brain-only progression who received lorlatinib. The authors 
found an intracranial ORR of 59%. All patients had at least 
one line of ALK TKI and most patients (77%) had two or 
three prior TKIs [70].

5  Mechanisms of Treatment Resistance

Since the approval of crizotinib and subsequent generations 
of ALK TKIs, the treatment and the prognosis of ALK-pos-
itive NSCLC patients has changed tremendously. However, 
under TKI treatment all patients will inevitably progress 
sooner or later. Several mechanisms leading to resistance 
have been investigated over the past years.

Shortly after the approval of crizotinib, it has been shown 
that many patients developed somatic mutations in the tyros-
ine kinase domain of ALK leading to crizotinib resistance 
[71, 72]. Gainor and colleagues demonstrated that the rate 
of patients with resistance mutations is higher in patients 
treated with second-generation ALK inhibitors (ceritinib 
54%, alectinib 53%, brigatinib 71%) compared to crizotinib 
(20%) [73]. Furthermore, each TKI induces a distinct pat-
tern of ALK-resistance mutations, with predominant appear-
ance of G1202R after second-generation TKIs [73]. Previous 
investigations additionally presented in vitro  IC50 values for 
all available ALK TKIs regarding the different mutations, 
the findings illustrating that lorlatinib has the broadest activ-
ity, including against the G1202R mutation [73]. The in vitro 
data were confirmed in a cohort of 198 patients showing 
the efficacy of lorlatinib in patients with and without ALK 
resistance mutation after failure of one or more lines of TKI 
treatment [74]. In a recent study, Horn and colleagues pre-
sented comprehensive in vitro results of the activity of sev-
eral ALK TKIs on different ALK mutations. These results 
are in line with the previous studies showing activity of 
lorlatinib and brigatinib against most resistance mutations. 
The study also demonstrated that  IC50 values are higher in 
EML4-ALK fusion variant 4. Additionally, the authors could 
show that circulating tumour DNA (ctDNA) and detection 
of ALK mutations by liquid biopsy might serve as a longi-
tudinal follow-up strategy [75].

Beside ALK mutations, ALK amplification was also 
found to be a rare event leading to crizotinib resistance [72].

EML4 is the most common fusion partner of ALK in 
NSCLC. However, more than 15 EML4-ALK fusion variants 
have been identified [76]. The most common are variant 1 
(v1 exon 13 of EML4 fused to exon 20 of ALK [E13;A20]) 
and v3a/b (exon 6a/b of EML4 fused to exon 20 of ALK 
[E6a/b;A20]) [76]. Yoshida and colleagues could show that 
the median PFS was significantly longer in patients with 
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variant 1 than in those with non-variant 1 when treated with 
crizotinib (11.0 months [95% CI 6.5–43.0] vs. 4.2 months 
[95% CI 1.6–10.2] [77].

A recent study evaluated the impact of ALK variants on 
the development of resistance mutations in 129 patients 
with ALK-positive NSCLC. Most patients had v1 (43%) or 
v3 (40%). ALK resistance mutations were identified in ten 
patients with v1 (30%) compared with 25 with v3 (57%). 
The G1202R mutation was detected in 0% of patients with 
v1 versus 32% of 44 patients with v3 [76]. Another study 
with 110 Chinese ALK-positive patients confirmed that 
patients harbouring EML4-ALK rearrangement variant 
3 or 5 have significantly reduced PFS when treated with 
crizotinib [78]. The same study revealed that patients with 
fusion partners other than EML4 had the same benefit from 
crizotinib treatment [78].

Beside ALK mutations and fusion variants, co-occur-
ring somatic mutations, fusions or amplifications may pro-
vide bypass mechanisms and thus result in resistance to 
ALK-TKIs.

Concomitant TP53 mutations characterize patients with 
poor prognosis [79, 80]. Co-occurring TP53 mutations in 
ALK-positive NSCLC patients have been found in 20–23.8% 
of all cases [81, 82]. Patients with concomitant TP53 muta-
tion at baseline or acquisition of TP53 mutation during the 
course of treatment showed reduced PFS and OS compared 
to wild-type patients [79, 82]. The disadvantage regard-
ing survival in TP53 co-mutated patients was shown to be 
independent of the treatment modality [81]. Patients with 
EML4-ALK fusion variant 3 and TP53 mutations therefore 
characterize a subgroup with very poor prognosis. In this 
group the risk of death was increased with a hazard ratio 
of 9.1 [82].

Furthermore, MET alterations are known to be common 
resistance mechanisms in EGFR-mutant NSCLC and have 
been shown to be overcome with concomitant MET-block-
ade [83–85]. However, MET alterations in ALK-positive 
NSCLC are currently not extensively studied but represent 
an attractive target due to several available MET TKIs [86]. 
A recent study could show that MET alterations are com-
mon events (15%) in patients relapsing after next-genera-
tion ALK TKIs [87]. MET amplifications were revealed in 
13% of patients relapsing under next-generation TKIs. In 
some patients, tissue from earlier biopsies was available. 
None of them showed MET amplification, indicating that it 
developed during TKI treatment [87]. MET alterations were 
nearly exclusive with ALK-resistance mutations, indicating 
that MET serves as an independent resistance mechanism 
[87]. Patients treated with crizotinib were significantly less 
affected by MET-amplifications. In two patients of this study 
the ST7-MET-fusion was detected. In ALK TKI-resistant 
ST7-MET rearranged cell-lines concomitant treatment with 
MET TKIs resulted in potently suppressed cell proliferation 

[87]. Another study found a prevalence of MET-amplifica-
tion in ALK positive NSCLC patients of 10%. When patients 
with MET-amplification were treated with crizotinib they 
showed a superior PFS compared to patients without ampli-
fication [88]. If ALK-positive patients with concomitant 
MET alteration might benefit from combined treatment of 
an ALK and MET TKI or if crizotinib with its additional 
activity against MET is beneficial in these patients needs to 
be investigated in further studies.

A few studies indicated that activation of the EGFR path-
way may serve as a by-pass mechanism leading to resistance 
to first-, second- and third-generation ALK TKIs [72, 89, 90]. 
Furthermore, activation of the RAS-MAPK pathway as well 
as the IGF pathway demonstrated the ability to overcome 
ALK TKI effectiveness [91–93]. These results suggest that 
combinational treatment with other TKIs might be a possible 
strategy to prevent or overcome ALK-TKI resistance.

At present, treatment guided by specific resistance muta-
tions, ALK fusion variants or activated by-pass pathways 
should be evaluated in specialized centres with lots of expe-
rience in treating ALK-positive NSCLC patients. However, 
increasing knowledge in this field will translate into to daily 
practice in the next years.

6  Thoughts on ALK TKI Treatment Sequence

Of course, it would be desirable to have sequencing trials 
with different drugs at the beginning to test the different 
impact factors that allow the best sequence for the indi-
vidual tumour. At the moment the advantages of alectinib 
and brigatinib regarding survival and intracranial activ-
ity in patients with baseline brain metastases, as well as 
the protection of patients without brain metastases, make 
these drugs preferable in first-line treatment—especially 
in patients with already existing brain metastases.

Disease progression should be followed by re-biopsy 
whenever possible to detect resistance mutations or bypass 
mechanisms. As demonstrated by Horn et al., liquid biop-
sies can also serve as effective and less invasive methods 
to obtain new tumour DNA [75]. If a distinct mutation 
is found, the next TKI could be chosen according to the 
activity profile against the mutation. For most of the avail-
able TKIs, there are at least comprehensive in vitro data 
of activity patterns against distinct resistance mutations 
[73, 75]. Using resistance mutation-guided treatment 
could also lead to re-sensitization to TKIs of an earlier 
generation [94]. Nevertheless, it was shown that lorlat-
inib had stronger efficacy in patients with ALK mutations 
compared to patients without mutations after failure of at 
least one second-generation ALK TKI. This indicates that 
lorlatinib is a good choice in patients with ALK-resistance 
mutations [74].
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Based on current data, no treatment recommendations 
of different fusion variants can be made. However, the 
knowledge that patients with variant 3 or 5 have poorer 
prognosis could lead to closer surveillance for early detec-
tion of treatment failure. Perhaps for variant 1 without 
brain metastases and without p53 mutation crizotinib 
could be used.

If an alternative bypass pathway is detected, targeted 
combination therapy, preferably in clinical trials, could be 
considered. With concurrent MET alterations, crizotinib 
could be an alternative option in patients without brain 
metastases to cover both pathways [87]. If additional acti-
vation of the EGFR pathway is detected during disease pro-
gression, concomitant treatment with an EGFR-TKI could 
considered.

In the case of oligo-progression, local treatment and TKI 
therapy beyond progression should be considered and inter-
disciplinary treatment discussed.

Otherwise, chemotherapy, especially pemetrexed-based 
regimens or chemo-immunotherapy, is known to be highly 
effective in patients with ALK mutations. There are only 
few data on checkpoint inhibitor monotherapy in ALK-rear-
ranged patients, indicating a reduced efficacy. The addition 
of angiogenesis inhibitors as under investigation in EGFR-
mutated tumours may be an option and has to be trialled fur-
ther. This is also the case for the combination of ALK inhi-
bition with chemotherapy in first-line therapy (see Fig. 1).

7  Conclusions

The treatment of ALK-rearranged NSCLC with ALK TKIs 
has tremendously changed the outcome and quality of life of 
these patients. However, all patients will inevitably progress 
after a distinct time. To expand PFS and hopefully OS it is 

crucial to think about evidence-based treatment sequencing. 
Every ALK TKI has its own advantages and disadvantages. 
Regular re-biopsies during disease progression are important 
to guide treatment sequencing. At present, we are just start-
ing to understand the relevance of ALK mutations, variants, 
co-mutations or bypass pathways for therapy sequencing. 
Therefore, more clinical and translational research is needed 
to expand our knowledge and thus the survival of patients 
with ALK-rearranged NSCLC.
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