Skip to main content
Log in

SGLT2 Inhibitor Use and Risk of Breast Cancer Among Adult Women with Type 2 Diabetes

  • Original Research Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Introduction

Sodium–glucose cotransporter 2 (SGLT2) inhibitors are a relatively new class of antihyperglycemic agents, with the potential to inhibit breast cancer development. However, the association between SGLT2 inhibitors and risk of breast cancer in human studies is unclear.

Objective

The aim of our study is to use a large national claims database to assess the association between SGLT2 inhibitor use and risk of breast cancer.

Methods

We considered a study population of 158,483 adult women with type 2 diabetes who newly initiated SGLT2 inhibitors or dipeptidyl peptidase 4 (DPP4) inhibitors using Optum’s deidentified Clinformatics Data Mart Database between 1 January 2013 and 31 March 2022. The association between SGLT2 inhibitor use and risk of breast cancer was examined using Cox proportional hazard models stratified by age in the overall sample and in a subsample based on propensity score and medication initiation time matching. The effect of medication use duration was explored.

Results

With an average follow-up of 2.2 years, 2154 breast cancer cases were identified. There was no significant association between SGLT2 inhibitor use and the risk of breast cancer in overall sample (HR = 0.96; 95% CI 0.87, 1.06), in women younger than 51 years old (HR = 0.88; 95% CI 0.59, 1.32), or in women aged 51 years or older (HR = 0.95; 95% CI 0.86, 1.04). The results remained nonsignificant using matching, medication use duration, and sensitivity analyses.

Conclusion

Our findings suggest SGLT2 inhibitors use was not associated with breast cancer risk compared with DPP4 inhibitors use. Studies with longer follow-up and better adjustments are needed to confirm the finding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49. https://doi.org/10.3322/caac.21660.

    Article  PubMed  Google Scholar 

  2. Economopoulou P, Dimitriadis G, Psyrri A. Beyond BRCA: new hereditary breast cancer susceptibility genes. Cancer Treat Rev. 2015;41:1–8. https://doi.org/10.1016/j.ctrv.2014.10.008.

    Article  PubMed  CAS  Google Scholar 

  3. Tomic D, Shaw JE, Magliano DJ. The burden and risks of emerging complications of diabetes mellitus. Nat Rev Endocrinol. 2022;18:525–39. https://doi.org/10.1038/s41574-022-00690-7.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Khan MAB, Hashim MJ, King JK, et al. Epidemiology of type 2 diabetes—global burden of disease and forecasted trends. J Epidemiol Glob Health. 2020;10:107–11. https://doi.org/10.2991/jegh.k.191028.001.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tang H, Dai Q, Shi W, et al. SGLT2 inhibitors and risk of cancer in type 2 diabetes: a systematic review and meta-analysis of randomised controlled trials. Diabetologia. 2017;60:1862–72. https://doi.org/10.1007/s00125-017-4370-8.

    Article  PubMed  CAS  Google Scholar 

  6. Boyle P, Boniol M, Koechlin A, et al. Diabetes and breast cancer risk: a meta-analysis. Br J Cancer. 2012;107:1608–17. https://doi.org/10.1038/bjc.2012.414.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J Gen Physiol. 1927;8:519–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Lupsa BC, Inzucchi SE. Use of SGLT2 inhibitors in type 2 diabetes: weighing the risks and benefits. Diabetologia. 2018;61:2118–25. https://doi.org/10.1007/s00125-018-4663-6.

    Article  PubMed  CAS  Google Scholar 

  9. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes—2022 | Diabetes Care | American Diabetes Association. https://diabetesjournals.org/care/article/45/Supplement_1/S125/138908/9-Pharmacologic-Approaches-to-Glycemic-Treatment. Accessed 24 Jan 2023

  10. Fonseca-Correa JI, Correa-Rotter R. Sodium-glucose cotransporter 2 inhibitors mechanisms of action: a review. Front Med. 2021;8: 777861. https://doi.org/10.3389/fmed.2021.777861.

    Article  Google Scholar 

  11. Lambers Heerspink HJ, de Zeeuw D, Wie L, et al. Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes Metab. 2013;15:853–62. https://doi.org/10.1111/dom.12127.

    Article  PubMed  CAS  Google Scholar 

  12. Lee T-M, Chang N-C, Lin S-Z. Dapagliflozin, a selective SGLT2 Inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts. Free Radic Biol Med. 2017;104:298–310. https://doi.org/10.1016/j.freeradbiomed.2017.01.035.

    Article  PubMed  CAS  Google Scholar 

  13. Komatsu S, Nomiyama T, Numata T, et al. SGLT2 inhibitor ipragliflozin attenuates breast cancer cell proliferation. Endocrine J. 2020;67:99–106. https://doi.org/10.1507/endocrj.EJ19-0428.

    Article  CAS  Google Scholar 

  14. Komatsu S, Nomiyama T, Numata T, et al. SGLT2 Inhibitor ipragliflozin induces breast cancer apoptosis via membrane hyperpolarization and mitochondria dysfunction. Diabetes. 2018;67:255-OR. https://doi.org/10.2337/db18-255-OR.

    Article  Google Scholar 

  15. Ware K, Smith T, Brown D-V, et al. The effect of sodium glucose transporter 2 inhibitors on proliferation and growth factor signaling pathways in triple negative breast cancer. FASEB J. 2019;33:647.48. https://doi.org/10.1096/fasebj.2019.33.1_supplement.647.48.

    Article  Google Scholar 

  16. Nasiri AR, Rodrigues MR, Li Z, et al. SGLT2 inhibition slows tumor growth in mice by reversing hyperinsulinemia. Cancer Metab. 2019;7:10. https://doi.org/10.1186/s40170-019-0203-1.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhou J, Zhu J, Yu S-J, et al. Sodium-glucose co-transporter-2 (SGLT-2) inhibition reduces glucose uptake to induce breast cancer cell growth arrest through AMPK/mTOR pathway. Biomed Pharmacother. 2020;132: 110821. https://doi.org/10.1016/j.biopha.2020.110821.

    Article  PubMed  CAS  Google Scholar 

  18. Benedetti R, Benincasa G, Glass K, et al. Effects of novel SGLT2 inhibitors on cancer incidence in hyperglycemic patients: a meta-analysis of randomized clinical trials. Pharmacol Res. 2022;175: 106039. https://doi.org/10.1016/j.phrs.2021.106039.

    Article  PubMed  CAS  Google Scholar 

  19. Jones D. Diabetes field cautiously upbeat despite possible setback for leading SGLT2 inhibitor. Nat Rev Drug Discov. 2011;10:645–6. https://doi.org/10.1038/nrd3546.

    Article  PubMed  CAS  Google Scholar 

  20. Marilly E, Cottin J, Cabrera N, et al. SGLT2 inhibitors in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials balancing their risks and benefits. Diabetologia. 2022;65:2000–10. https://doi.org/10.1007/s00125-022-05773-8.

    Article  PubMed  CAS  Google Scholar 

  21. Dadey DYA, Rodrigues A, Haider G, et al. Impact of socio-economic factors on radiation treatment after resection of metastatic brain tumors: trends from a private insurance database. J Neurooncol. 2022;158:445–51. https://doi.org/10.1007/s11060-022-04031-6.

    Article  PubMed  Google Scholar 

  22. Clinformatics® Data Mart. https://cdn-aem.optum.com/content/dam/optum4/resources/pdf/clinformatics-data-mart.pdf. Accessed 26 Jan 2023.

  23. Suissa K, Schneeweiss S, Lin KJ, et al. Validation of obesity-related diagnosis codes in claims data. Diabetes Obes Metab. 2021;23:2623–31. https://doi.org/10.1111/dom.14512.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Quan H, Sundararajan V, Halfon P, et al. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med Care. 2005;43:1130–9. https://doi.org/10.1097/01.mlr.0000182534.19832.83.

    Article  PubMed  Google Scholar 

  25. NCI Comorbidity Index Overview. https://healthcaredelivery.cancer.gov/seermedicare/considerations/comorbidity.html. Accessed 25 Aug 2023

  26. Segal Z, Kalifa D, Radinsky K, et al. Machine learning algorithm for early detection of end-stage renal disease. BMC Nephrol. 2020;21:518. https://doi.org/10.1186/s12882-020-02093-0.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Box-Steffensmeier JM, Jones BS. Event history modeling: a guide for social scientists. Cambridge: Cambridge University Press; 2004.

    Book  Google Scholar 

  28. Surakasula A, Nagarjunapu GC, Raghavaiah KV. A comparative study of pre- and post-menopausal breast cancer: risk factors, presentation, characteristics and management. J Res Pharm Pract. 2014;3:12–8. https://doi.org/10.4103/2279-042X.132704.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Biglia N, Peano E, Sgandurra P, et al. Body mass index (BMI) and breast cancer: impact on tumor histopatologic features, cancer subtypes and recurrence rate in pre and postmenopausal women. Gynecol Endocrinol. 2013;29:263–7. https://doi.org/10.3109/09513590.2012.736559.

    Article  PubMed  Google Scholar 

  30. Chollet-Hinton L, Anders CK, Tse C-K, et al. Breast cancer biologic and etiologic heterogeneity by young age and menopausal status in the Carolina Breast Cancer Study: a case-control study. Breast Cancer Res. 2016;18:79. https://doi.org/10.1186/s13058-016-0736-y.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hicks B, Kaye JA, Azoulay L, et al. The application of lag times in cancer pharmacoepidemiology: a narrative review. Ann Epidemiol. 2023;84:25–32. https://doi.org/10.1016/j.annepidem.2023.05.004.

    Article  PubMed  Google Scholar 

  32. Austin PC. Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies. Pharm Stat. 2011;10:150–61. https://doi.org/10.1002/pst.433.

    Article  PubMed  Google Scholar 

  33. Bergstralh EJ, Kosanke JL, Jacobsen SJ. Software for optimal matching in observational studies. Epidemiology. 1996;7:331–2.

    PubMed  CAS  Google Scholar 

  34. Lin DY, Wei LJ. The robust inference for the Cox proportional hazards model. J Am Stat Assoc. 1989;84:1074–8. https://doi.org/10.1080/01621459.1989.10478874.

    Article  Google Scholar 

  35. Austin PC. The performance of different propensity score methods for estimating marginal hazard ratios. Stat Med. 2013;32:2837–49. https://doi.org/10.1002/sim.5705.

    Article  PubMed  Google Scholar 

  36. Zou H-T, Yang G-H, Cai Y-J, et al. Are high- or low-dose SGLT2 inhibitors associated with cardiovascular and respiratory adverse events? A meta-analysis. J Cardiovasc Pharmacol. 2022;79:655. https://doi.org/10.1097/FJC.0000000000001222.

    Article  PubMed  CAS  Google Scholar 

  37. McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381:1995–2008. https://doi.org/10.1056/NEJMoa1911303.

    Article  PubMed  CAS  Google Scholar 

  38. Suissa M, Yin H, Yu OHY, et al. Sodium–glucose cotransporter 2 inhibitors and the short-term risk of breast cancer among women with type 2 diabetes. Diabetes Care. 2020;44:e9–11. https://doi.org/10.2337/dc20-1073.

    Article  PubMed  CAS  Google Scholar 

  39. Dicembrini I, Nreu B, Montereggi C, et al. Risk of cancer in patients treated with dipeptidyl peptidase-4 inhibitors: an extensive meta-analysis of randomized controlled trials. Acta Diabetol. 2020;57:689–96. https://doi.org/10.1007/s00592-020-01479-8.

    Article  PubMed  CAS  Google Scholar 

  40. Tilinca MC, Tiuca RA, Tilea I, Varga A. The SGLT-2 inhibitors in personalized therapy of diabetes mellitus patients. J Pers Med. 2021;11:1249. https://doi.org/10.3390/jpm11121249.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Salvatore T, Galiero R, Caturano A, et al. An overview of the cardiorenal protective mechanisms of SGLT2 inhibitors. Int J Mol Sci. 2022;23:3651. https://doi.org/10.3390/ijms23073651.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengge Wang.

Ethics declarations

Funding

Not applicable.

Conflicts of Interest

The authors declare that there are no competing interests.

Availability of Data and Material

The data supporting this study's findings are not publicly available due to reasons of sensitivity but can be accessed from Optum on reasonable request. Optum service website: https://www.optum.com/business/insights/life-sciences/page.hub.contact-lifesciences.html.

Ethics Approval

This study was approved by the Indiana University institutional review board (protocol number: 21486).

Consent for Participate

Consent was waived by the institutional review board due to the utilization of deidentified data.

Consent for Publication

Not applicable.

Code Availability

Available on reasonable request from the corresponding author.

Author Contributions

FW, JL, and MH contributed to the design of the study. FW performed the analysis. The first draft of the manuscript was written by FW and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 288 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Hendryx, M., Liu, N. et al. SGLT2 Inhibitor Use and Risk of Breast Cancer Among Adult Women with Type 2 Diabetes. Drug Saf 47, 125–133 (2024). https://doi.org/10.1007/s40264-023-01373-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40264-023-01373-6

Navigation