Skip to main content
Log in

The Ocular Manifestations of Drugs Used to Treat Multiple Sclerosis

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Recent times have seen an increase in the number of options to treat multiple sclerosis. Ocular manifestations of multiple sclerosis are well known to treating physicians; however, the medications used to treat multiple sclerosis can also have ocular side effects. This review article focuses on the ocular manifestations of corticosteroids and disease-modifying agents such as interferon, fingolomod, natalizumab, alemtuzumab and mitoxantron used to treat the disease. The ocular manifestations of multiple sclerosis treatments can be varied depending on the drug used, and include retinopathy, chronic central serous chorioretinopathy, macular oedema, Graves’ ophthalmopathy and cortical blindness. These effects may be specific to the drug or secondary to their immunosuppressive effect. The association of macular oedema with fingolomod is clear and merits ocular screening for toxicity. The immunosuppressive nature of the treatments makes patients prone to acquired infections. Hence, if a patient with multiple sclerosis presents with vision loss, infectious and drug-induced aetiology should be considered alongside relapses of multiple sclerosis itself as a cause.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Calabresi PA. Diagnosis and management of multiple sclerosis. Am Fam Physician. 2004;70(10):1935–44.

    PubMed  Google Scholar 

  2. Coles A. Multiple sclerosis. Pract Neurol. 2009;9:118–26.

    Article  PubMed  Google Scholar 

  3. Ascherio A, Munger KL, Lunemann JD. The initiation and prevention of multiple sclerosis. Nat Rev Neurol. 2012;8(11):602–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Polman CH, Reingold SC, Banwell B, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald Criteria. Ann Neurol. 2011;69(2):292–302.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Scolding N, Branes D, Cader S, et al. Association of British Neurologists: revised (2015) guidelines for prescribing disease-modifying treatments in multiple sclerosis. Pract Neurol. 2015;15(4):273–9.

    Article  PubMed  Google Scholar 

  6. Rice CM. Disease modification in multiple sclerosis: an update. Pract Neurol. 2014;14:6–13.

    Article  PubMed  Google Scholar 

  7. Mikol DD, Barkhof F, Chang P, et al. Comparison of subcutaneous interferon beta-1a with glatiramer acetate in patients with relapsing multiple sclerosis (the REbif vs Glatiramer Acetate in Relapsing MS Disease (REGARD) study): a multicentre, randomised, parallel, open-label trial. Lancet Neurol. 2008;7:903–14.

    Article  CAS  PubMed  Google Scholar 

  8. O’Connor P, Filippi M, Arnason B, et al. 250 microg or 500 microg interferon beta-1b versus 20 mg glatiramer acetate in relapsing-remitting multiple sclerosis: a prospective, randomised, multicentre study. Lancet Neurol. 2009;8:889–97.

    Article  PubMed  Google Scholar 

  9. Gold R, Kappos L, Arnold DL, et al. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med. 2012;367(12):1098–107.

    Article  CAS  PubMed  Google Scholar 

  10. Fox RJ, Miller DH, Phillips JT, et al. Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N Engl J Med. 2012;367(12):1087–97.

    Article  CAS  PubMed  Google Scholar 

  11. O’Connor P, Wolinsky JS, Confavreux C, et al. Randomized trial of oral teriflunomide for relapsing multiple sclerosis. N Engl J Med. 2011;365:1293–303.

    Article  PubMed  Google Scholar 

  12. Freedman MS, Wolinsky JS, Wamil B, et al. Teriflunomide added to interferon-β in relapsing-remitting multiple sclerosis: a randomized phase II trial. Neurology. 2012;78:1877–85.

    Article  CAS  PubMed  Google Scholar 

  13. Kappos L, Radue EW, O’Connor P, et al. A placebo-controlled trial of oral fingolimod in relapsing remitting multiple sclerosis. N Engl J Med. 2010;362:387–401.

    Article  CAS  PubMed  Google Scholar 

  14. Cohen JA, Barkhof F, Comi G, et al. Oral fingolimod or intramuscular interferon for relapsing remitting multiple sclerosis. N Engl J Med. 2010;362:402–15.

    Article  CAS  PubMed  Google Scholar 

  15. Polman CH, O’Connor PW, Havrdova E, et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med. 2006;354:899–910.

    Article  CAS  PubMed  Google Scholar 

  16. Rudick RA, Stuart WH, Calabresi PA, et al. Natalizumab plus interferon beta-1a for relapsing remitting multiple sclerosis. N Engl J Med. 2006;354:911–23.

    Article  CAS  PubMed  Google Scholar 

  17. Cohen JA, Coles AJ, Arnold DL, et al. Alemtuzumab vs interferon beta-1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial. Lancet. 2012;380:1819–28.

    Article  CAS  PubMed  Google Scholar 

  18. Coles AJ, Twyman CL, Arnold DL, et al. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. Lancet. 2012;380:1829–39.

    Article  CAS  PubMed  Google Scholar 

  19. Marrie RA, Cutter G, Tyry T. Substantial adverse association of visual and vascular comorbidities on visual disability in multiple sclerosis. Mult Scler. 2011;17(12):1464–71.

    Article  PubMed  Google Scholar 

  20. Toosy AT, Miller DH. Optic neuritis. Lancet. 2014;13:83–99.

    Article  CAS  PubMed  Google Scholar 

  21. Filippi M, Rocca MA, Ciccarelli O, et al. MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines. Lancet Neurol. 2016;15:292–303.

    Article  PubMed  Google Scholar 

  22. Servillo G, Renard D, Taieb G, et al. Bedside tested ocular motor disorders in multiple sclerosis patients. Mult Scler Int. 2014;2014:732329. doi:10.1155/2014/732329.

  23. Kundu AK. Charcot in medical eponyms. J Assoc Physicians India. 2004;52:716–8.

    PubMed  Google Scholar 

  24. Le Scanff J, Seve P, Renoux C, et al. Uveitis associated with multiple sclerosis. Mult Scler. 2008;14:415–7.

    Article  PubMed  Google Scholar 

  25. Biousse V, Trichet C, Bloch-Michel E, et al. Multiple sclerosis associated with uveitis in two large clinic-based series. Neurology. 1999;52:179–81.

    Article  CAS  PubMed  Google Scholar 

  26. Jouve L, Benrabah R, Héron E, Bodaghi B, Hoang PL, Touitou V. Multiple sclerosis-related uveitis: does MS treatment affect uveitis course? Ocul Immunol Inflamm. 2016:1–6. doi:10.3109/09273948.2015.1125508.

  27. Gelfand JM, Nolan R, Schwartz DM, et al. Microcystic macular oedema in multiple sclerosis is associated with disease severity. Brain. 2012;135:1786–93.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pott JW, de Vries-Knoppert WAEJ, Petzold A. The prevalence of microcystic changes on optical coherence tomography of the macular region in optic nerve atrophy of non-neuritis origin: a prospective study. Br J Ophthalmol. 2016;100(2):216–21.

    Article  CAS  PubMed  Google Scholar 

  29. Beck RW, Cleary PA, Trobe JD, et al. The effect of corticosteroids for acute optic neuritis on the subsequent development of multiple sclerosis. The optic neuritis study group. N Engl J Med. 1993;329:1764–9.

    Article  CAS  PubMed  Google Scholar 

  30. Nicholson B, Noble J, Forooghian F, Meyerle C. Central serous chorioretinopathy: update on pathophysiology and treatment. Surv Ophthalmol. 2013;58(2):103–26.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sharma T, Shah N, Rao M, et al. Visual outcome after discontinuation of corticosteroids in atypical severe central serous chorioretinopathy. Ophthalmology. 2004;111:1708–14.

    Article  PubMed  Google Scholar 

  32. Lepage E, Veillard D, Laplaud DA, et al. Oral versus intravenous high dose methylprednisolone for treatment of relapses in patients with multiple sclerosis (COPOUSEP): a randomised, controlled double blinded, non-inferiority trial. Lancet. 2015;386:974–81.

    Article  CAS  Google Scholar 

  33. Milazzo S, Drimbea A, Betermiez P, et al. Diffuse multiple sclerosis and chronic central serous chorioretinopathy: pitfall not to ignore. Pract Neurol. 2013;13:200–3.

    Article  PubMed  Google Scholar 

  34. Loo RH, Scott IU, Flynn HW Jr, et al. Factors associated with reduced visual acuity during long-term follow-up of patients with idiopathic central serous chorioretinopathy. Retina. 2002;22:19–24.

    Article  PubMed  Google Scholar 

  35. Baran N, Gurlu VP, Esgin H. Long-term macular function in eyes with central serous chorioretinopathy. Clin Exp Ophthalmol. 2005;33:369–72.

    Article  PubMed  Google Scholar 

  36. Berkovich R, Agius MA. Mechanism of action of ACTH in the management of relapsing forms of multiple sclerosis. Ther Adv Neurol Disord. 2014;7:83–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schulman JA, Liang C, Kooragayala LM, King J. Posterior segment complications in patients with hepatitis C treated with interferon and ribavirin. Ophthalmology. 2003;110:437–42.

    Article  PubMed  Google Scholar 

  38. D’Alteroche L, Majzoub S, Lecuyer AI, et al. Ophthalmologic side effects during alpha-interferon therapy for viral hepatitis. J Hepatol. 2006;44:56–61.

    Article  PubMed  Google Scholar 

  39. Hayasaka S, Nagaki Y, Matsumoto M, Sato S. Interferon associated retinopathy. Br J Ophthalmol. 1998;82:323–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Baron S, Tyring SK, Fleischmann WR Jr, et al. The interferons. Mechanism of action and clinical applications. JAMA. 1991;266:1375–83.

    Article  CAS  PubMed  Google Scholar 

  41. Novick D, Cohen B, Rubinstein M. The human interferon alpha/beta receptor, characterization, and molecular cloning. Cell. 1994;77:391–400.

    Article  CAS  PubMed  Google Scholar 

  42. Guyer DR, Tiederman J, Yanuzzi LA, et al. Interferon-associated retinopathy. Arch Ophthalmol. 1993;111:350–6.

    Article  CAS  PubMed  Google Scholar 

  43. Sugano S, Yanagimoto M, Suzuki T, et al. Retinal complications with elevated circulating plasma C5a associated with interferon-alpha therapy for chronic active hepatitis. Am J Gastroenterol. 1994;89:2054–6.

    CAS  PubMed  Google Scholar 

  44. Sommer S, Sablon JC, Zaoui M, et al. Interferon beta-1b retinopathy during a treatment for multiple sclerosis. J Fr Ophthalmol. 2001;24:509–12.

    CAS  Google Scholar 

  45. Ohira M, Ito D, Shimizu T, et al. Retinopathy: an overlooked adverse effect of interferon-beta treatment of multiple sclerosis. Keio J Med. 2009;58(1):54–6.

    Article  CAS  PubMed  Google Scholar 

  46. Mandala S, Hajdu R, Bergstrom J, et al. Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science. 2002;296(5566):346–9.

    Article  CAS  PubMed  Google Scholar 

  47. Salvadori M, Buddle K, Charpentier B, et al. FTY720 0124 Study Group. FTY720 versus MMF with cyclosporine in de novo renal transplantation: a 1 year, randomized controlled trial in Europe and Australasia. Am J Transplant. 2006;6:2912–21.

    Article  CAS  PubMed  Google Scholar 

  48. Tedesco-Silva H, Pescovitz MD, Cibrik D, et al. FTY 720 Study Group. Randomized controlled trial of FTY720 versus MMF in de novo renal transplantation. Transplantation. 2006;82:1689–97.

    Article  CAS  PubMed  Google Scholar 

  49. Jain N, Bhatti MT. Fingolimod-associated macular edema: incidence, detection and management. Neurology. 2012;78(9):672–80.

    Article  CAS  PubMed  Google Scholar 

  50. Zarbin MA, Jampol LM, Jager RD, et al. Ophthalmic evaluations in clinical studies of fingolimod (FTY720) in multiple sclerosis. Ophthalmology. 2013;120:1432–9.

    Article  PubMed  Google Scholar 

  51. Brinkmann V, Baumruker T. Pulmonary and vascular pharmacology of sphingosine 1-phosphate. Curr Opin Pharmacol. 2006;6:244–50.

    Article  CAS  PubMed  Google Scholar 

  52. Commodaro AG, Peron JP, Lopes CT, et al. Evaluation of experimental autoimmune uveitis in mice treated with FTY720. Invest Ophthalmol Vis Sci. 2010;51:2568–74.

    Article  PubMed  Google Scholar 

  53. Sanchez T, Estrada-Hernandez T, Paik JH, et al. Phosphorylation and action of the immunomodulatory FTY720 inhibits vascular endothelial cell growth facto-induced vascular permeability. J Biol Chem. 2003;278:47281–90.

    Article  CAS  PubMed  Google Scholar 

  54. Chui J, Herkes GK, Chang A. Management of fingolimod-associated macular edema. JAMA Ophthalmol. 2013;131(5):694–6.

    Article  PubMed  Google Scholar 

  55. Schröder K, Finis D, Harmel J, et al. Acetazolamide therapy in a case of fingolimod-associated macular edema: early benefits and long-term limitations. Mult Scler Relat Disord. 2015;4(5):406–8.

    Article  PubMed  Google Scholar 

  56. Thoo S, Cugati S, Lee A, Chen C. Successful treatment of fingolimod-associated macular edema with intravitreal triamcinolone with continued fingolimod use. Mult Scler. 2015;21(2):249–51.

    Article  PubMed  Google Scholar 

  57. Minuk A, Belliveau MJ, Almeida DR, et al. Fingolimod-associated macular edema: resolution by sub-tenon injection of triamcinolone with continued fingolimod use. JAMA Ophthalmol. 2013;131(6):802–4.

    Article  PubMed  Google Scholar 

  58. NICE Final appraisal determination—fingolimod for the treatment of highly active relapsing-remitting multiple sclerosis. 2016. https://www.nice.org.uk/guidance/ta254/chapter/1-guidance. Accessed 31 Mar 2016

  59. Ueda N, Saida K. Retinal hemorrhages following fingolimod treatment for multiple sclerosis; a case report. BMC Ophthalmol. 2015;19(15):135.

    Article  Google Scholar 

  60. Pula JH, Javed A. Multiple sclerosis. Part 2: ophthalmic issues in MS therapy. Curr Opin Ophthalmol. 2009;20:476–81.

    Article  PubMed  Google Scholar 

  61. Goodin D, Cohen B, O’Connor P, et al. Assessment: the use of natalizumab (Tysabri) for the treatment of multiple sclerosis (an evidence-based review). Neurology. 2008;71:766–73.

    Article  CAS  PubMed  Google Scholar 

  62. Boster AL, Nicholas JA, Topalli I, et al. Lessons learned from fatal progressive multifocal leukoencephalopathy in a patient with multiple sclerosis treated with natalizumab. JAMA Neurol. 2013;70(3):398–402.

    Article  PubMed  Google Scholar 

  63. Eckstein C, Bhatti MT. Currently approved and emerging therapies in multiple sclerosis: an update for the ophthalmologist. Surv Ophthalmol. 2016;61:318–32.

    Article  PubMed  Google Scholar 

  64. Kobeleva X, Wegner F, Brunotte I, et al. Varicella zoster-associated retinal and central nervous system vasculitis in a patient with multiple sclerosis treated with natalizumab. J Neuroinflamm. 2014;11:19.

    Article  Google Scholar 

  65. Haseltine Van Tassel S, Gupta MP, Orlin A, et al. Progressive outer retinal necrosis in a multiple sclerosis patient on natalizumab. Neurology. 2015;84:2198–9.

    Article  Google Scholar 

  66. Osterborg A, Dyer MJ, Bunjes D, et al. Phase II multicentre study of human CD52 antibody in previously treated chronic lymphocytic leukaemia. European Study Group of CAMPATH-1H treatment in chronic lymphocytic leukemia. J Clin Oncol. 1997;15:1567–74.

    CAS  PubMed  Google Scholar 

  67. Coles AJ, Twyman CL, Arnold DL, et al. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. Lancet. 2012;380(9856):1829–39.

    Article  CAS  PubMed  Google Scholar 

  68. Dick AD, Meyer P, James T, et al. Campath-1H therapy in refractive ocular inflammatory disease. Br J Ophthalmol. 2000;84:107–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Coles AJ, Wing M, Smith S, et al. Pulsed monoclonal antibody treatment and autoimmune thyroid disease in multiple sclerosis. Lancet. 1999;354:1691–5.

    Article  CAS  PubMed  Google Scholar 

  70. Gilbert D, Vladic A, Brinar V, et al. Alemtuzumab-related thyroid dysfunction in a phase 2 trial of patients with relapsing-remitting multiple sclerosis. J Clin Endocrinol Metab. 2014;99:80–9.

    Article  Google Scholar 

  71. Trinh T, Haridas AS, Sullivan TJ. Ocular findings in alemuzumab (Campath 1-H)-induced thyroid eye disease. Ophthal Plast Reconstr Surg. 2015. [Epub ahead of print]. Accessed 16th March 2016.

  72. Bosca I, Pascual A, Casanova B, et al. Four new cases of therapy-related acute promyelocytic leukemia after mitoxantrone. Neurology. 2008;71:457–8.

    Article  CAS  PubMed  Google Scholar 

  73. Ko M, Tamhankar M, Volpe N, et al. Acute promyelocytic leukemic involvement of the optic nerves following mitoxantrone treatment for multiple sclerosis. J Neurol Sci. 2008;273:144–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Peter Gale.

Ethics declarations

Conflict of interest

Authors GH, AA and RPG have no conflicts of interest to declare.

Funding

No funding was obtained for the writing or publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heath, G., Airody, A. & Gale, R.P. The Ocular Manifestations of Drugs Used to Treat Multiple Sclerosis. Drugs 77, 303–311 (2017). https://doi.org/10.1007/s40265-017-0692-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-017-0692-6

Keywords

Navigation