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Abstract
Introduction Safety underreporting is a recurrent issue in clinical trials that can impact patient safety and data integrity. 
Clinical quality assurance (QA) practices used to detect underreporting rely on on-site audits; however, adverse events (AEs) 
underreporting remains a recurrent issue. In a recent project, we developed a predictive model that enables oversight of AE 
reporting for clinical quality program leads (QPLs). However, there were limitations to using solely a machine learning model.
Objective Our primary objective was to propose a robust method to compute the probability of AE underreporting that could 
complement our machine learning model. Our model was developed to enhance patients’ safety while reducing the need for 
on-site and manual QA activities in clinical trials.
Methods We used a Bayesian hierarchical model to estimate the site reporting rates and assess the risk of underreporting. 
We designed the model with Project Data Sphere clinical trial data that are public and anonymized.
Results We built a model that infers the site reporting behavior from patient-level observations and compares them across 
a study to enable a robust detection of outliers between clinical sites.
Conclusion The new model will be integrated into the current dashboard designed for clinical QPLs. This approach reduces 
the need for on-site audits, shifting focus from source data verification to pre-identified, higher risk areas. It will enhance 
further QA activities for safety reporting from clinical trials and generate quality evidence during pre-approval inspections.

Key Points 

Safety underreporting is a recurrent issue in clinical tri-
als that can impact patient safety and data integrity.

We used a Bayesian hierarchical model to estimate the 
site reporting rates and assess the risk of underreporting.

This model complements our previously published 
machine learning approach and is used by clinical qual-
ity professionals to better detect safety underreporting.

1 Introduction

Adverse event (AE) underreporting has been a recurrent 
issue raised during health authorities Good Clinical Practices 
(GCP) inspections and audits [1]. Moreover, safety under-
reporting poses a risk to patient safety and data integrity [2]. 
The previous clinical quality assurance (QA) practices used 
to detect AE underreporting rely heavily on investigator site 
and study audits. Yet several sponsors and institutions have 
had repeated findings related to safety reporting, leading to 
delays in regulatory submissions.

In a previous project [3], we developed a predictive 
model that enables pharmaceutical sponsors’ oversight of 
AE reporting at the program, study, site, and patient level. 
We validated and reproduced our model using a combination 
of internal data and an external dataset [4].

While the machine learning model (ML) has been suc-
cessfully implemented since May 2019, there was a need 
to address calibration robustness. The first model relied on 
point predictions at the visit level and assumed Poisson dis-
tributed residuals. The decision to flag underreporting sites 
depended on the way these residuals were aggregated, and 
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we have been observing instabilities in longer running stud-
ies. This motivated us to tackle the problem by the other 
end and find a model for the distribution of AEs reported by 
sites. The biggest value of point estimates from our initial 
machine learning model is for our stakeholders to direct their 
investigations, for instance to decide which patient to target 
during an investigator site audit. On the other hand, an auto-
mated underreporting alert relies on well-calibrated prob-
abilities for risk estimates. This was the main motivation for 
this project. These two solutions will be offered in parallel 
to quality professionals at our organization, the probabilistic 
one to quantify the risk of underreporting, and the machine 
learning-based model to provide a basis for in-depth inves-
tigations and audits.

The project has been conducted by a team of data scien-
tists, in collaboration with clinical and QA subject matter 
experts. This project was part of a broader initiative of build-
ing data-driven solutions for clinical QA to complement 
and augment traditional QA approaches and to improve the 
quality and oversight of GCP- and Good Pharmacovigilance 
Practices (GVP)-regulated activities.

2  Methods

2.1  Outline

The primary objective was to develop a robust methodol-
ogy to assess the risk of AE underreporting from investiga-
tor sites. The scope remained focused on AEs—not adverse 
drug reactions—that should occur in clinical trials. GCP 
requires all AEs, regardless of a causal relationship between 
the drug and events, to be reported in a timely fashion to 
the sponsor [2]. Underreporting of safety events is a fre-
quent and repetitive issue in clinical trials [1, 5] with many 
consequences, e.g., delayed approval of new drugs [6, 7] or 
amplification of shortcomings of safety data collection in 
randomized controlled trials [8].

The traditional way to detect AE underreporting in clini-
cal trials is to conduct thorough site audits [9], on top of 
monitoring activities and through manual source data veri-
fication. For sponsors with thousands of sites to audit, this 
is not manually scalable, hence, the strong need for a data-
driven approach.

Unfortunately, we will never know how many AEs 
should have been reported; it is something we have to 
infer from the data. In other words, we are dealing with an 
unsupervised anomaly detection problem where we do not 
observe the true labels. The typical way to solve this type 
of problem is to fit a probability distribution to the data 
and compare individual data points to that distribution. To 
do so, one can compute the likelihood of data points under 
the distribution and flag values below a certain threshold. 

If the distribution is normal, this is equivalent to flagging 
points beyond a certain number of standard deviations 
from the mean. In more general cases, the likelihood is 
less interpretable, and one might prefer to compute a tail 
area under the distribution, namely the probability to make 
an observation at least as extreme as a given data point. 
The definition of “extreme” will depend on the context 
and can be adapted to a specific problem. In our problem, 
we can compute the probability that a random site from a 
given study would have a lower reporting rate than the one 
under consideration.

In a previous work [3], to infer the distribution of AEs, we 
exploited the variety of covariates available at the patient and 
visit levels to estimate a conditional density p(yvisit|xvisit; �) 
via machine learning. For site-level estimates, we aggregated 
the visit-level distributions to the patient level and then site 
level via successive summations. While this method tracks 
AE data generation at various resolutions, the aggregation 
introduced biases in the form of systematic over- or underes-
timation for certain sites, in particular in longer-running tri-
als, probably due to the addition of non-independent errors. 
As a result, the risk assessment of safety underreporting 
from investigator sites was not well calibrated. This moti-
vated the top-down approach presented here, as we were 
ultimately interested in the selection of sites for audits.

To further increase the robustness of the risk assessment, 
we adopted a Bayesian approach to quantify uncertainties 
through posterior probability distributions. This is a very 
appealing property in sectors where risk management is 
essential, such as healthcare or finance. In our case, a clear 
estimate of the probability of underreporting from the dif-
ferent sites enables targeting of the riskiest sites to audit 
and, on the positive side, provides greater confidence in the 
completeness of the collected safety data.

The general methodology of Bayesian data analysis is 
well described in the literature [10]. The main idea is to 
build a probabilistic model for the observed data, denoted by 
X, that contains unobserved parameters, collectively denoted 
by θ. This model relies on a subjective assessment of the dis-
tribution of the parameters in the form of a prior distribution 
p(�) , which is more or less sharp depending on the degree of 
certainty of the prior knowledge. The relation between the 
parameters and the observed data is expressed by the likeli-
hood function p(X|�) . The goal of Bayesian inference is to 
refine the prior distribution, once the data are observed, via 
the application of Bayes’ theorem, and obtain the posterior 
distribution p(�|X) = p(X|�)p(�)∕p(X) used to make deci-
sions, estimate parameters, or assess risks. If the observed 
data are compatible with the prior distribution, the posterior 
distribution will typically have a smaller spread than the 
prior. If it is less compatible, then the likelihood and the 
prior will compete and the posterior distribution will repre-
sent a compromise.
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In our problem, the observed data are numbers of AEs 
reported by the sites, grouped by patients, and parameters 
could be unobserved AE reporting rates from the indi-
vidual sites. We emphasize that there can be several com-
peting models for the observed data, and the goal is to find 
one that is complex enough to capture the structures of 
interest, namely safety underreporting in our case, but as 
simple as possible to speed up computations and convey 
the clearest insights to stakeholders.

2.2  Data

We developed this project on our sponsored clinical tri-
als, but this methodology is applicable to any trial. For 
illustration, we used public data from the Project Data 
Sphere, “an independent, not-for-profit initiative of the 
CEO Roundtable on Cancer’s Life Sciences Consortium 
(LSC)”, who “operates the Project Data Sphere platform, 
a free digital library-laboratory that provides one place 
where the research community can broadly share, integrate 
and analyze historical, patient-level data from academic 
and industry phase III cancer clinical trials” [11]. Project 
Data Sphere data were fit for purpose to demonstrate the 
approach presented in this paper and are publicly available 
(lifting any concerns for data privacy and security). Spe-
cifically, we used the control arm of the registered clinical 
trial NCT00617669 [12]. Of note, the data had been fur-
ther curated to remove duplicate AEs. The dataset included 
468 patients from 125 clinical sites.

From the clinical trial data, we extracted for our analy-
sis the count of AEs reported by patient, grouped by inves-
tigator site (see Table 1).

2.3  Model

We had access to patient-level observations, but we needed 
to make decisions at the site level based on comparisons 
across the whole study, so a hierarchical model was well 
indicated as it would capture this three-level structure. 
Concretely, we assumed that AE reporting by a given site 
could be modeled by a Poisson process. The observed 
numbers of AEs for each of the ni patients reported by the 
ith site would then be realizations of the corresponding 
Poisson process,

We fur ther assumed that the reporting rates 
�i, i = 1, 2,… ,Nsites of sites were drawn from a single study-
level Gamma distribution Γ(�study, �study) to model the vari-
ability of reporting behaviors among the sites, and we picked 
vague hyperpriors for the study parameters �study ∼ Exp(0.1) 
and �study ∼ Exp(0.1) to account for uncertainty. The param-
eterization of the Gamma distribution by the mean and 
standard deviation rather than the more usual shape and rate 
parameters was intended to make the posterior distribution 
more interpretable. All these relations are summarized in a 
graphical representation (Fig. 1). The circles represent ran-
dom variables, shaded when they correspond to observed 
data. Arrows indicate conditional dependencies, and plates 
represent repeated elements, with their labels indicating how 
many times. The parameters of the hyperprior distributions 
were chosen so that data simulated by sampling the prior 
distribution had a similar range as the observed AEs. We 
also ran the analysis with wide uniform hyperpriors to check 
the sensitivity of the inference to the choice of hyperpriors 
and obtained essentially the same posterior distributions (see 
the code and the analysis in Supplementary Material #2 in 
the electronic supplementary material).

In this hierarchical model, the posterior distribution of the 
site reporting rates �i given the observed numbers of AEs 

Y1,Y2,… ,Yni ∼ Poi(�i)

Table 1  Sample of input data (the whole set includes 125 sites and 
468 patients)

AE adverse event

Clinical 
investigator 
site

Count of observed AEs/patient Number of 
patients

Site 3001 (4, 1) 2
Site 3002 (2, 2, 1, 2, 5, 5, 5, 1) 8
Site 3003 (7, 4) 2
Site 3004 (3, 27, 8) 3
Site 3005 (12, 6) 2
Site 3006 (2, 4) 2
Site 3007 (5) 1
Site 3008 (11, 4, 16, 31, 23, 23) 6
Site 3009 (6, 6) 2
Site 3010 (21, 10, 6, 17, 10, 26, 19, 18, 1, 18, 23, …) 17

Fig. 1  Graphical representation of the adverse event reporting model
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per patient reflects how many AEs per patient we expect to 
see at the individual sites, and the distribution width indi-
cates the degree of certainty in these estimates. This width 
typically depends on the number of observations and their 
spread. Even for sites with fewer patients, the mechanism of 
information borrowing enabled by the hierarchical structure 
leads to more robust estimates of the reporting rates.

The joint posterior distribution of the study-level param-
eters �study and �study characterizes safety reporting patterns 
of a study and depends on the nature of the disease (e.g., 
cancers vs. cardiovascular diseases, etc.), the drug mecha-
nism of action, the drug mode of administration, the design 
and execution of the clinical trial, and so on. The posterior 
expectation value of �study immediately gives the posterior 
expectation value of the reporting rate of a site taken at ran-
dom from that study and, in turn, the expected number of 
AEs reported by a patient taken at random from that site. 
The posterior distribution of �study characterizes the variabil-
ity among the sites of that study. If this analysis is repeated 
on different studies, the posterior distributions of the param-
eters �study and �study allow us to compare the reporting pat-
terns of the different studies.

2.4  Inference and Underreporting Detection

Efficient sampling of the posterior distribution of hier-
archical models requires specialized methods [13] such 
as the Hamiltonian Monte Carlo algorithm [14], which is 
readily implemented in modern probabilistic programming 

libraries. We used the PyMC3 library [15], and our code 
is available as a Jupyter notebook [16].

Algorithms of the Markov Chain Monte Carlo family 
return a sequence of samples of the posterior distribution, 
in  our  case  a  co l l ec t ion  o f  �̂study, �̂study  and 
�̂i, i = 1, 2,… ,Nstudy . These samples are typically used to 
compute expectation values with respect to the poste-
rior distribution. We started with the means mean(�̂i) and 
standard deviations std(�̂i) of the site reporting rate sam-
ples �̂i to summarize their distributions, but we were ulti-
mately interested in measuring the risk of underreporting. 
One natural way to do it is to compute the expected left 
tail area of the inferred site rates under the posterior 
(study-level) distribution of reporting rates. This corre-
sponds to the probability that a yet unseen reporting rate 
drawn randomly from the posterior distribution falls below 
the inferred site reporting rates. To estimate this posterior 
probability, for each pair of �̂study and �̂study returned in the 
sample of the Markov chain, we sampled a reference rate 
�̂∼ Γ(�̂study, �̂study

) and for each site computed the propor-
tion of samples of the Markov chain such that �𝜆< �𝜆i to 
estimate the rate tail area, RTAi = P(�𝜆< �𝜆i).

The output is available in the code repository [16], and 
a sample of the sites with the top and bottom tail areas 
is presented in Table 2. The inferred values of site 3046 
illustrate interesting features of this model. Despite having 
a single observation of zero reported AEs, the inferred rate 
is still quite high, driven by information borrowed from 
the other sites, but with some  uncertainty, characterized 

Table 2  This table displays a 
sample of the model output 
with the lowest rate tails areas, 
together with summary statistics 
of the inferred AE reporting 
rates (out of 468 patients in 125 
clinical investigator sites)

The lowest rate tail areas indicate sites with suspiciously low numbers of reported AEs, and QA activities 
should be focused on them
AE adverse event, QA quality assurance

Clinical inves-
tigator site

Mean AE rate Standard deviation
AE rate

Rate tail area Count of observed AE/patients

Site 3030 0.473701 0.216417 0.00425 (0, 0, 0, 1, 0, 0, 0, 0, 0, 2)
Site 3036 0.922081 0.471779 0.01250 (0, 1, 0, 1)
Site 3037 1.330058 0.511819 0.02120 (1, 0, 1, 3, 0)
Site 3046 1.599186 1.191997 0.03470 (0)
Site 3035 2.262649 1.036725 0.05175 (0, 3)
Site 3032 2.265597 1.030830 0.05235 (3, 0)
Site 3018 2.627988 0.806107 0.06575 (6, 1, 2, 0)
Site 3039 2.727528 1.125527 0.06990 (3, 1)
Site 3038 2.865798 0.821121 0.07370 (4, 1, 3, 2)
Site 3002 3.047176 0.606155 0.08005 (2, 2, 1, 2, 5, 5, 5, 1)
Site 3001 3.212805 1.227723 0.08990 (4, 1)
Site 3112 3.212392 1.234220 0.09110 (5, 0)
Site 3028 3.387632 1.756067 0.09915 (2)
Site 3006 3.675763 1.323994 0.10695 (2, 4)
Site 3105 4.267382 1.927275 0.13710 (3)
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by a higher standard deviation than other sites with low 
numbers of reported AEs.

When it comes to deciding which sites to flag for under-
reporting, a threshold has to be set by quality leads, as the 
values of the risk metrics cover a wide spectrum displayed 
in Fig. 2.

The relationship between the posterior mean site rates 
mean(�̂i) and the corresponding posterior rate tail areas RTAi 
follows the cumulative distribution function of the posterior 
predictive distribution of the reporting rates (Fig. 2). There 
is no definitive rule to determine how low rate tail areas indi-
cate underreporting. Low values might be due to the inherent 
variability of safety reporting. Nevertheless, auditing efforts 
should focus on the lowest values, for instance according to 
different alert levels at prespecified thresholds, e.g., 0.05 and 
0.15, or up to a gap in the distribution of tail areas for more 
homogeneity in the QA process.

3  Discussion

The method presented here is applicable to completed stud-
ies to assess which sites might pose a risk of underreport-
ing. In particular, it can demonstrate a degree of certainty in 
the completeness of collected safety data. In ongoing stud-
ies, patients do not enroll all at the same time, which intro-
duces more variability in the numbers of reported AEs. The 
longer a patient has been enrolled, the more AEs have been 
reported. We can still apply the same method, provided we 
select as observations the accrued number of AEs for each 
patient up to the nth visit and exclude patients who have not 
reached that milestone. This analysis can be repeated for 
different values of n. In particular, when a study is close to 
a database lock (e.g., before performing an interim analysis), 
the model could be used to guide quality leads and/or clini-
cal operations staff to detect underreporting sites and trigger 

queries and AE reconciliation. Hence, this gives reassurance 
to health authority inspectors that AE underreporting has 
been detected, corrective actions have been implemented, 
and the integrity of the data has not been compromised [2].

An added benefit of the proposed Bayesian approach and 
the selected risk metrics is that the outputs are calibrated 
probabilities. The results of this underreporting risk assess-
ment conducted on different studies and at different mile-
stones are immediately comparable. A sponsor overseeing 
several studies can thus keep an overview of all of them, 
and monitor the evolution of the risk of underreporting over 
time.

Yet this simple Bayesian model ignores the granularity of 
the available data that goes down to the visit level, the asso-
ciated time series structure, and a whole collection of covari-
ates that can predict the occurrence of AEs. As mentioned in 
the “Methods” section, we used this information in our pre-
vious work to estimate the number of AEs reported at a sin-
gle visit, p(yvisit|xvisit; �), with machine learning algorithms, 
but the estimated risks were not well calibrated. Now that 
we have established that Bayesian methods can address this 
issue, we plan to explore a middle ground between classical 
machine learning and probabilistic modeling, namely in the 
space of Bayesian neural networks, where we can find mod-
els that use all covariates but still output calibrated risks of 
underreporting. This approach will obviously require access 
to a certain amount of clinical data, which is possible only 
for a few selected entities such as big clinical trial spon-
sors, so we still think there is value in the simple approach 
presented here when it comes to assessing individual trials.

In parallel to developing a new model for detection of 
AE underreporting, we have been piloting a machine learn-
ing model with QA staff since May 2019. The outputs of 
the Bayesian approach will be integrated in the current 
QA dashboard, together with the outputs of the ML model 
[3] that are already available to quality program leads. For 
example, low values of the rate tail areas would indicate 
sites with suspiciously low numbers of reported AEs, and 
QA activities should be primarily directed on them. The 
advantage of combining both approaches is to have AE 
patient-level predictions (from the ML model) and detection 
of AE underreporting at the site level (using the Bayesian 
approach). This will enhance further the QA activities for 
safety reporting from clinical trials.

This model was developed during the coronavirus disease 
2019 (COVID-19) pandemic where on-site audits could not 
be performed [17]. Having a data product enabling remote 
monitoring of safety reporting from investigator sites was 
essential to ensure business continuity for clinical QA activi-
ties [18]. Our approach has the potential to reduce the need 
for on-site audits and thereby shift the focus away from source 
data validation and verification towards pre-identified, higher 
risk areas. It can contribute to a major shift for QA, where 

Fig. 2  The rate tail area risk metric as a function of the posterior 
mean site rate (ae adverse event)
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advanced analytics can detect and mitigate issues faster, and 
ultimately accelerate approval and patient access of innova-
tive drugs.

Di et al. [19] also proposed the use of Bayesian methods for 
AE monitoring with a more clinical purpose. Their approach 
focused on the continuous monitoring of safety events to 
address the lack of knowledge of the full safety profile of drugs 
under clinical investigation. Their model could be applied for 
signal detection in early-phase trials and could also give fur-
ther evidence to independent data monitoring committees for 
late-stage studies. We developed a different model as our focus 
was on sites rather than patients. This illustrates one of the 
strengths of Bayesian data analysis, where different models of 
the same data can be optimized to answer different questions 
about the underlying process.

Clinical trials generate large amounts of data tradition-
ally analyzed with frequentist methods, including statistical 
tests and population parameter estimations, aimed at clinical 
questions related to efficacy and safety. There has been a 
push in recent years for Bayesian adaptive designs that have 
the potential to accelerate and optimize clinical trial execu-
tion. Examples include Bayesian sequential design, adaptive 
randomization, and information borrowing from past trials. 
For example, in a study redesigning a phase III clinical trial, 
a Bayesian sequential design could shorten the trial duration 
by 15–40 weeks and recruit 231–336 fewer patients [20]. 
Our approach for the detection of safety underreporting dem-
onstrates the potential of Bayesian data analysis to address 
secondary questions arising from clinical trials such as QA 
or trial monitoring. In clinical QA, where the majority of 
business problems are anomaly detection or risk assessment, 
there is a good rationale for exploring further applications 
of Bayesian approaches, for example, for identification of 
laboratory data anomalies in clinical trials or in identify-
ing issues with the number of unreported/reported protocol 
deviations by clinical study sites.

While the presented method (used together with our 
machine learning approach [3]) provides a robust strategy 
to identify AE underreporting, we acknowledge that in 
rare situations issues could remain hidden. As the majority 
of activities for clinical trial safety quality oversight have 
transitioned to be analytics driven, ad hoc and on-site qual-
ity activities (e.g., clinical investigator site audits) should 
remain a back-up option for clinical QA organizations.

4  Conclusion

In this paper, we presented our approach to quantify the 
risk of AE underreporting from clinical trial investigator 
sites. We addressed a shortcoming of the model devel-
oped in our previous work that was good at predicting the 

evolution of safety reporting in clinical studies but failed 
to properly quantify the probabilities of quality issues.

The new model will be integrated into the current dash-
board designed for quality leads. This is part of a broader 
effort at our Research and Development Quality organi-
zation. Similar approaches using statistical modeling and 
applied to other key risk areas (e.g., informed consent, 
data integrity) are being developed in order to provide a 
full set of advanced analytics solutions for clinical quality 
[3, 4, 17, 21]. We will also continue to explore the appli-
cation of Bayesian methods to other datasets generated 
during the conduct of clinical study for QA purposes (e.g., 
protocol deviations).

However, in order to implement routine, remote, and 
analytics-driven QA operations, sponsors and agencies 
will have to continue to collaborate and address challenges 
such as fit-for-purpose IT infrastructures, automation, 
cross-company QA data sharing, QA staff data literacy, 
and model validation [17, 21, 22]. While the COVID-19 
pandemic accelerated the adoption of new ways of work-
ing and pushed innovation further, it also brought new 
rationales for a change in the QA paradigm, i.e., where 
advanced analytics can help in conducting QA activities 
remotely, detecting and mitigating issues faster, and ulti-
mately accelerating approval and patient access to innova-
tive drugs.
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