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Abstract
Introduction  Adverse drug reactions (ADRs) are a leading cause of mortality worldwide and should be detected promptly to 
reduce health risks to patients. A data-mining approach using large-scale medical records might be a useful method for the 
early detection of ADRs. Many studies have analyzed medical records to detect ADRs; however, most of them have focused 
on a narrow range of ADRs, limiting their usefulness.
Objective  This study aimed to identify methods for the early detection of a wide range of ADR signals.
Methods  First, to evaluate the performance in signal detection of ADRs by data-mining, we attempted to create a gold 
standard based on clinical evidence. Second, association rule mining (ARM) was applied to patient symptoms and medica-
tions registered in claims data, followed by evaluating ADR signal detection performance.
Results  We created a new gold standard consisting of 92 positive and 88 negative controls. In the assessment of ARM using 
claims data, the areas under the receiver-operating characteristic curve and the precision-recall curve were 0.80 and 0.83, 
respectively. If the detection criteria were defined as lift > 1, conviction > 1, and p-value < 0.05, ARM could identify 156 
signals, of which 90 were true positive controls (sensitivity: 0.98, specificity: 0.25). Evaluation of the capability of ARM 
with short periods of data revealed that ARM could detect a greater number of positive controls than the conventional 
analysis method.
Conclusions  ARM of claims data may be effective in the early detection of a wide range of ADR signals.

Key Points 

To evaluate the performance of the data-mining 
approach in detecting ADR signals, we created a global 
gold standard consisting of 92 positive and 88 negative 
drug-event pairs based on clinical evidence.

Association rule mining (ARM) on administrative claims 
data for ADR signal detection has the potential to serve 
as a complementary tool for existing pharmacovigilance 
strategies.

1  Introduction

Adverse drug reactions (ADRs) are the undesirable effects 
associated with the use of medicines. ADRs are estimated 
to be the fourth leading cause of death in the USA [1, 2]. In 
addition, late detection of ADRs has been appraised to cause 
health consequences leading to medical costs of more than 
$800 million for a single drug type (rofecoxib–myocardial 
infarction) [3]. A previous review showed that 32% of the 
drugs that were newly approved by the US Food and Drug 
Administration (FDA) experienced post-marketing safety 
events, including withdrawals due to safety concerns and the 
addition of boxed warnings [4]. Therefore, the health risks 
associated with ADRs can be significantly reduced if these 
events are detected in an early and timely manner.

Although clinical trials are normally conducted to assess 
the safety of drugs, they have numerous limitations, includ-
ing small sample sizes and short study durations [5]. There-
fore, post-marketing surveillance through a spontaneous 
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reporting system (SRS) plays an important role in the detec-
tion of ADRs associated with a particular drug. One of the 
major SRSs is the FDA Adverse Event Reporting System 
(FAERS), which contains information regarding different 
drug-related symptoms experienced by 11 million patients 
by the end of 2019. The use of SRSs has proven to be the 
most effective method of detecting serious ADRs [6–8].

However, the SRS has known limitations, including sys-
tematic underreporting and a lack of information on the 
exposed population [9, 10]. Previous studies have shown 
that only approximately 6% of serious ADRs are reported 
to the SRS [11], since it is difficult to determine whether the 
changes in symptoms experienced by the patient are drug-
induced, despite the availability of a few tools that can assess 
drug-induced adverse reactions [12, 13]. These limitations 
may reduce the quality of data analysis for detecting ADRs. 
Therefore, methods that can complement SRS in the effec-
tive detection of ADRs are urgently required.

Unlike SRS, electronic medical records (EMRs) and 
administrative claims data register patient symptoms and 
medications, regardless of suspected ADRs. Therefore, 
several past studies have used EMRs for detecting ADRs 
[14–16]. However, EMRs cannot cover a wider range of 
patients because it is difficult to track patient’s symptoms 
in an event of transfer to another facility [17]. However, 
administrative claims data can track a patient’s symptoms 
even if the patient is transferred from one hospital to another. 
Additionally, the lack of information on prescription drugs 
and symptoms is very low compared to that in other clinical 
databases. Therefore, analyzing a large-scale administrative 
claims database has the potential to actively understand the 
relationship between drugs and ADRs.

Sequence symmetry analysis (SSA) is a frequently used 
tool for ADR signal detection based on administrative claims 
data [18, 19]. Several research works have been undertaken 
using SSA for administrative claim data to detect ADR sig-
nals [20–22], but most of these studies used long-term data 
(e.g., 17-year period) and examined specific hypotheses 
about the effects of a particular drug class and subsequent 
health outcomes. Recently, several studies have assessed a 
wide range of relationships between drugs and ADRs using 
prescription databases [23–26]; however, the detection of 
ADR signals was based on long-term data, and early detec-
tion of ADR signals was not examined. It is also difficult to 
analyze ADRs for which there is no therapeutic drug since 
the patient’s symptoms are not registered in the prescription 
database.

The objective of this study was to identify methods for 
the early detection of a wide range of ADR signals using 
data on patient symptoms registered in an administrative 
claims database, the first computational approach of the 
kind.

2 � Methods

2.1 � Data Sources

2.1.1 � US Food and Drug Administration Adverse Event 
Reporting System (FAERS) Database

Adverse event reports from 2004 to 2019 were obtained from 
the FDA website (https://​www.​fda.​gov/​drugs/​drug–appro​
vals–and–datab​ases/​fda–adver​se–event​–repor​ting–syste​
m–faers). Duplicate reports were eliminated as previously 
reported [27], and the remaining 11,438,031 reports were 
analyzed. Arbitrary drug names, including trade names and 
abbreviations, were manually mapped into unified generic 
names using text mining. ADRs were coded according to the 
preferred terminology of the Medical Dictionary for Regula-
tory Activities (MedDRA, http://​www.​meddra.​org/; version 
23.0). We used standardized MedDRA Queries (SMQs), 
consisting of 226 terms for the FAERS analysis.

2.1.2 � JADER (Japanese Adverse Drug–Event Report) 
Database

Adverse event reports from 2004 to 2019 were obtained from 
the PMDA (Pharmaceuticals and Medical Devices Agency) 
website (www.​pmda.​go.​jp). The JADER database contains 
611,336 reports of adverse events, including data on the date 
of the first administration of each drug and the onset date of 
each ADR. The JADER analysis also used the 226 SMQs.

2.1.3 � JMDC Insurance Claims Data

Administrative claims data from 2005 to 2019 were purchased 
from JMDC Inc. (Tokyo, Japan). The dataset contained 
the monthly medical diagnoses and prescription claims of 
7,438,470 employees and their dependents. All diagnoses 
were encoded using the International Classification of Dis-
eases, 10th Revision (ICD10) codes, and all the medications 
were mapped to the Anatomical Therapeutic Chemical (ATC) 
codes. ICD10 codes 'O00-O99', 'Q00-Q99', 'V01-Y98', and 
'Z00-Z99' were excluded from this study since these codes are 
unlikely to be drug induced. Furthermore, we also excluded 
topical agents, fluid therapies, diagnostic aid drugs, and Chi-
nese herbal drugs (ATC categories: D, K, R, T, and V).

2.2 � Identification of the Gold Standard

To evaluate the performance of the data-mining approach 
in detecting ADR signals, proper reference benchmarks are 
necessary, which are frequently known as the gold standards. 
So far, some gold standards have been created to accelerate 

https://www.fda.gov/drugs/drug–approvals–and–databases/fda–adverse–event–reporting–system–faers
https://www.fda.gov/drugs/drug–approvals–and–databases/fda–adverse–event–reporting–system–faers
https://www.fda.gov/drugs/drug–approvals–and–databases/fda–adverse–event–reporting–system–faers
http://www.meddra.org/
http://www.pmda.go.jp
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pharmacovigilance [23, 28–30]. Ryan et al. [29] created a 
gold standard by utilizing four events that are vital to phar-
macovigilance activities, including myocardial infarction, 
kidney injury, liver injury, and gastrointestinal bleeding. 
Harpaz et al. [30] created one that included the date of label 
change of a drug as per the FDA website. However, to assess 
the utility of a wide range of ADR signal detection, it is 
crucial to establish a gold standard across a wide scope of 
drugs and related adverse events. In addition, without infor-
mation about the timing of the occurrence of an ADR, it is 
difficult to assess whether the data-mining approach is effec-
tive in realistic simulations. Therefore, we created a new 
global gold standard based on large-scale ADR self-reports, 
FAERS, and JADER databases, which included the time-
to-onset profile for ADRs. Only reports with the drug code 
“primary suspect drug” or “secondary suspect drug” were 
included in this analysis. First, we conducted a dispropor-
tionality analysis [6] using the reporting odds ratio (ROR) 
and its statistical significance (Z score) for each ADR (226 
individual SMQs) to examine the association of each drug 
with a zero-cell correction (adding 0.5 to each count in a 2 
× 2 table). In this regard, we divided individuals in the ADR 
self-reports into the following four groups: (a) individuals 
who received the drug of interest and exhibited the ADR of 
interest; (b) individuals who received the drug of interest 
but did not exhibit the ADR of interest; (c) individuals who 
did not receive the drug and exhibited the ADR of interest; 
and (d) individuals who did not receive the drug and did not 
exhibit the ADR of interest. The ROR and Z scores were 
calculated using the following equations:

where a, b, c, and d refer to the number of individuals in 
each group. Positive and negative controls and time-to-
onset profiles for ADRs were created based on the follow-
ing criteria:

2.2.1 � Positive Controls

Positive controls were denoted by the drug–event pairs 
with a causal relationship between the two (true ADRs). 
ADRs (187 SMQs: excluded that not reported 39 SMQs) 
that were not reported by chance were identified for each 
drug using a binomial test as reported previously [31]. We 
calculate the p-values for all observed ADR occurrences for 
the drug of interest and performed a Benjamini–Hochberg 

ROR =
a∕b

c∕d

Z score =
log(ROR)
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+
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False Discovery Rate (FDR) correction (using the R function 
‘binom.test’). If the FDR-corrected p-value was < 0.01, then 
the ADR value for that drug was 1, reflecting an association, 
otherwise it was 0. Further, we extracted the drug–event 
pairs that were determined to be significant (ROR > 1 and 
Z score > 1.96) in the disproportionality analysis. For each 
SMQ, one drug was selected from the combination that 
showed a strong signal in the FAERS and JADER analyses 
according to the following criteria:

1.	 Extracted drugs with the top 30 Z score values for each 
SMQ in FAERS and JADER.

2.	 For the top three pairs, the product information was 
checked to determine whether the drug–event pairs were 
recognized as true associations. The drug was selected 
if it was supported by another database.

3.	 If nothing was selected among the top three pairs, the 
rank was gradually lowered.

2.2.2 � Negative Controls

Negative controls consisted of drug–event pairs that did 
not have a causal relationship between the drug and event 
and were highly unlikely to be associated. We extracted the 
drugs and the events that appeared in the positive controls. 
For each SMQ, drug–event pairs were created by selecting 
a drug according to the following criteria:

1.	 For each SMQ, extracted drugs not reported as primary 
candidates in JADER and those with a ROR < 1 in 
FAERS analysis.

2.	 Randomly selected drug per SMQ.
3.	 The product information and biomedical literature 

via PubMed were checked to determine whether the 
drug–event pairs were highly unlikely to be associated. 
'Drug-induced event' term was used for PubMed search. 
If there were no case reports of ADR occurrence or if 
there were case reports of ADR suppression, the drug 
was selected.

2.2.3 � Time‑to‑Onset Profiles of ADRs

For positive controls, time-to-onset profiles of ADRs were 
calculated for each drug–event pair using the JADER data-
base. This database contains information about the start and 
end dates of administration of the suspected drug and the 
date of onset of the ADR. We calculated the onset profile 
and the median duration of onset of an ADR as the time 
elapsed between the patient’s first prescription and the 
occurrence of the ADR.



374	 H. Yamamoto et al.

2.2.4 � Mapping of ADRs to International Classification 
of Diseases, 10th Revision (ICD10)

ADRs in SRS databases were coded according to the SMQs, 
while symptoms in JMDC claims data were coded accord-
ing to the ICD10 code. To evaluate the detection of ADR 
signals in the JMDC claims data, each ADR of the gold 
standard needed to be mapped to the ICD10 code. SMQs are 
ADR categories that group several MedDRA preferred terms 
(PTs). For each positive control SMQ, we identified the PTs 
for the paired drug reported in FAERS (up to the top three). 
JMDC claims data contain 22,925 standard disease names 
for symptoms, which are linked to 1,500 ICD10 codes. 
By pairing the top three kinds of PTs and JMDC standard 
disease names with similar names, SMQ and ICD10 were 
manually mapped.

2.3 � Association Rule Mining (ARM)

ARM is an analytical method that efficiently identifies items 
with high co-occurrence probability from massive data and 
is used in medical data analysis to identify undiscovered 
associations among medications, diagnoses, and clinical 
outcomes [32]. ARM has been proposed as an approach 
for pharmacovigilance and pharmacology studies using the 
SRS database [7, 33–35]. Therefore, we applied ARM to 
medications and symptoms registered in the claims data 
and extracted patterns that exceeded a prespecified thresh-
old (i.e., defined as the support measure shown below). We 
then evaluated its usefulness in detecting ADR signals using 
our gold standard.

Given a set of transactions (each transaction contains a 
set of items), an association rule was expressed as X → Y, 
where X and Y were sets of items. The support indicated 
how frequently the rule occurred in the transaction, and was 
calculated as:

The confidence corresponded to the conditional probabil-
ity P (Y|X), and was calculated as:

The lift represented how many times X and Y occurred 
together, more frequently than the expected number, if they 
were statistically independent. The lift was calculated as:

The conviction compared the probability of X appearing 
without Y, if they were dependent on the actual frequency 

Support (X, Y) = P(X ∩ Y)

Confidence (X → Y) =
P(X ∩ Y)

P(X)

Lift (X → Y) =
Confidence (X → Y)

Support (Y)

of the appearance of X without Y. The Conviction was cal-
culated as:

Unlike the lift, conviction is sensitive to rule direction 
since it also uses the information of the absence of the con-
sequent (lift (X → Y) = lift (Y→ X)). In general, lift > 1 was 
used as the detection standard for the ARM but conviction 
> 1 was also used in this study [36]. The strength of the 
drug–event pair association was evaluated by calculating lift 
and conviction. The statistical significance of the association 
rule was estimated using the chi-square test. The chi-square 
value was calculated as follows:

If there were values less than 10, Fisher's exact test was 
used instead of the chi-squared test. The ARM was per-
formed using the Apriori function of arules library in the 
arules package of R version 4.0.2 software (2020-06-22). In 
this analysis, we examined whether ARM could be effective 
for screening ADR signals using administrative claims data.

2.3.1 � Preparation for Data‑Mining

We used the JMDC claims data and extracted records of 
drugs and their prescribed months, as well as the ICD10 
codes and their registration months. Only the first occur-
rence of each outcome was noted in this study, and the run-in 
period or the so-called washout period was set to exclude 
cases in which the patient had already been prescribed a 
medication or been diagnosed with a disease before enroll-
ing in the insurance scheme [37]. In this study, we set the 
minimum support threshold as a small value (1 ×10-10) 
because the gold standard created could include ADRs that 
occurred with a very rare frequency. The performance of 
ARM using administrative claims data for detecting ADR 
signals was evaluated via four separate analyses described 
below. ARM was used to assess the relevance of only two 
items—drug and event in the drug–event pair. It should be 
noted that ARM usually analyzes multiple (two or more) 
sets of items, but in this study, only two item pairs were 
analyzed. Although this analysis was equivalent to a dispro-
portionality analysis, we used the term ARM in this study 
according to previous reports in this field.

2.3.2 � Performance Calculation and Reproducibility

First, we calculated ARM performance by setting a 6-month 
run-in period, which was considered a sufficient duration. 

Conviction (X → Y) =
1 − Support (Y)

1 − Confidence (X → Y)

Chisquare

= n (Lif t − 1)2
Support ∗ Conf idence

(Conf idence − Support) (Lif t − Conf idence)
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ARM was performed on claims data from 2005 to 2019, 
which contained 162,454,898 records of 6,072,316 patients. 
Second, to validate the reproducibility of ARM perfor-
mance, we prepared different datasets by dividing the claims 
data (Supplementary Table 1 in the Online Supplementary 
Material (OSM)) into ten groups, based on the timing of 
patient enrollment, and performed ARM for each dataset 
wherein different populations were assumed. The perfor-
mance of ARM was compared with that of SSA [18, 19]. A 
proof-of-concept study on SSA was published in 1996, and 
since then the number of SSA-related articles published per 
year and the total number of articles are on the rise [38, 39]. 
By using SSA, several ADRs associated with a wide array 
of organs have been identified [20–22]. Therefore, we con-
sidered SSA as a good baseline method for comparing the 
performance of ARM.

2.3.3 � Early Detection of ADRs

To examine ARM performance in the early detection of 
ADR signals, we prepared datasets with records from Janu-
ary 2018 as a starting point and extended these to 3 and 6 
months. To exclude the influence of the number of patients, 
we continued to follow the same patients (1,337,370 
patients). A 3-month run-in period was set instead of 6 
months to minimize the decrease in the number of records 
as much as possible.

2.3.4 � Safety Label Changes

We examined whether ARM could detect ADR signals for 
a new therapeutic drug earlier than the issuance of safety 
information. Here we focused on the "Ethinyl estradiol 
drospirenone–Thrombophlebitis" pair from the gold stand-
ard because event is difficult to infer from the drug indi-
cations and the pair was issued safety information (Rapid 
Safety Communications) by the regulatory agency. We pre-
pared the dataset from November 2010 (the month in which 
the drug was marketed) to November 2013 (the month before 
the safety information was issued).

2.3.5 � Evaluation of the Conventional Benchmark

To validate our findings, we determined the performance 
using the conventional benchmark. In this regard, we used 
the gold standard proposed by Ryan et al. because it spans 
four events essential to pharmacovigilance activities [29]. 
Of the drug–event pairs generated in this previous study, 
only those drug–event pairs (61 positive controls and 39 
negative controls) including drugs marketed in Japan and 
those for which the level of evidence was considered high 
were extracted (Supplementary Table 2, OSM) to evaluate 
the performance of ARM. In this study, four ADRs, namely 

acute myocardial infarction, acute liver injury, gastrointesti-
nal bleed, and acute kidney injury, were examined, mapping 
to ICD10 codes I21, K71, K92, and N17, respectively.

2.4 � Sensitivity, Specificity, Precision, and F‑Measure

To evaluate the effectiveness of ARM in detecting the ADR 
signal of each drug, the sensitivity, specificity, and preci-
sion were calculated. The F-measure was calculated from 
the harmonic mean of the sensitivity and precision.

3 � Results

3.1 � Identification of the Gold Standard

A flowchart for the identification of the gold standard is 
shown in Fig. 1. A disproportionality analysis was performed 
to examine the association between each ADR and each drug 
(563,805 ADR–drug pairs). In the volcano plot, Z scores 
were used instead of p-values to save space (Fig. 2a). In 
addition, we performed a binomial test to examine whether 
each ADR was reported more frequently than chance level 
in patients prescribed the drug. Of 226 individual SMQs, 39 
types were excluded from further analyses because they were 
not reported as ADRs (Supplementary Table 3, OSM). Addi-
tionally, 47 SMQs were excluded because of the difficulty 
encountered while determining whether they were ADRs 
(e.g., congenital abnormality). Furthermore, 27 SMQs were 
excluded because of their similarity to other SMQs.

For positive controls, one drug was selected from the 
combination showing a strong signal based on the results 
of the binomial test and disproportionality analysis (Sup-
plementary Table 4, OSM). As an exception, for 12 SMQs 
(“Cholestasis and jaundice of hepatic origin”, “Haemolytic 
disorders”, “Haematopoietic cytopenias affecting more than 
one type of blood cell”, “Ventricular tachyarrhythmias”, 
“Dyskinesia”, “Gastrointestinal obstruction”, “Biliary tract 
disorders”, “Gastrointestinal nonspecific dysfunction”, 
“Gastrointestinal nonspecific symptoms and therapeutic 
procedures”, “Conjunctival disorders”, “Lipodystrophy”, 
and “Osteoporosis/osteopenia”), we selected the drugs not 
included in the top 30 in JADER but with several reports 
in FAERS and high Z scores. For eight SMQs (“Agranu-
locytosis”, “Asthma/bronchospasm”, “Dyslipidaemia”, 
“Hyperglycaemia/new onset diabetes mellitus”, “Embolic 
and thrombotic events, venous”, “Gallbladder related disor-
ders”, “Hypertension”, and “Tubulointerstitial diseases”), 
we selected the drugs that followed next to include a wide 
range of ATC classifications, although there were drugs that 
met the criteria of being at the top of the list. For two SMQs 
(“Supraventricular tachyarrhythmias” and “Drug abuse and 



376	 H. Yamamoto et al.

dependence”), we selected the drugs not supported in the top 
30 in FAERS but with high Z score in JADER and enough 
cases in JMDC claims data. For “Taste and smell disorders”, 
we selected the drug that was considered to have less bitter-
ness and was used in a sufficient number of cases in JMDC 
claims data. For “Retinal disorders”, we selected the drug 
that followed next because of the crucial ADR listed in the 
warning box of the product information although there were 

drugs that met the criteria of being at the top of the list. For 
“Other ischaemic heart disease”, we selected the drug not 
supported in the top 30 in FAERS but with a high Z score in 
JADER. Furthermore, it was considered a serious ADR with 
high frequency in the package insert. A total of 21 SMQs 
were excluded because no clinically appropriate drug–event 
pairs remained (Supplementary Table 3, OSM).

Fig. 1   Flowchart depicting 
identification of gold standard 
positive and negative controls 
through the FDA Adverse Event 
Reporting System (FAERS) and 
Japanese Adverse Drug–Event 
Report (JADER) analysis. ADRs 
adverse drug reactions, FDA US 
Food and Drug Administration, 
SMQ standardized MedDRA 
Queries

Fig. 2   Features of gold standard 
based on large-scale ADR self-
reports. (a) Volcano plots for 
visualizing the reporting odds 
ratio (ROR) and its statistical 
significance (Z score) in FAERS 
data (563,805 drug–event 
pairs). Ninety-two positive 
controls were indicated by red 
circles and 88 negative controls 
were indicated by blue circles. 
(b) Time-to-onset profile of 
the 92 positive controls. ADR 
adverse drug reaction, FAERS 
US Food and Drug Administra-
tion Adverse Event Reporting 
System
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For negative controls, we selected one drug for each 
SMQ so that the selected drug was unlikely to be associated 
with the SMQ. We determined that ADRs related to allergy 
(“Drug reaction with eosinophilia and systemic symptoms 
syndrome”, “Eosinophilic pneumonia”, “Asthma/bron-
chospasm”, “Angioedema”, “Acute pancreatitis”, “Anaphy-
lactic reaction”, “Severe cutaneous adverse reactions”, and 
“Hypersensitivity”), gastrointestinal symptoms (“Noninfec-
tious diarrhoea”, “Gastrointestinal nonspecific dysfunction”, 
“Gastrointestinal nonspecific inflammation”, and “Gastro-
intestinal ulceration”), electrolyte abnormalities (“Hypoka-
laemia”, “Dehydration”, and “Lactic acidosis”), “Hyperten-
sion”, and anemia (“Haematopoietic erythropenia”) could 
occur with any drug, making it difficult to create drug–event 
pairs. Since most drugs are metabolized in the liver, we 
determined that creating drug–event pairs for two SMQs 
(“Hepatitis, non-infectious” and “Cholestasis and jaundice 
of hepatic origin”) would be difficult. We included three 
SMQs (“Ventricular tachyarrhythmias”, “Disorders of sinus 
node function”, and “Torsade de pointes/QT prolongation”) 
in “Supraventricular tachyarrhythmias” to create negative 
controls. We also included “Gallbladder related disorders” in 
“Biliary tract disorders” to create negative controls. We were 
unable to create drug–event pairs for four SMQs (“Haemo-
dynamic oedema, effusions and fluid overload”, “Nonin-
fectious encephalopathy/delirium”, “Cardiac failure”, and 
“Gastrointestinal nonspecific symptoms and therapeutic pro-
cedures”) because no valid drugs were remaining. Finally, to 
bring the number of negative controls closer to the number 
of positive controls, in some SMQs, we allowed the selection 
of one additional drug. The resultant gold standard consisted 
of 92 positive and 88 negative controls.

Time-to-onset profiles of events were calculated as the 
time elapsed between the patient’s first prescription and the 
occurrence of the adverse event using the JADER database. 
In addition, to evaluate the detection of ADR signals in the 
JMDC claims data, we identified the PTs encompassed by 
each SMQ, and then frequent PTs were mapped to ICD10 
codes (Supplementary Table 5, OSM). Unlike the previ-
ously reported gold standards, which were limited to specific 
events [23, 28–30] and did not include information about 
the onset of ADRs, our gold standard covered a wide range 
of drugs and ADRs and also included time-to-onset profiles 
of ADRs (Table 1; Fig. 2b; Supplementary Table 6, OSM).

3.2 � Performance Evaluation of ARM

The gold standard presented in this study made it possi-
ble to evaluate the performance of ARM in the detection 
of ADR signals by using the JDMC claims data. In this 
regard, we analyzed only two items in the drug–event pair. 
We referred to the method as ARM, although it was reduced 
to disproportionality analysis. First, we analyzed the claims 

data from January 2005 to August 2019 and calculated the 
performance of ARM using our gold standard (Tables 2 and 
3). To accommodate extremely small p-values, we calculated 
−log10 (p-value). Figure 3a shows the receiver-operating-
characteristic (ROC) curve, and Fig. 3b shows the preci-
sion-recall curve with the lift value as the threshold. The 
area under the ROC curve (ROC-AUC) was 0.80 and the 
area under the precision-recall curve (PR-AUC) was 0.83. 
If the ARM detection criteria were defined as follows: lift 
> 1, conviction > 1, and p-value < 0.05, 156 signals were 
identified, of which 90 were true positive controls (sensitiv-
ity: 0.98, specificity: 0.25, precision: 0.58, and F-measure: 
0.73). SSA identified 59 signals, of which 42 were true posi-
tive controls (sensitivity: 0.46, specificity: 0.81, precision: 
0.46, and F-measure: 0.56). By both methods, 57 pairs were 
considered signals, of which 42 pairs were true positive con-
trols. To assess the reproducibility of ROC- and PR-AUC, 
we divided the claims data into ten parts, and thereafter 
ARM was repeated for each dataset. The ROC-AUC ranged 
from 0.71 to 0.77 and the PR-AUC ranged from 0.74 to 0.81 
(Fig. 3c, d).

Second, we examined whether ARM was capable of 
detecting ADR signals with short accumulation periods of 
data. In this regard, the ARM detection criteria were defined 
as follows: lift > 1, conviction > 1, and p-value < 0.05 and 
the performance of ARM was compared with that of SSA. 
Figure 4a shows the sensitivity of ARM and SSA for ADR 
signal detection. In the 1-month dataset, ARM achieved a 
sensitivity of 0.38 (detected 35 positive pairs), whereas SSA 

Table 1   Features of the gold standard based on large-scale ADR self-
reports: number of ICD10 categories included in the gold standard

ADR adverse drug reaction, ICD10 International Classification of 
Diseases, 10th Revision

ICD10 category ICD10 detail Number of 
categories

A Parasitic diseases 7
B Infectious diseases 6
C Malignant neoplasms 0
D Benign neoplasms 13
E Metabolic disorders 22
F Psychological disorders 9
G Nervous disorders 16
H Eye and ear disorders 18
I Cardiovascular disorders 23
J Respiratory disorders 9
K Gastrointestinal disorders 24
L Skin disorders 1
M Musculoskeletal disorders 13
N Renal disorders 6
R Symptoms 12
T Drug-induced reactions 1
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was not applicable because it was impossible to consider 
the order in this dataset (Fig. 4a). In the 3-month dataset, 
ARM achieved a sensitivity of 0.57 (detected additional 
17 positive pairs), while the SSA achieved a sensitivity 
of 0.05 (detected five positive pairs), and the five positive 
pairs detected by SSA were all included in the 52 positive 
pairs detected by ARM (Supplementary Table 7, OSM). In 
the 6-month dataset, ARM achieved a sensitivity of 0.71 
(detected additional 14 positive pairs but lost one detected 

positive signal), while the SSA achieved a sensitivity of 0.1 
(detected additional five positive pairs but lost one detected 
positive signal), and the nine positive pairs detected by SSA 
were all included in the 65 positive pairs detected by ARM 
(Supplementary Table 7, OSM). We also compared the per-
formance of ARM and SSA using the time-to-onset profile 
of ADRs, which were classified into two categories (short: 
median ≤ 3 months; long: median > 3 months) and found 
that ARM detected multiple short classification events in 

Fig. 3   Performance and repro-
ducibility of ARM for detecting 
ADR signals. ROC Curve (a) 
and precision-recall curve 
(b) using JMDC claims data 
from 2005 to 2019 (6,072,316 
patients and 162,454,898 
records). ROC curves (c) 
and precision-recall curves 
(d) using JMDC claims data 
divided into 10 datasets. The 
number of patients and records 
for each dataset are shown in 
Supplementary Table 1, Online 
Supplementary Material. ADR 
adverse drug reaction, ARM 
association rule mining, ROC 
receiver-operating characteristic

Fig. 4   Comparison of ARM and 
SSA performance in detecting 
ADR signals. (a) Sensitivity of 
ARM and SSA using short-
period datasets. (b) Number of 
detected positive control signals 
by the time-to-onset profile of 
ADRs (short = onset less than 
or equal to 90 days, long = 
onset more than 90 days). ADR 
adverse drug reaction, ARM 
association rule mining, SSA 
sequence symmetry analysis
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the 1-month dataset and greater number of pairs than SSA 
in both categories (Fig. 4b).

Third, we examined whether ARM could detect ADR 
signals of drugs immediately after launch in the early post-
approval period. In this section, we focused on "Ethinyl 
estradiol drospirenone–Thrombophlebitis" pair from the 
gold standard in our analysis and the ARM detection criteria 
were defined as: lift > 1, conviction > 1, and p-value < 0.05. 
Although safety information for thrombosis was issued 39 
months after ethinyl estradiol drospirenone was marketed, 
ARM detected a thrombosis signal 14 months after approval 
(Fig. 5). These results indicate that the ADR signals detected 
by ARM could serve as a tool to complement the publication 
of safety information on new therapeutic drugs.

Fourth, we calculated performance using the conventional 
benchmark. The ROC-AUC was 0.65 and the PR-AUC was 
0.78 (Fig. 6a, b). The ARM detection criteria were defined 
as follows: lift > 1, conviction > 1, and p-value < 0.05 and 
the performance of ARM was compared with that of SSA. 
In the full dataset from January 2005 to August 2019, ARM 

identified 85 signals, of which 54 were true positive con-
trols (sensitivity: 0.89, specificity: 0.21, precision: 0.64, 
and F-measure: 0.74). SSA identified 23 signals, of which 
15 were true positive controls (sensitivity: 0.25, specific-
ity: 0.79, precision: 0.65, and F-measure: 0.36). By both 
methods, 21 pairs were considered signals, of which 14 
pairs were true positive controls (Supplementary Table 8, 
OSM). In the 1-month dataset, ARM achieved a sensitivity 
of 0.13 (detected eight positive pairs) (Fig. 7; Supplemen-
tary Table 9, OSM). In the 3-month dataset, ARM achieved 
a sensitivity of 0.28 (detected additional ten positive pairs 
but lost one detected positive signal). In the 6-month dataset, 
ARM achieved a sensitivity of 0.43 (detected additional ten 
positive pairs but lost one detected positive signal). SSA 
showed no signal for any of the pairs in 1-, 3-, and 6-month 
datasets.

Fig. 5   Detection of ADR signals by ARM using drugs immediately 
after launch in the early post-approval period: "Ethinyl estradiol 
drospirenone–Thrombophlebitis" pair. ADR adverse drug reaction, 
ARM association rule mining

Fig. 6   Performance of ARM for 
detecting ADR signals in the 
conventional benchmark. ROC 
Curve (a) and precision-recall 
curve (b) using JMDC claims 
data from 2005 to 2019. ADR 
adverse drug reaction, ARM 
association rule mining, ROC 
receiver-operating characteristic

Fig. 7   Sensitivity of ARM and SSA in the conventional benchmark 
using short-period datasets. ARM association rule mining, SSA 
sequence symmetry analysis
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4 � Discussion

In this study, we created a global gold standard of ADRs 
consisting of 92 ADR–drug pairs as the positive controls 
and 88 pairs as the negative controls, after rational selec-
tion through statistical analyses of large-scale ADR self-
reports to assess the ability of a data-mining approach to 
detect a broad range of ADRs. Our gold standard consisted 
of drugs with diverse anatomical, therapeutic, and chemical 
properties, as well as a wide range of ADRs. In addition, it 
incorporated clinically noteworthy drug–event pairs because 
gold standards based on SRS are problematic in clinical set-
tings. Furthermore, it contained time-to-onset profiles of the 
ADRs. This gold standard enabled us to quantify and evalu-
ate the extent to which known ADRs can be detected using 
a data-mining approach.

We assessed an early and simple detection scheme for 
ADR signals based on the ARM of the administrative claims 
data. Although many studies have analyzed medical records 
to detect ADR signals, most of these research works focused 
on a narrow range of ADRs. In the present study, we quan-
titatively evaluated the active detection of 180 kinds of 
drug–event pairs using our gold standard. Figure 3a, b show 
the ROC-AUC and PR-AUC values (both greater than 0.8), 
indicating that ARM can attain reasonable specificity and 
precision while preserving sensitivity. Figure 3c, d show that 
the ROC-AUC and PR-AUC were above 0.7 in ten datasets 
with varying numbers of patients and records, indicating 
that ARM can reproducibly achieve reasonable performance. 
For lift > 1, conviction > 1, and p-value < 0.05, ARM had 
high sensitivity but low specificity, while SSA tended to 
have low sensitivity but high specificity. Most of the posi-
tive drug–event pairs had higher lift values (Tables 2, 3); 
therefore, the sensitivity, specificity, and precision were 
calculated for varying lift thresholds (Table 4). As a result 
of varying lift including conviction, the F-measure showed 
the maximum at 0.78 when lift was > 2.301 and conviction 
> 1.0025 in the full dataset (sensitivity: 0.85, specificity: 
0.66, and precision: 0.72). The optimal lift and conviction 
values varied depending on the database. Since it is cru-
cial to detect ADRs as early as possible, we emphasized the 

performance metrics calculated from positive predictions 
like sensitivity. Increasing the lift including the conviction 
threshold at the expense of sensitivity may enhance pharma-
covigilance while maintaining a balance between sensitivity 
and specificity.

We evaluated whether ARM could detect ADR signals 
with short accumulation periods of data. We believe that 
no study has examined whether early detection of ADR sig-
nals can be achieved using small amounts of data, to date. 
Figure 4 indicates that ARM has a higher sensitivity than 
SSA as a baseline method. SSA, which is also referred to 
as a self-controlled method, is superior to ARM in that it 
considers the order of appearance of drugs and events and 
minimizes the confounding effects of time-varying risk 
factors [40]. However, SSA is difficult to detect in a short 
period because of the insufficient number of records, as only 
patients for whom both drugs and events are registered are 
included in the analysis. In contrast, ARM does not con-
sider sequencing or control for confounding factors such 
as patient background, which is likely to result in a higher 
number of pseudo-associations [41]. Therefore, we calcu-
lated not only the sensitivity but also specificity and preci-
sion, as well as compared the performance of ARM and SSA 
(Supplementary Fig. 1, OSM). In this regard, ARM showed 
higher sensitivity than SSA while maintaining specificity. 
In the short-term data, several drugs and events included 
in the gold standard could not be paired, and co-occurrence 
probability could not be calculated, so it is possible that 
specificity and precision were maintained. We think that the 
longer the analysis period, the more extra drug–event pairs 
are created, resulting in a higher number of pseudo-associ-
ations. Despite the above disadvantage, the results indicate 
that ARM has the potential for the early detection of ADR 
signals in shorter dataset durations.

In the conventional benchmark, the ROC- and PR-AUC 
tended to be lower compared to our gold standard. The num-
ber of cases with four kinds of ADR mapped to the ICD10 
codes tended to be relatively small. This might affect the 
model’s performance. However, since there were many posi-
tive drug–event pairs with top lift values, these were consid-
ered to have a balanced accuracy by increasing the threshold 
value. In the short accumulation period data, ARM detected 
more positive control pairs than SSA, consistent with our 
gold standard.

Furthermore, as a more realistic simulation, we per-
formed an ARM focusing on the “Ethinyl estradiol 
drospirenone–Thrombosis” pair. In our analysis, since the 
run-in period was set, only newly prescribed drugs and 
newly reported events were included. Although ARM did 
not consider the sequence, the study showed that ARM may 
be a very powerful tool for examining the safety of novel 
therapeutics using a short-term dataset. Recently, several 
models have been reported for detecting ADR signals of new 

Table 4   Ability of ARM to detect signals for varying lift thresholds

ARM association rule mining

Lift Sensitivity Specificity Precision F-measure

1 0.98 0.25 0.58 0.73
2 0.87 0.49 0.64 0.74
3 0.75 0.73 0.74 0.75
4 0.64 0.81 0.78 0.70
5 0.57 0.83 0.78 0.65
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therapeutic drugs, using information such as pharmacologi-
cal targets [42, 43]. Although these models showed high per-
formance, they did not target first-in-class drugs. However, 
ARM using administrative claims data does not have this 
limitation. In fact, our gold standard included the CDK4/6 
inhibitor palbociclib, which was approved in December 2017 
in Japan as a first-in-class drug, and ARM was able to detect 
the ADR signal of this drug (Table 2).

ARM using administrative claims data has the potential 
to accelerate safety communication by enabling early iden-
tification of post-marketing safety concerns. However, sig-
nals detected by ARM cannot replace expert clinical review. 
There may be some possible limitations to the use of claims 
data for ADR signals detection. First, we analyzed the symp-
toms that do not necessarily correspond to ADRs because 
symptoms related to drug indications as well as those asso-
ciated with the disease were also extracted from claims 
data. Claims data might not have the detailed and accurate 
information needed for some studies since these are used for 
administrative or billing purposes. To reduce these limita-
tions, at least drug–event pairs where the ATC codes and 
ICD10 codes suggested that they belong to the same organ 
must be eliminated. Second, we need to address the differ-
ences in terminology between claims data and standard ADR 
vocabulary. The mapping between ADRs and ICD10 has 
been established to some extent by the Unified Medical Lan-
guage System (UMLS). However, there are some difficulties 
in systematically mapping ADRs to ICD10 even with UMLS 
[44, 45]. Therefore, in this study, each SMQ was manually 
mapped to ICD10, wherein some patient information may 
be lost owing to incomplete mapping from ADRs codes to 
ICD10. These might have affected the performance of ADR 
signal detection in the present study. Third, reimbursement 
is requested by the 10th of the following month in Japan. 
In addition, several months are required before the claims 
data can be included in the database. Even if the data can be 
utilized smoothly in the future, there will be a lag of up to 
1 month, and it may be difficult to detect ADR signals less 
than 1 month after approval using the administrative claims 
data. There may be other limitations to ARM. The false 
discoveries in ARM appear to arise in the following situa-
tions: first, ARM is not an ordinal analysis, so we estimated 
causality based on the strength of the association. If there 
were no reverse order pairs (drug→event or event→drug), 
the analysis value of SSA was 0 or null, which could not be 
evaluated and was not detected as a signal. However, ARM 
will calculate co-occurrence probabilities even if the pair 
is not necessarily drug→event, leading to false positives. 
Second, the effects of confounding factors, including reverse 
causation, time-dependent confounding, and mutual indica-
tion, are inevitable [19, 46]. Especially in ARM, it is difficult 
to distinguish which drug is the cause of the ADRs when 

several medicines are used together in combination treat-
ment. Furthermore, if there is strong comorbidity between 
two symptoms, it is difficult to distinguish which symptom 
is the ADR. Third, even if we increase the lift including 
conviction thresholds to reduce false positives, a high lift 
value may not necessarily pair with ADR. If both the drug 
and the event occur rarely and the drug–event pair co-occurs 
by chance, the lift is extremely high. To rule out the co-
occurrence of drug–event pairs with extremely high scores, 
the support threshold needs to be increased. In practice, 
however, it is necessary to reduce false-positive signals not 
only by the ARM but also by a combination of other analyti-
cal methods and finally by human procedures.

Despite the above limitations, our findings show that it 
reduces the delay in the identification of important ADRs, 
indicating that it may be used as a complementary tool to 
SRS. Our gold standard is expected to be useful for ADR 
signal detection using EMRs as well as other healthcare 
databases. In the future, using this gold standard, we plan 
to extend our study to utilize time-series analysis, medical 
check-up data of patients, and information regarding con-
comitant medications to improve the accuracy of ADR sig-
nal detection.

5 � Conclusions

We created a reliable and sufficiently large gold standard 
for ADR detection based on clinical big-data analysis. This 
gold standard enabled us to evaluate the performance of the 
data-mining approach for screening ADR signals. This study 
suggests that ARM may be effective in the early detection 
of a wide range of ADR signals and can function as a com-
plementary tool to existing pharmacovigilance strategies.
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