
Vol.:(0123456789)

Drug Safety (2023) 46:765–779 
https://doi.org/10.1007/s40264-023-01322-3

ORIGINAL RESEARCH ARTICLE

Provision and Characterization of a Corpus for Pharmaceutical, 
Biomedical Named Entity Recognition for Pharmacovigilance: 
Evaluation of Language Registers and Training Data Sufficiency

Jürgen Dietrich1   · Philipp Kazzer2

Accepted: 16 May 2023 / Published online: 20 June 2023 
© The Author(s) 2023

Abstract
Introduction and Objective  Machine learning (ML) systems are widely used for automatic entity recognition in pharma-
covigilance. Publicly available datasets do not allow the use of annotated entities independently, focusing on small entity 
subsets or on single language registers (informal or scientific language). The objective of the current study was to create a 
dataset that enables independent usage of entities, explores the performance of predictive ML models on different registers, 
and introduces a method to investigate entity cut-off performance.
Methods  A dataset has been created combining different registers with 18 different entities. We applied this dataset to com-
pare the performance of integrated models with models created with single language registers only. We introduced fractional 
stratified k-fold cross-validation to determine model performance on entity level by using training dataset fractions. We inves-
tigated the course of entity performance with fractions of training datasets and evaluated entity peak and cut-off performance.
Results  The dataset combines 1400 records (scientific language: 790; informal language: 610) with 2622 sentences and 
9989 entity occurrences and combines data from external (801 records) and internal sources (599 records). We demonstrated 
that single language register models underperform compared to integrated models trained with multiple language registers.
Conclusions  A manually annotated dataset with a variety of different pharmaceutical and biomedical entities was created 
and is made available to the research community. Our results show that models that combine different registers provide better 
maintainability, have higher robustness, and have similar or higher performance. Fractional stratified k-fold cross-validation 
allows the evaluation of training data sufficiency on the entity level.

Key Points 

Combined language register models provide similar 
results or outperform single language register models.

A new method enables the evaluation of training data 
sufficiency for computer system validation.

1  Introduction

The efficient and effective detection of adverse events (AEs) 
in free text (e.g., screening of literature, spontaneous, study, 
and regulatory reports) is required by Good pharmacovigi-
lance practices (GVP) in the European Union (EU) (EU-
GVP) Modules and is of paramount importance for phar-
macovigilance. Machine learning (ML)-based models have 
been developed to support this task and to help get efficien-
cies in this process, especially as content that needs to be 
screened has increased over the last few years. Several ini-
tiatives are ongoing to investigate the industry perspective 
on artificial intelligence (AI) in pharmacovigilance [1–4] 
to evaluate risks and to improve scalability, efficiency, 
and quality. There is a growing industrial interest in using 
cognitive technologies, especially in case intake and case 
processing.
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Transformer-based bidirectional encoder language mod-
els (BERT [5]) and their variants (e.g., ClinicalBERT [6], 
BioBERT [7]) are widely used in AE detection (e.g., [8]) 
and carry out predictions with a decoder implemented as a 
task-specific trainable network. Raffel et al. [9] introduced 
a Text-To-Text Transfer Transformer (T5), a pretrained 
encoder-decoder transformer.

These models are further fine-tuned with data for specific 
pharmacovigilance tasks; however, there are typical chal-
lenges with small, variable, and imbalanced datasets and 
terms used very differently and often vaguely or inaccu-
rately. In previous studies, the T5 architecture demonstrated 
high flexibility in dealing with text from different domains 
and ontologies [10, 11]. We used in our experiments T5 
since it was shown that T5 outperformed other AE detection 
models based on BERT variants and can be used to apply the 
same model for multiple and diverse datasets [12].

Training data are required to train ML models, and those 
models can only be as good as the training data used to 
train them. Publicly available pharmacovigilance datasets 
(e.g., ADE Corpus V2 [13], WEB-RADR [14], CADEC 
[15], SMM4H [8, 16], BioCreative VII Task 3 [17]) focus 
on small subsets of annotated entities (e.g., drug, dosage, 
AE, indication), and single language registers (social media, 
scientific literature) contain different entity subsets or do not 
follow an annotation scheme that allows the use of annotated 
entities independently from other entities. In this paper, we 
describe our activities to generate, characterize, and consist-
ently re-annotate a dataset collection by completing anno-
tations on pharmaceutical and biomedical entities over all 
sources. We annotated besides AE other medical entities 
(e.g., indication, comorbidity) in order to enable fine-tuned 
ML systems to distinguish between identical medical terms 
context-wise.

ML models trained on limited entity subsets or covering 
one single register do not take full advantage of the avail-
able annotations and become specialized for a given text 
type, requiring potentially additional efforts to be main-
tained. However, having the maintainability, robustness, 
and performance of a production system in mind, several 
challenges arise. It is plausible that the effort to maintain 
multiple systems increases compared to a single integrated 
system (a model trained on multiple language registers). In 
our dataset collection, we intentionally combined datasets 
from different language registers and fine-tuned and tested 
models using k-fold cross-validation [18, 19], stratified on 
entities and data sources, to achieve a similar distribution 
of target class labels and language registers. We used ML 
models trained on stratified data to investigate in our first 
experiment whether the performance of an integrated system 
is comparable to models trained on single language registers 
only.

Currently, there is an ongoing discussion on how com-
puter system validation (CSV) can be applied in scenarios 
where ML and AI applications are used in regulated environ-
ments. The Council for International Organizations of Medi-
cal Sciences (CIOMS) Working Group XIV on Artificial 
Intelligence in Pharmacovigilance was established to pro-
vide recommendations on validation, machine training, and 
evaluation of the appropriateness of the different tools, and 
how they can be implemented and maintained. The aspect 
regarding the amount of training data needed is considered 
as crucial [2].

Past studies showed that different pharmaceutical entities 
are harder to predict than others by a given model [20]. It is 
obvious that the semantic complexity of an entity influences 
the prediction performance and the amount of training data 
necessary to be provided to reach peak performance. In a 
second experiment, we introduced fractional stratified k-fold 
cross-validation to evaluate the entity cut-off performance by 
increasing training sample sizes to determine training data 
sufficiency in CSV tasks.

2 � Methods

2.1 � Preparation of the Dataset

2.1.1 � Data Sources

Records were randomly selected to integrate different lan-
guage registers from external (ADE Corpus V2 [based on 
PubMed]: 500 [13]; SMM4H [based on Twitter]: 100 [16]; 
drugs.com: 201) and Bayer internal data sources (Bayer Lit-
erature database: 89; Safety and Product Technical Com-
plaint databases: 510 records). There are 1400 records in 
total, consisting of one or multiple sentences. Data from 
external and internal sources were retrieved between March 
and September 2021.

ADE Corpus V2: This dataset [13] contains case reports 
extracted from MEDLINE, with annotations of drug, dos-
age, and AE. From ADE Corpus, we randomly selected 400 
positive records (i.e., containing at least one drug-related 
AE mention) and 100 negative records (i.e., do not contain 
information about adverse drug effects [ADEs]).

SMM4H: This dataset was introduced for the Shared 
Tasks on AE in the workshop on Social Media Mining for 
Health Applications (SMM4H) [16]. The dataset is com-
posed of Twitter posts, typically short, informal texts with 
non-standard orthography, and it contains annotations for 
both detection (i.e., task 1, binary classification) and extrac-
tion (i.e., task 2, named entity recognition) of AEs. We ran-
domly selected 100 records from SMM4H 2017 and 2019 
datasets.
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Drugs.com: Records were retrieved on 30 Septem-
ber 2021 from the Food and Drug Administration (FDA) 
approval history section [21] between 1 January 2010 and 
30 September 2021 by means of a robotic process automa-
tion tool (UiPath). After retrieval, about 200 records were 
randomly selected for annotation.

Bayer Literature database: 53 PubMed abstracts of clini-
cal study results were retrieved from the Bayer internal lit-
erature database, and were split into sentences; 89 records 
were randomly sampled.

Safety and Product Technical Complaint databases: 
This dataset contains data from two sources (Bayer Safety 
database: 260 records; Product Technical Complaint (PTC) 
database: 250 records), consisting of one or multiple sen-
tences per record. Both datasets combine mainly patient 
or consumer recorded reports retrieved from call center 
records, emails, etc., mainly in informal language, combin-
ing information about product quality issues and AEs, e.g., 
‘I'm having like heavy bleeding like 21 days or something 
and really sharp pain.’

2.1.2 � Entities

In total, 18 different biomedical and pharmaceutical entities 
(e.g., drug, dose, AE, indication, comorbidity, intended use, 
administration route) were manually annotated and comple-
mented in all datasets, and if required, existing annotations 
were corrected. The selection of the entities aimed to cat-
egorize a given text from a pharmacovigilance perspective as 
completely as possible. Texts from various sources contain 
potentially different entities.

The dataset comprises, in total, 1400 records, with 2622 
sentences, 9989 entity occurrences (for details, see Tables 1, 
2), and 6185 occurrences of one or more entities on the 
record level. The number of records with scientific language 
is 790; the number with informal (‘lay person’) language is 
610. The set combines data from external (801 records) and 
internal sources (599 records); see Table 2 for more details. 

2.1.3 � Data Quality

Data preparation The ADE Corpus and SMM4H datasets 
were converted to single lines for each PubMed ID or Tweet 
ID, respectively. Multiple entity occurrences in one record 
(e.g., AE, drug) were aggregated into one field separated 
with semicolons, and Tweets were finally normalized (e.g., 
substitution of user nicknames with @USER).

Quality measures The quality of the annotations was 
ensured by annotation guidelines, team agreements, meas-
uring inter-annotator agreement (IAA) against ADE Cor-
pus and SMM4H dataset by determination of Cohen’s kappa 
and Gwet AC1, multi-stage annotations, and final review. 

Datasets were reviewed and annotated in total by five expe-
rienced pharmacovigilance case processors. This task was 
executed independently of the original annotation of publicly 
available datasets. In periodic team meetings, newly anno-
tated records were reviewed and, if required, corrected by 
team agreement. Internal data retrieved from our Safety and 
Product Technical Complaint databases underwent internal 
quality control measures (results are not published here).

Use of T5 model to improve data quality We used a 
‘machine-in-the-loop’ approach to improve the quality and 
consistency of the dataset. During multi-stage annotation 
cycles, we used T5 models trained on the actual dataset and 
reviewed manually the false-positive and false-negative 
results from fivefold cross-validation runs to detect through 
the complete dataset the incompleteness and inconsistencies 
of our previous annotations.

Inter-annotator Agreements IAA methods are described 
in the electronic supplementary material (ESM 3, Sect. 1.1).

Annotation guidelines Guidelines were adapted from 
CADEC annotation guidelines [15] and provided to all anno-
tators, defining the rules that annotators should follow when 
working on documents.

The following adaptations were used:

•	 Annotations were done at the paragraph level, i.e., we 
annotated the complete record.

•	 The entity description (see Table 1) was used for annota-
tor training and final review.

•	 Entities were annotated independently of the occurrence 
of other entities.

•	 All entity mentions were annotated in the sequence of 
occurrence separated by semicolons. Duplicate entities 
within one record were annotated independently; that 
means, all occurrences of the same entity were annotated.

•	 The identification of indication (the reason for using a 
drug) versus comorbidity versus medical history/condi-
tion were executed on the basis of plausibility (e.g., ‘We 
report a 31-year-old woman with recurrent Hodgkin's 
lymphoma and unrecognized HMSN-1 who developed 
severe motor neuropathy 3 weeks after the first cycle 
of treatment including 2 mg of vincristine’; indication: 
recurrent Hodgkin's lymphoma; comorbidity: hereditary 
motor and sensory neuropathy type 1 [HMSN-1]).

•	 Abbreviations of drugs (e.g., MTX for methotrexate), 
methods (e.g., HAIC for hepatic arterial infusion chemo-
therapy), indications (e.g., HFS for hand-foot syndrome), 
etc. were annotated. Metabolic products (e.g., desmethyl-
sertraline blood levels) and blood parameters (e.g., 
increased serum lithium concentrations) were excluded 
from annotation.

•	 Hashtags (e.g., #crohns or #ExtremePain) in Twitter data 
(SMM4H) were evaluated and annotated if required.
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Table 1   Entities and their description and the number of entities annotated (#Entity Occurrences)

Entity Description #Enitiy 
occur-
rences

In %

Action Introduced to describe the mode of action (e.g., multikinase inhibitor, TKI), we 
used it also to categorize a drug or methodology in more detail (e.g., gonado-
tropin releasing hormone [GnRH] analog) or to give additional information 
about substance class (e.g., broad-spectrum antibiotic)

213 2.13%

Administration form/primary packaging Used to describe the administration form of a medication (e.g., gel, tablet, oint-
ment, contrast agent), give some information about the form (e.g., liquid) or the 
primary or secondary packaging (e.g., filler, bottle, syringe)

491 4.92%

Administration route Used to describe the administration route of a medication (e.g., p.o., intravenous) 164 1.64%
AE Any occurrence of a side effect for a patient that could be potentially caused by a 

drug or medical device (this may include also drug ineffectiveness, death, unex-
pected beneficial drug effects, or unexpected therapeutic responses), in the case 
of medical devices, any PTC occurrence in which the device could had direct 
contact with a patient/consumer is also reported as AE

1602 16.04%

Comorbidity Refers to further conditions (concurrent conditions or co-infections) that define 
the patient population apart from the ‘disease/symptoms/procedure’ aspect of 
the indication (e.g., treatment of pancreatic insufficiency in patients with cystic 
fibrosis; indication: pancreatic insufficiency; comorbidity: cystic fibrosis). Due 
to sparse data in the original text, there are potential problems regarding dif-
ferentiating comorbidity from indication or medical history/condition

143 1.43%

Dose Any specific quantitative measurements (e.g., 0.3 mg/kg/day, 50 Gy), frequency 
mentions (e.g., two tablets twice a day), or unspecific mentions (e.g., overdose, 
high dose) that describe the dosage of drug or methodology

343 3.43%

Drug/device Used to specify a drug or device by, e.g., INN, trade name, IUPAC name, abbre-
viations, e.g., MTX. This category does not include the names of metabolites or 
reaction byproducts

1504 15.06%

Indication Used to specify the reason for using a drug, device, or methodology. This term 
is used intentionally not in a regulatory sense of a registered medication, in 
order to detect potential off-label use (e.g., cutaneous T cell lymphoma includes 
abbreviations CTCL and ADHD; informal terms: drippy nose, for my heart)

787 7.88%

Intended effect Used to specify the result/type of outcome intended for the target condition, 
aim, or strategy to be achieved by the indication (e.g., treatment, prophylaxis, 
replacement therapy, chemotherapy, prevention)

448 4.48%

Medical history/condition Used to describe past condition or medical occurrence. In cases where it is not 
clear whether the medical occurrence persists, sicknesses are annotated as 
comorbidities

50 0.50%

Method/procedure/administration Used to describe a procedure (e.g., colonoscopy prep, insertion, removal, dilate) 
or methodology (e.g., colonoscopy, ultrasound, MRI, HAIC)

402 4.02%

Outcome Mainly used to describe the reached outcome of a study or activity (e.g., disease 
stabilization, demonstrated antitumor activity and safety)

42 0.42%

PDC PDC specifies whether dose information refers to a specific drug; the syntax is 
<Product>|<Dose>. In the case of uncertainty, all products mentioned are 
annotated

337 3.37%

PEC PEC specifies whether an AE refers to a drug; the syntax is <Product>|<Event>. 
In the case of uncertainty, all products mentioned are annotated

1420 14.22%

PIC PIC specifies whether an indication refers to a drug; the syntax is 
<Product>|<Indication>. In the case of uncertainty, all products mentioned are 
annotated

1082 10.83%

PTC Any occurrence that may affect the quality of a product that is caused by the 
manufacturing process (including delivery, storage, counterfeit) or the design 
of a medication or device (e.g., 4 tablets were missing, the pill has a different 
color, a piece of a 2–3 mm piece of IUD missing, IUD was expelled, or removal 
of IUD)

693 6.94%

Target parameter Used to characterize study or experiment targets (e.g., efficacy and toxicity, pro-
long survival, 6 months PFS of 50% or greater)

31 0.31%
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•	 Product combinations (Product Dose Combination 
[PDC], Product Event Combination [PEC], Product 
Indication Combination [PIC]) were annotated only if 
the product was mentioned and related (e.g., ‘Central 
nervous system manifestations of an ibuprofen overdose 

reversed by naloxone’; PDC: ibuprofen/overdose; PEC: 
ibuprofen/overdose;ibuprofen/central nervous system 
manifestations; PIC: naloxone/central nervous system 
manifestations of an ibuprofen overdose). In the case of 

Table 1   (continued)

Entity Description #Enitiy 
occur-
rences

In %

Target population Used to describe—specifically or unspecifically—a subpopulation of an experi-
ment (smaller premature infants), study (post-menopausal women), or single 
case report (e.g., 7-year-old child). It contains mainly demographic information, 
but could also list inclusion criteria of a study or a condition for an outcome of 
an investigation. Mentions of sicknesses are excluded and annotated as comor-
bidity, indication, or medical history/condition

237 2.37%

Sum 9989 100%

ADHD attention deficit hyperactivity disorder, AE adverse event, CTCL cutaneous T cell lymphoma, HAIC hepatic arterial infusion chemother-
apy, INN international nonproprietary name, IUD intrauterine device, IUPAC International Union of Pure and Applied Chemistry, MRI magnetic 
resonance imaging, MTX methotrexate, PDC product dose combination, PEC product event combination, PFS progression-free survival, PIC 
product indication combination, p.o.  per os (oral administration), PTC product technical complaint, TKI tyrosine kinase inhibitor

Table 2   Overall distribution of records over the various entities and sources

AE adverse event, ADE adverse drug effect, PDC product dose combination, PEC product event combination, PIC product indication combina-
tion, PTC product technical complaint
a Safety and Product Technical Complaint databases, SMM4H: sources that contain mainly informal language
b ADE Corpus V2, drugs.com, Bayer Literature database: sources with scientific language. Note that only the occurrence of one or more entities 
on record level is shown

Safety and product techni-
cal complaint databasesa

ADE 
Corpus 
V2b

drugs.comb Bayer Litera-
ture databaseb

SMM4Ha Sum (occurrence 
on record level)

Action 1 11 174 9 3 198
Administration form/primary packaging 232 15 40 0 7 294
Administration route 17 70 56 5 2 150
AE 243 454 2 33 76 808
Comorbidity 2 56 40 10 2 110
Dose 2 252 25 9 6 294
Drug/device 172 452 201 89 93 1007
Indication 91 185 201 66 18 561
Intended effect 9 151 192 45 4 401
Medical history/condition 11 30 1 0 0 42
Method/procedure/administration 132 95 39 17 4 287
Outcome 3 11 0 19 0 33
PDC 0 239 3 7 5 254
PEC 120 428 2 32 76 658
PIC 17 164 201 66 15 463
PTC 382 1 0 0 0 383
Target parameter 0 3 0 20 0 23
Target population 13 125 60 18 3 219
Sum (occurrence on record level) 1447 2742 1237 445 314 6185
Record # 510 500 201 89 100 1400
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uncertainty between PEC and PIC, both product combi-
nations were annotated.

•	 Annotations were executed per record (i.e., no external 
information was used). However, for the identification, 
e.g., of drug–drug interactions or overdose, additional 
sources were used (e.g., drugs.com or Summary of 
Product Characteristics [SmPCs]).

Terms were extracted as completely as possible to 
facilitate medical judgement (e.g., secondary cardiac com-
plications instead of cardiac complications or subacute 
encephalopathy instead of encephalopathy or psychotic 
reaction disappeared instead of psychotic reaction).

•	 According to EU-GVP Module VI, any occurrence of 
death should be medically evaluated, and therefore, from 
a risk-based approach, we annotate ‘death’ as an AE to 
enable detection by ML systems and to ensure medical 
judgement.

2.2 � T5 Modeling

2.2.1 � Pretraining

There are various sizes available for pretrained T5 models 
[22] based on Colossal Clean Crawled Corpus (C4), includ-
ing small (60 million parameters), base (220 million param-
eters), large (770 million parameters), 3B (3 billion param-
eters), and 11B (11 billion parameters). In the paper, we use 
the term ‘T5’ to refer to the architecture ‘T5-base.’ We used 
this version because it provides a good trade-off between 
speed and accuracy.

2.2.2 � Data Preparation for Model Training

Datasets used for our experiments underwent an 80:20 split 
on the record level, if not otherwise specified. Models were 
trained on 80% of the data and validated using the remaining 
20% of the data by comparing the model predictions with 
the actual annotations made by the annotation team. In the 
case of fivefold cross-validation, in total, five subsequent 
non-overlapping 20% validation datasets were selected to 

validate the complete dataset and the remaining 80% of data 
was used as a training dataset. A stratification on source and 
entity was applied on validation and training data. Finally, 
records available within each training dataset were randomly 
sampled before model fine-tuning.

2.2.3 � Model Fine‑Tuning

In our experiments, we used an Adam optimizer with weight 
decay and set the maximum sequence length to 256. The 
learning rate was set to 1e-4, batch size was set to 4, and the 
epoch was set to 3. We performed a greedy search.

2.2.4 � Evaluation

The evaluation was executed per entity type and based on 
per positive class values of F score metrics. A term is cor-
rectly detected only if the system is able to assign the cor-
rect prediction label and correct entity type according to 
the International Workshop on Semantic Evaluation [23]. 
A correct prediction with incorrect type is considered as 
‘missing’ (false negative) and a correct type with an incor-
rect prediction as ‘spurious’ (false positive).

Please note the definition of ‘strict’ and ‘partial’ matches:

•	 Strict: exact boundary surface string match (i.e., spans of 
prediction and truth are identical).

•	 Partial: partial boundary match over the surface string 
(i.e., spans of prediction and truth are overlapping).

For multiclass evaluations, the macro-weighted averaged 
F1 scores were calculated (weighted by class frequency and 
on positive class) [24].

2.3 � Setup of the Experiments

2.3.1 � Experiment 1: Integrated Model Versus Single 
Language Register Trained Models

In this experiment, we investigated the effect of pure single 
language register systems versus an integrated system. We 
set up stratified fivefold cross-validation runs [25]. We were 
starting with models fine-tuned on 100% informal (‘Lay’) 

Table 3   Number of informal 
(‘lay person’ [Lay]) and 
scientific (Sc) records used 
for investigation of integrated 
versus single language register 
models

The percentages of training data coming from Lay and Sc corpus are shown in parentheses

Proportion of informal: scientific training data

Lay100Sc0 
(100%:0%)

Lay80Sc20 
(80%:20%)

Lay60Sc40 
(60%:40%)

Lay40Sc60 
(40%:60%)

Lay20Sc80 
(20%:80%)

Lay0Sc100 
(0%:100%)

Informal records 486 388 291 194 97 0
Science records 0 98 195 292 389 486
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data and subsequently substituting 20% of the informal data 
by the same amount of scientific (Sc) data until 100% sci-
ence data was reached (see Table 3). Note that we kept the 
amount of training data the same and focused on the effect 
of the multiple language domains.

Three analyses were performed on all models fine-tuned 
with different proportions of language registers. Within each 
analysis, the model performance was tested with the same 
validation dataset.

In our first analysis, we used AE and indication, since 
both entities were available and showed a high variability 
in different language registers. The model performance 
was tested with an identical validation dataset consist-
ing of 50% informal and 50% scientific data (124 records 
each). We mainly focused on the pure language register 
models (Lay100Sc0 and Lay0Sc100). We were expecting 
an inverted U-shaped curve, but wanted to evaluate how 
pronounced the performance of the pure language register 
models decreased.

In the other two analyses, we focused on indication 
and tested the model performance with (1) 100% of the 
informal dataset and (2) 100% of the scientific dataset to 
determine the performance decrease of models trained 
with proportions of the opposite language register.

2.3.2 � Experiment 2: Fractional Stratified Fivefold 
Cross‑Validation

To investigate the development of the entity performance, 
we used in our second experiment a newly developed 
method (fractional stratified k-fold cross-validation) to 
fine-tune models with proportions of training data. In con-
trast to the previously described experiment in Sect. 2.3.1, 
we ensured that all validation and training data were strati-
fied on entities and sources equally. In this experiment, 
we used a modification of the stratified fivefold cross-
validation approach with an 80:20 split. We split the com-
plete dataset into five stratified 20% folds and selected for 
each run a 20% fold as a validation dataset and used the 
remaining 20% folds for the creation of 20%, 40%, 60%, 
and 80% training sets, i.e., one cross-validation fold con-
tains about 20% of entity occurrences (see Table 1). Per 
20% validation dataset, four 20%, two 40%, two 60%, and 
one 80% training folds were created. We repeated this pro-
cedure five times to use all data for validation (n = 45). We 
ensured that for each 20%-fold validation dataset, all train-
ing data were used for model fine-tuning, but all permuta-
tions were used only for the 20% (20 models) and 80% 
folds (five models), due to the effort involved. For 40% 
folds, two adjoined folds were selected for training, and 
for 60% folds, three adjoined folds were selected for train-
ing (e.g., validation dataset: 20% fold #1; first 40%-fold 

training set: 20% fold #2 and #3; second 40% fold: #4 and 
#5; first 60% fold: #2–#4; second 60% fold: #3–#5). With 
all individual training sets, T5 models were fine-tuned and 
evaluated. In one experiment, we decreased the validation 
and training folds to 10% and determined the 10% data 
point for AE (additional nine 10% folds in ten runs, n = 
90). Please note that our decision to use 20% folds for this 
experiment is based on fivefold cross-validation, but is in 
principle arbitrary. This choice is from our perspective a 
good compromise between the evaluation of performance 
details and effort spent on the model creation.

The methods of the binary classifier experiment are 
described in ESM 3, Sect. 2.1 (see the electronic supple-
mentary material).

3 � Results

3.1 � Dataset

The dataset provided as an Excel spreadsheet (see ESM 
1 in the electronic supplementary material) combines the 
annotated entities per record in columns from the fol-
lowing sources (in total, 1400 records; only 890 records 
selected for publication):

•	 ADE Corpus V2 (500 records).
•	 drugs.com (201 records).
•	 SMM4H (100 records).
•	 Bayer Literature database (89 records).

Fig. 1   AE strict and partial F1 scores (mean and standard deviation) 
for models fine-tuned with different portions of informal and scien-
tific data; test dataset: 50% informal and 50% scientific data. Propor-
tion of informal to scientific data: Lay100Sc0 100%:0%, Lay80Sc20 
80%:20% … Lay0Sc100 0%:100%. AE adverse event, Lay lay person/
informal, Sc scientific
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•	 Bayer Safety and Product Technical Complaint databases 
(510 records, not published).

The spreadsheet lists the unique ID of the record, the 
source, PubMed ID (if available), input_text, and all enti-
ties listed in Table 1 in separate columns. In addition, we 
enclosed a spreadsheet that documents the spans of each 
annotation in the original record (input_text) (see ESM 2).

3.2 � Experiment 1: Integrated Model Versus Single 
Entity and Single Language Register Trained 
Models

As described in Sect. 2.3.1, we investigated the perfor-
mance of models fine-tuned with different proportions 
of informal (‘Lay’) and scientific data stratified for two 
entities (AE and indication) in fivefold cross-validation 
runs. Results are shown in Figs. 1 and 2 and summarized 
in Table 4.

We observed that even a small portion of 20% scientific 
data and 80% informal data increased the performance for 

Fig. 2   Indication strict and partial F1 scores (mean and standard 
deviation) for models fine-tuned with different portions of informal 
and scientific data; test dataset: 50% informal and 50% scientific 
data. Proportion of informal to scientific data: Lay100Sc0 100%:0%, 
Lay80Sc20 80%:20% … Lay0Sc100 0%:100%. Lay lay person/infor-
mal, Sc scientific

Table 4   Results from models 
fine-tuned with different 
portions of scientific and 
informal data and different test 
datasets and target entities (AE, 
indication)

Model: Proportion of Inf to Sc data: Lay100Sc0 100%:0%, Lay60Sc40 60%:40%, Lay0Sc100 0%:100%. 
Test dataset: proportion of Sc data; proportion of Inf data
AE adverse event, Inf informal, Lay lay person/informal, Sc scientific

No. Model Test dataset Entity Figure F1 type F1 mean (n = 5) Standard 
deviation

1 Lay100Sc0 Sc: 50%/Inf: 50% AE 4 Strict 0.288 0.059
2 Lay100Sc0 Sc: 50%/Inf: 50% AE 4 Partial 0.515 0.085
3 Lay0Sc100 Sc: 50%/Inf: 50% AE 4 Strict 0.493 0.026
4 Lay0Sc100 Sc: 50%/Inf: 50% AE 4 Partial 0.656 0.042
5 Lay60Sc40 Sc: 50%/Inf: 50% AE 4 Strict 0.547 0.037
6 Lay60Sc40 Sc: 50%/Inf: 50% AE 4 Partial 0.722 0.012
7 Lay100Sc0 Sc: 50%/Inf: 50% Indication 5 Strict 0.461 0.068
8 Lay100Sc0 Sc: 50%/Inf: 50% Indication 5 Partial 0.551 0.082
9 Lay0Sc100 Sc: 50%/Inf: 50% Indication 5 Strict 0.846 0.039
10 Lay0Sc100 Sc: 50%/Inf: 50% Indication 5 Partial 0.886 0.029
11 Lay60Sc40 Sc: 50%/Inf: 50% Indication 5 Strict 0.903 0.026
12 Lay60Sc40 Sc: 50%/Inf: 50% Indication 5 Partial 0.937 0.018
13 Lay100Sc0 Sc: 100% Indication 6 Strict 0.424 0.087
14 Lay100Sc0 Sc: 100% Indication 6 Partial 0.479 0.085
15 Lay0Sc100 Sc: 100% Indication 6 Strict 0.936 0.028
16 Lay0Sc100 Sc: 100% Indication 6 Partial 0.938 0.027
17 Lay60Sc40 Sc: 100% Indication 6 Strict 0.958 0.011
18 Lay60Sc40 Sc: 100% Indication 6 Partial 0.959 0.010
19 Lay100Sc0 Inf: 100% Indication 7 Strict 0.783 0.098
20 Lay100Sc0 Inf: 100% Indication 7 Partial 0.797 0.093
21 Lay0Sc100 Inf: 100% Indication 7 Strict 0.574 0.117
22 Lay0Sc100 Inf: 100% Indication 7 Partial 0.598 0.107
23 Lay60Sc40 Inf: 100% Indication 7 Strict 0.811 0.076
24 Lay60Sc40 Inf: 100% Indication 7 Partial 0.826 0.063
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AE and indication detection. Models trained with pure sci-
entific data performed better than models trained with pure 
informal data (see Table 4; AE: rows 1, 2 vs 3, 4; indica-
tion: rows 7, 8 vs 9, 10). Both single language register mod-
els underperformed compared to an integrated model, e.g., 
Lay60Sc40 (see Table 4; AE: rows 5, 6; indication: rows 
11, 12).

In the next analyses, we investigated the influence of dif-
ferent test datasets on our language register models. We used 
the entity type ‘indication’ of pure scientific and informal 
language registers for testing (see Figs. 3, 4). Regarding the 
scientific dataset in Fig. 3, the curve progression resembles the 
one shown in Fig. 2. A 20% substitution of informal data with 
scientific data again increased the performance significantly. 
A model trained on data with a single language register per-
formed better on the test data from the same language register 
than on test data of the other language register (Figs. 3, 4, and 
Table 4 rows 15, 16 vs 21, 22 and rows 19, 20 vs 13, 14). The 
integrated model Lay60Sc40 shows higher F1 scores com-
pared to the Lay100Sc0 model (Table 4, rows 23, 24 vs 19, 20) 
tested on pure informal dataset, and slightly higher F1 scores 
compared to the Lay0Sc100 model tested on pure scientific 
dataset (Table 4, rows 17, 18 vs 15, 16).

3.3 � Experiment 2: Fractional Stratified Fivefold 
Cross‑Validation

In this experiment, we investigated (1) the entity peak and 
cut-off performance and (2) whether data are sufficient for 
entity prediction.

In Table 5, the results of all entities including median par-
tial F1 values for the 20% and 80% training folds are listed. 
For some entities, the average 20%-fold size is small, e.g., for 
action and dose (43 and 69 occurrences), but results in high 
F1 scores (0.808 and 0.884). The entity ‘dose’ seems to reach 
peak performance level at 20% training data used. Comor-
bidity and PTC show significant higher 80%-fold F1 scores 
compared to 20% folds, which indicates that a higher peak 
level could be probably achieved with more data provided 
(see Table 5 and also the F1 curve progression in Fig. 5). 
Data provided for medical history/condition are not sufficient 
at all. Comparing the results from AE with indication, indica-
tion achieved a higher F1 score (see Table 5; 20% fold: AE 
0.620, indication 0.796) even with a lower average 20%-fold 
size (see Table 5; AE: 320; indication: 157). The combination 
of product and indication (PIC) seems to be more difficult to 
predict compared to PDC or PEC (see Table 5).

Figure 6 shows the partial F1 for drug, AE, and PEC 
trained with fractions of the training dataset. The average 
numbers of all entity occurrences in the 20% fold are simi-
lar. Since the AE partial F1 peak performance was almost 
reached at 20% training data used (see Table 5), the vali-
dation and training folds were decreased to 10% (fold size 
about 160 occurrences) and the partial F1 at 10% determined 
(median 0.560).

Fig. 3   Indication strict and partial F1 scores (mean and standard devi-
ation) for models fine-tuned with different portions of informal and 
scientific data; test dataset: 100% indication scientific data. Propor-
tion of informal to scientific data: Lay100Sc0 100%:0%, Lay80Sc20 
80%:20%  … Lay0Sc100 0%:100%. Lay lay person/informal, Sc sci-
entific

Fig. 4   Indication strict and partial F1 scores (mean and standard devi-
ation) for different portions of informal and scientific data; test data-
set: 100% indication informal data. Proportion of informal to scien-
tific data: Lay100Sc0 100%:0%, Lay80Sc20 80%:20% … Lay0Sc100 
0%:100%. Lay lay person/informal, Sc scientific
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Table 5   Results from fractional 
stratified fivefold cross-
validation run per entity

Median partial F1 values for 20% and 80% of training data are listed
AE adverse event, Avg average, PDC Product Dose Combination, PEC Product Event Combination, PIC 
Product Indication Combination, PTC Product Technical Complaint

Entity Avg 20%-fold size Median partial F1 
20%

Median 
partial F1 
80%

Action 43 0.808 0.861
Administration form/primary packaging 98 0.639 0.682
Administration route 33 0.602 0.684
AE 320 0.620 0.638
Comorbidity 29 0.129 0.439
Dose 69 0.884 0.890
Drug/device 301 0.908 0.937
Indication 157 0.796 0.814
Intended effect 90 0.820 0.844
Medical history/condition 10 – 0.133
Method/procedure/administration 80 0.500 0.536
Outcome 8 0.250 0.243
PDC 67 0.667 0.731
PEC 284 0.495 0.557
PIC 216 0.209 0.370
PTC 139 0.348 0.649
Target parameter 6 0.400 0.311
Target population 47 0.741 0.764

Fig. 5   Boxplots of partial F1 
scores of different comorbid-
ity and PTC training data 
fractions in stratified fivefold 
cross-validation runs (each 
20% fold consists of around 29 
[comorbidity] and 139 [PTC] 
occurrences, respectively). PTC 
Product Technical Complaint
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Fig. 6   Boxplots of partial F1 
scores of different AE, drug/
device, and PEC training data 
fractions in stratified fivefold 
cross-validation runs (20% fold, 
AE: around 320; drug/device: 
301; PEC: 284 occurrences). 
AE adverse event, PEC Product 
Event Combination

Fig. 7   Boxplots of partial F1 
scores of different AE, dose, 
and drug training data fractions 
from ADE Corpus in stratified 
fivefold cross-validation runs 
(20% fold, AE: around 320; 
drug/device: 301; dose: 46 
occurrences). ADE adverse drug 
effect, AE adverse event
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In the next analysis, we investigated fractional stratified 
k-fold cross-validation for a different dataset with different 
annotation rules (ADE Corpus V2). To allow comparison of 
the results with our dataset, the number of occurrences was 
made similar. We randomly sampled occurrences of AE (n 
= 1604 of 5742) and drug (n = 1505 of 4927). We used the 
complete amount of dose data (n = 230 of 230). We executed 
the 80:20 split on the selected data. The results are shown in 
Fig. 7 and Table 6. The AE median partial F1 score of the 
originally annotated ADE Corpus starts and ends at a higher 
value than the AE values of our dataset (see Tables 5 and 6; 
20%: 0.728 vs 0.620; 80%: 0.861 vs 0.638).

We further investigated this effect by executing fractional 
stratified k-fold cross-validation only with ADE Corpus data 
from our dataset. In Table 7, the results are shown. Compar-
ing median partial F1 of ADE Corpus AE data in our data-
set with the originally annotated ADE data, the start values 
(20% fold) are higher, although the number of occurrences 
used are lower (see Tables 6 and 7; 20%: 0.824 vs 0.728; 
average 20%-fold size: 141 vs 320), while the 80% values 
are similar (Tables 6 and 7; 80%: 0.863 vs 0.861). The same 
effect is found for the entity ‘drug’ (average 20%-fold size: 
118 vs 301; median partial F1 20%: 0.886 vs 0.797).

Entity peak performance is reached in our dataset quicker 
(about 20%) than in the ADE Corpus dataset (about 40%).

The results of the binary classifier experiment are shown 
in ESM 3, Sect.  2.2 (see the electronic supplementary 
material).

4 � Discussion

We created a new dataset, retrieved from five different 
sources with 18 biomedical and pharmaceutical entities, 
which enables ML model entity training independent of 
other entities. Although human decision-making is con-
sidered as the gold standard, in clinical situations, includ-
ing pharmacovigilance, people make mistakes and do not 
always agree [4]. Therefore, we established in our annota-
tion process, besides the standard quality measures (e.g., 
annotation guidelines, IAAs), a ‘machine-in-the-loop’ 
approach to increase data completeness and consistency, 
focusing on false-positive and false-negative model predic-
tions. Although only a small expert team was involved in 
our annotation process, ML systems found several annota-
tion inconsistencies. In pharmacovigilance, large numbers 
of case processors and medical experts are involved, which 
increase the risk of different judgements. In future, the com-
pleteness and consistency of Individual Case Safety Reports 
(ICSRs) may potentially be increased by use of ML systems.

In ESM 3, Sect. 1 (see the electronic supplementary 
material), we compared our corpus annotation with the ADE 
Corpus and SMM4H annotation results as an additional 
and independent quality measure. We found several devia-
tions resulting from differences in the annotation guidelines 
applied, from different judgements made by annotation 
teams, or from problems with regard to determining spans 
consistently with different annotators (e.g., ADE dose anno-
tations: ‘high-dose’ in Prominent positive U waves appear-
ing with high-dose intravenous phenylephrine; ADE dose 
annotation: ‘high’ in A case of normotensive scleroderma 
renal crisis after high-dose methylprednisolone treatment). 
The intention of our annotation rules was to capture a spe-
cific AE as completely as possible. For a medical assess-
ment, it will make a difference if the event appears or disap-
pears (e.g., by changing the dose, withdrawal, or substitution 
of the medication, challenge/rechallenge, identification of 
therapeutic response unexpected). These results for SMM4H 
as well as for the ADE Corpus indicate that different anno-
tation schemes influence the training and test process of an 
ML system.

In Sect. 3.2, we compared the results of the integrated 
model with the models trained on single language registers. 
Our focus was to evaluate the opportunity for production use 
and to investigate how pronounced the performance of the 
pure language register models decreases. By using a mixed 
dataset combining 50% of informal and scientific data, we 
observed a significantly higher performance decrease with 
pure informal models compared to pure scientific models. 
It was not surprising that a model trained on data with a 
single language register performed better on the test data 
from the same language register than on test data of the other 

Table 6   Results from fractional stratified fivefold cross-validation run 
per entity from ADE Corpus

Median partial F1 values for 20% and 80% of training data are listed
ADE adverse drug effect, AE adverse event, Avg Average

Entity Avg 20%-fold 
size

Median partial F1 
20%

Median 
partial F1 
80%

AE 320 0.728 0.861
Dose 46 0.872 0.903
Drug 301 0.797 0.885

Table 7   Results from fractional stratified fivefold cross-validation run 
per entity of our dataset retrieved from ADE Corpus

Median partial F1 values for 20% and 80% of training data are listed
ADE adverse drug effect, AE adverse event, Avg Average

Entity Avg 20%-fold 
size

Median partial F1 
20%

Median 
partial F1 
80%

AE 141 0.824 0.863
Dose 58 0.907 0.931
Drug/device 118 0.886 0.916
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language register. But, in addition, we were able to show that 
an integrated model has higher F1 scores compared to a pure 
informal model when tested on a pure informal dataset, and 
slightly higher F1 scores compared to a pure scientific model 
tested on a pure scientific dataset.

One reason that all models performed overall better in the 
scientific language register may be due to underlying text 
sources of the Cleaned English version of Colossal Clean 
Crawled Corpus (C4.EN corpus) on which the T5-base 
model was pretrained. In the paper [26], the authors show 
that elaborated code sources (e.g., patents, Wikipedia, news-
papers, scientific literature) were the main source for the 
model pretraining. Informal language sources seem to be 
underrepresented. In addition, informal language contains 
partly offensive terms, ‘bad’ words, certain demographic 
identity mentions, or a variety of dialects that probably were 
excluded by blocklist filtering in the C4.EN corpus [9, 26]. 
Although formal texts in elaborated codes have a longer, 
more complicated sentence structure, the use of informal 
language in our dataset seems to be more diverse, e.g., 
‘feel and look like a zombie.’ Tweets contain information 
in hashtags and irony and sarcasm (e.g., ‘i have been on 
<drug> for the past few nights and i 've noticed i am slightly 
drooling a bit . lovely.’). which increases the difficulty for T5 
to detect those entities.

ML-based technologies are capable of deriving important 
insights from the vast amount of data generated every day. 
The use of ML systems in regulated environments requires 
CSV. While the underlying CSV requirements largely 
remain the same, software development activities for ML 
systems are needed to document evidence that the system 
is fit for purpose [27, 28]. One important CSV process step 
is to determine which training data for the validation are 
sufficient.

In Sect. 3.3, we demonstrated that fractional cross-valida-
tion enables investigation of entity performance curve pro-
gression. This method can be used to determine entity train-
ing data sufficiency in CSV tasks. Testing the performance 
on entities in our dataset, we identified that for some entities, 
additional data may be required to reach peak performance 
(e.g., PTC, comorbidity) or the amount of currently available 
entity data (medical history/condition) needs to be increased. 
Our results for fractional stratified fivefold cross-validation 
showed that the amount of training data needed to success-
fully fine-tune the model varies for different biomedical 
entities. The frequency and distribution of the words and 
concepts in the T5 model pretrained on C4 corpus can affect 
the stability and variability of the embeddings learned by the 
model. Identical medical terms (as AE, indication, comor-
bidity) have different contextual embeddings depending on 

the surrounding text. Standardized concepts, such as drugs 
and their intended effects, may be easier for an ML model to 
detect because they are more consistent in their use across 
different contexts.

In addition, we investigated the performance of three enti-
ties in a subset of data from ADE Corpus with the extraction 
of this corpus in our dataset. We showed that although the 
number of occurrences in our dataset is lower than the num-
ber of occurrences in the ADE subset, the F1 performance 
of all entities is better. An easier detection by T5 may be 
related to different annotation rules, described in Sect. 2.1.3. 
In contrast to our annotation rules, the ADE Corpus anno-
tation follows a conditional annotation concept: only drug 
and dose mentions are captured if those entities are related 
to an AE, which is obviously more difficult to detect by T5.

We demonstrated that this methodology is not specific 
for our dataset and annotation rules, but can also be used for 
other dataset and annotation rule combinations (e.g., ADE 
Corpus).

It is plausible that this methodology could also be used 
for different transformer models, but this investigation is out 
of scope for this article. Since the generation of high-quality 
labeled data is lengthy and expensive, this methodology can 
be used for evaluation training data sufficiency on the entity 
level to support the CSV process and may increase regula-
tory acceptance of ML models and applications in regulated 
environments.

5 � Conclusion

In our paper, we describe the activities for creating a systemati-
cally annotated corpus combining, complementing, and har-
monizing various corpora with pharmaceutical and biomedical 
entities based on scientific and informal data. This dataset is 
made available (excluding internal data) to the research com-
munity to train ML models and evaluate the performance 
of automated methods and systems for entity recognition in 
unstructured free-text information.

We explored the performance of predictive ML models on 
different language domain registers. We conclude that com-
parable performance can be reached by integrated models as 
compared to single language models when used on the same 
language type. The integrated model could therefore be con-
sidered preferable due to the increased maintenance need when 
maintaining multiple specialized models for each language 
type.

We introduced fractional stratified k-fold cross-validation 
and demonstrated that this methodology enables the investiga-
tion of entity performance curve progression and can be used 
for evaluation training data sufficiency in CSV of ML systems 
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and may increase regulatory acceptance of ML models and 
applications.

A future area to advance the dataset could be related to the 
dataset extension regarding other pharmaceutical entities (e.g., 
strength), to label additional data (e.g., medical condition/his-
tory, comorbidity), to separate entity contents (administration 
form and packaging), and to incorporate other datasets (e.g., 
chatbots) to allow extension of language capabilities in future 
models.

The dataset provided can be used for ML model training or 
as a part of a shared test dataset for CSV model performance 
evaluation.
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