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Abstract
Introduction Observational studies estimating severe outcomes for paracetamol versus ibuprofen use have acknowledged 
the specific challenge of channeling bias. A previous study relying on negative controls suggested that using large-scale 
propensity score (LSPS) matching may mitigate bias better than models using limited lists of covariates.
Objective The aim was to assess whether using LSPS matching would enable the evaluation of paracetamol, compared to 
ibuprofen, and increased risk of myocardial infarction, stroke, gastrointestinal (GI) bleeding, or acute renal failure.
Study design and setting In a new-user cohort study, we used two propensity score model strategies for confounder controls. 
One replicated the approach of controlling for a hand-picked list. The second used LSPSs based on all available covariates 
for matching. Positive and negative controls assessed residual confounding and calibrated confidence intervals. The data 
source was the Clinical Practices Research Datalink (CPRD).
Results A substantial proportion of negative controls were statistically significant after propensity score matching on the pub-
lication covariates, indicating considerable systematic error. LSPS adjustment was less biased, but residual error remained. 
The calibrated estimates resulted in very wide confidence intervals, indicating large uncertainty in effect estimates once 
residual error was incorporated.
Conclusions For paracetamol versus ibuprofen, when using LSPS methods in the CPRD, it is only possible to distinguish 
true effects if those effects are large (hazard ratio > 2). Due to their smaller hazard ratios, the outcomes under study cannot 
be differentiated from null effects (represented by negative controls) even if there were a true effect. Based on these data, we 
conclude that we are unable to determine whether paracetamol is associated with an increased risk of myocardial infarction, 
stroke, GI bleeding, and acute renal failure compared to ibuprofen, due to residual confounding.

Electronic supplementary material The online version of this 
article (https ://doi.org/10.1007/s4026 4-020-00950 -3) contains 
supplementary material, which is available to authorized users.

 * Rachel B. Weinstein 
 Rweinst1@its.jnj.com

1 Janssen Research and Development, LLC, 1125 
Harbourton-Trenton Rd, Titusville, NJ 08560, USA

2 Johnson and Johnson, 1125 Harbourton-Trenton Rd, 
Titusville, NJ 08560, USA

1 Introduction

Numerous epidemiology studies over the past 3 decades 
have examined the risk of various serious adverse events 
such as renal failure, myocardial infarction (MI), stroke, 
and gastrointestinal (GI) bleeding among people exposed 

to paracetamol compared to ibuprofen and other over-the-
counter (OTC) analgesics. The results have been inconsist-
ent, and some have reported an increased risk [1–12].

Most prior epidemiologic studies discussed confounding, 
or channeling, as a possible source of bias influencing the 
results, but did not attempt to measure its impact. Chan-
neling will direct “sicker” patients away from ibuprofen and 
toward paracetamol. Specifically, the label for ibuprofen 
notes GI bleed and heart and kidney disease, which would 
affect these outcomes in particular.

In a prior study, Weinstein et al. [13] examined the impact 
of channeling bias on 31 negative control outcomes, i.e., 
outcomes known not to be associated with paracetamol 
or ibuprofen use, where, therefore, the true hazard ratio 
(HR) is believed to be 1. Several models were used to show 
the impact of bias on the negative control associations 
with the implication that previous publications may have 

http://orcid.org/0000-0002-0023-9578
http://crossmark.crossref.org/dialog/?doi=10.1007/s40264-020-00950-3&domain=pdf
https://doi.org/10.1007/s40264-020-00950-3
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Key Points 

In comparative cohort studies to assess risk of myo-
cardial infarction, stroke, gastrointestinal bleed, and 
renal failure in patients treated with paracetamol versus 
ibuprofen, results vary substantially depending on the 
models used to control for confounding and bias.

Large-scale propensity score matching resulted in attenu-
ated effects and increased precision. However, substan-
tial bias remained after large-scale propensity score 
matching, undermining the ability to discern or rule out 
an effect of exposure to paracetamol on these outcomes. 

For comparisons of paracetamol versus ibuprofen, when 
using our methods in the Clinical Practices Research 
Datalink, it is only possible to distinguish true effects if 
those true effects are large (relative risk > 2).

The analytic approach assessed on-treatment effects of the 
first treatment after a minimum 1-year period with no pre-
scriptions for either paracetamol or ibuprofen. This allowed 
us to evaluate new prescriptions, which should capture any 
influence that baseline comorbidities might have on prescrip-
tion of analgesics, i.e., channeling effects. Patients who were 
prescribed paracetamol alone and later, within the study 
period, prescribed ibuprofen were classified as paracetamol 
and then censored at the time of the ibuprofen prescription, 
and vice versa. Paracetamol users were one-to-one matched 
to ibuprofen users based on the propensity score. Cox pro-
portional hazards models, conditioned on the matched sets, 
were used to compute the HRs for the outcomes of interest 
and the negative and positive controls [15, 16].

In this analysis, successful control of channeling by pro-
pensity score matching would be evidenced by the lack of 
statistically significant association of the negative control 
outcomes with the exposure, i.e., by observing no more 
negative controls associated with the exposure group than 
would be expected by chance, under the null hypothesis. The 
criteria for defining these negative controls are described 
below. Synthetic positive controls derived from the negative 
controls were used to estimate residual error at various effect 
sizes and to allow empirical calibration of CIs for the severe 
adverse event outcomes [15, 16]. The protocol and analysis 
source code for this study was posted on the Observational 
Health Data Sciences and Informatics (OHDSI) website 
Repository of OHDSI Collaborative Research Protocols 
(https ://githu b.com/OHDSI /Study Proto colSa ndbox /tree/
maste r/Parac etamo lvIbu profe n_MI).

2.1  Database Used

The data source for this analysis was the Clinical Practice 
Research Datalink (CPRD), a UK primary care database 
containing de-identified data from 1 January 1988 through 
30 June 2017. There were 12.5 million people eligible 
during the timeframe to be included in the study prior to 
inclusion/exclusion criteria. The database includes data on 
demographics, conditions diagnosed, observations, meas-
urements, hospitalizations, and procedures that the general 
practitioner (GP) is made aware of, in addition to any made 
by the GP. Prescriptions in the CPRD are not explicitly 
linked to their indications. A key strength of the data is the 
long-term follow-up, since overall, the median follow-up 
time for individual patients is about 5 years (interquartile 
range 1.8–11.1 years) [17]. Data for this study came from 
practices classified as “up-to-standard” (UTS) by the CPRD 
during the period of interest. The UTS designation reflects a 
minimum, practice-level measure of quality based on con-
tinuity of recording and number of deaths recorded. The 
protocol for this study (reference # 18_100R) was approved 
by the Independent Scientific Advisory Committee (ISAC). 

inadequately adjusted for this bias. The results suggested 
that using large-scale propensity score (LSPS) matching 
may be a better way to reduce the impact of this bias than 
propensity score models based on a selected list of covari-
ates. In the current study, we use the lessons from our earlier 
research to produce a more valid estimate than was provided 
by previous studies.

The primary objective of the current study was, therefore, 
to assess whether paracetamol, compared to ibuprofen, was 
associated with an increased risk of MI, stroke, GI bleeding, 
and acute renal failure. An additional objective was to assess 
the extent of residual bias in the estimation of the effect as 
specified in the primary objective using negative and posi-
tive controls [15, 16]. Any observed residual bias was to be 
incorporated into an empirically calibrated p value [14] and 
confidence interval (CI) [15].

2  Methods

In this study, we first replicated the findings seen in prior 
publications and then used a new adjustment strategy in a re-
assessment. Both analyses used one-to-one propensity score 
matching. One propensity model was fit using variables from 
prior publications comparing paracetamol and ibuprofen 
outcomes. In a second propensity model, LSPS matching, 
with all available baseline covariates (over 10,000), was used 
and is referred to as the “full set of covariates available”. The 
full set of covariates characterized patient demographics, 
all prior conditions, drugs, procedures, and health service 
utilization patterns. The outcomes of interest were acute MI, 
stroke, GI bleed, and acute renal failure.

https://github.com/OHDSI/StudyProtocolSandbox/tree/master/ParacetamolvIbuprofen_MI
https://github.com/OHDSI/StudyProtocolSandbox/tree/master/ParacetamolvIbuprofen_MI
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The CPRD data in this analysis were converted to the Obser-
vational Medical Outcomes Partnership (OMOP) Common 
Data Model (CDM) v5 [18]. The accuracy of Read codes, 
drugs, and clinical data was assessed, and a replication of a 
published case–control study confirmed the validity of the 
conversion [18]. Similar validations have been implemented 
in healthcare claims and hospital data [19, 20]. The full set 
of diagnosis and drug codes used in these analyses are avail-
able from the on-line protocol.

2.2  Cohort Definition

Patients were included in the study if they received a first 
prescription for either single-ingredient paracetamol or sin-
gle-ingredient ibuprofen in 2005–2014. At the time the study 
was performed, this was the most recent 10-year period that 
allowed for up to 1 year of follow-up. Ten years of data were 
needed in order to adequately power the assessment in this 
on-treatment analysis. The date of this first prescription was 
defined as the index date. Patients were included if they were 
aged 18 or older on the index date and were enrolled for the 
2 years prior to and at least 1 day after the index date. The 
2-year observation period was intended to provide adequate 
information about medical history.

Reasons for a GP in the UK to prescribe a medication that 
is available OTC include the following: (1) to have a record 
of what was recommended to the patient; (2) to give the 
patient a reminder of what he/she is supposed to obtain and 
how it should be used; (3) to allow the patient to obtain the 
medication at a favorable price if, e.g., the patient needs a 
30-day supply and a 30-day supply OTC costs more than the 
approximately US$10 that is the charge for filling a prescrip-
tion; (4) to allow a patient to avail himself or herself of the 
right to have prescriptions filled free if the patient meets the 
income standard for doing so; and (5) to allow the patient to 
buy more than is permitted for OTC drugs.

To avoid observing prevalent prescription use, we 
required 12  months of continuous observation without 
prescriptions of single-ingredient paracetamol or ibupro-
fen prior to the index date. We classified analgesic use into 
two cohorts: (1) “paracetamol only”—patients with new, 
single-ingredient paracetamol exposure without concomi-
tant ibuprofen, and (2) “ibuprofen only”—patients with new, 
single-ingredient ibuprofen exposure without concomitant 
paracetamol.

Patients who received prescriptions for both paracetamol 
and ibuprofen on their index date were excluded from the 
study. In addition, patients with a prescription for other non-
steroidal anti-inflammatory drugs (NSAIDs) or aspirin in 
the 12 months prior to or on the index date were excluded. 
Patients with a prescription for any paracetamol- or ibu-
profen-containing combination products in the 12 months 
prior to and including the index date were excluded from the 

study. Patients with these concomitant and prior exposures 
were excluded to reduce confounding due to other products 
and to allow focus on the single ingredient.

2.3  Statistical Methods Used

2.3.1  Calculation of Time at Risk

Time at risk was calculated from the index date of first expo-
sure to the end of treatment, based on days’ supply, allowing 
for up to 30-day gaps between the end of days’ supply and 
the start of the next prescription. The primary analysis was 
an on-treatment type analysis. In addition, two sensitivity 
analyses were performed by varying the treatment window, 
to understand the robustness of the results of the on-treat-
ment requirement. The sensitivity analyses were analogous 
to intent-to-treat analyses with (1) a 90-day window and 
(2) a 1-year window from the start of exposure. For these 
analyses, exposure was assigned based on the drug at index 
and only censored if the patient received a prescription for 
the other drug, left the practice, or died before the end of the 
90-day or 365-day window.

2.3.2  Outcomes of Interest

The four outcomes of interest were incident MI, stroke, GI 
bleeding, and acute renal failure. Variables for presence or 
absence of a given diagnosis were developed based on diag-
noses in the database following the index date, regardless 
of the amount of time patients were in the database follow-
ing the index date. We reviewed all available time prior to 
the outcome (including prior to the index exposure date) to 
determine whether an event was incident or not. People with 
a prior event were excluded from the analysis of that event 
only. We required all patients to have at least 1 day in the 
database after the index date. Disease codes were developed 
based on disease vocabularies available within the OMOP 
CDM, as well as clinician review, and can be found in the 
protocol posted on-line.

2.3.3  New‑User Cohort Analysis Using Propensity Scores

A comparative cohort analysis was performed, compar-
ing new users of paracetamol to new users of ibuprofen. 
Two propensity score models were fitted with different sets 
of variables. One was referred to as the “publication vari-
ables” and was intended to replicate analyses commonly 
seen in publications on adverse effects of paracetamol and/
or ibuprofen [3, 4, 7–11]. The list of variables was extracted 
from a publication [3] that used the CPRD to study par-
acetamol and ibuprofen exposure. The publication variables 
propensity score model included the following: sex, age 
group (5-year increments), obese, morbidly obese, smoker, 
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alcohol abuse, upper GI events, osteoarthritis, rheumatoid 
arthritis, ischemic heart disease, heart failure, hypertension, 
cerebrovascular disease, diabetes mellitus, hyperthyroidism, 
stroke or transient ischemic attack, cancer (excluding non-
melanoma skin cancer), inflammatory bowel, autoimmune 
disease, depression, drug abuse, anticoagulants, oral gluco-
corticoids, diuretics, cardiac glycosides, statins, angioten-
sin receptor blockers, hypnotics, anxiolytics, antipsychot-
ics, antibacterials, aminosalicylates, antidepressants, aspirin, 
oral corticosteroids, proton-pump inhibitors, histamine-2 
receptor antagonists, hyperlipidemia, and NSAIDs (prior to 
the clean period).

In the second propensity score model, a larger set of 
baseline covariates was defined characterizing patient demo-
graphics, all prior conditions, drugs, procedures, and health 
service utilization patterns:

• Demographics Age (5-year increments), sex, index date 
year, and index date month

• Conditions1 Presence/absence of condition in 365-day 
window prior to or on index date, presence/absence of 
condition in 30-day window prior to or on index date, 
presence/absence of condition diagnosed in inpatient 
stay in 180-day window prior to or on index date, pres-
ence/absence of an aggregation of episodes of care over 
time for a condition (“condition era”) any time prior to 
or on index date (merging consecutive diagnosis codes 
into a single era, allowing for a maximum gap of 30 days 
between diagnoses), presence/absence of condition era 
overlapping the index date, presence/absence of an 
aggregation of episodes of care over time for a condi-
tion group [based on the systematized nomenclature of 
medicine (SNOMED) condition hierarchy] era any time 
prior to or on the index date, presence/absence of a con-
dition group era overlapping the index date, Charlson 
Comorbidity Index score, Diabetes Complications Sever-
ity Index (DCSI) score, and CHADS2 score

• Drugs2 Presence/absence of a length of time of expo-
sure to a drug product (“drug era”) in 365-day window 
prior to or on index date, presence/absence of drug era 
in 30-day window prior to or on index date, presence/
absence of drug era overlapping the index date, presence/
absence of drug era any time prior to or on index date, 
presence/absence of a drug group [using the Anatomical 
Therapeutic Chemical (ATC) hierarchy] era in a 30-day 

window prior to or on the index date, presence/absence 
of a drug group era overlapping the index date, and pres-
ence/absence of a drug group era any time prior to or on 
the index date

• Observations3 Presence/absence of observation in 365-
day window prior to or on index date, presence/absence 
of observation in 30-day window prior to or on index 
date, count of each observation concept in 365-day win-
dow prior to or on index date, and counts of the number 
of concepts a person has within each domain (i.e., con-
dition, drug, procedure, clinical observation, laboratory 
measurement)

• Procedures4 Presence/absence of procedure in 365-day 
window prior to or on index date and presence/absence 
of procedure in 30-day window prior to or on index date

We performed multivariable logistic regression to esti-
mate a propensity score that predicted treatment (paraceta-
mol vs. ibuprofen) using the publication variables defined 
above. Although the exact codes included in the definition 
of each variable were not detailed in prior publications, the 
authors indicated that the above conditions and exposures 
were controlled at baseline. The definitions of the publica-
tion variables for the current study are available from the on-
line protocol (https ://githu b.com/OHDSI /Study Proto colSa 
ndbox /tree/maste r/Parac etamo lvIbu profe n_MI).

For the LSPS-matched model, we used the large array 
of baseline covariates listed above to characterize patients 
at baseline. Because we have transformed the CPRD into 
the OMOP Common Data Model, v5, we applied stand-
ardized covariates within the open-source OHDSI appli-
cation “CohortMethod” (https ://ohdsi .githu b.io/Cohor 
tMeth od/), which included SNOMED-coded concepts and 
higher-level classifications for conditions, and drugs coded 
at the RxNorm ingredient and ATC class levels. Baseline 
variables were evaluated based on data available prior to 
the cohort index date. We performed a regularized logis-
tic regression to estimate a propensity score that predicted 
treatment assignment (paracetamol vs. ibuprofen). To avoid 
over-fitting and to accommodate the large number of predic-
tors, an L1 penalty, i.e., least absolute shrinkage and selec-
tion operator (LASSO) [21, 22], was used. The optimal 
regularization hyper-parameter was estimated using tenfold 
cross-validation.

For the propensity-score models, we utilized the stand-
ardized mean differences (SMDs) for both the publication 
covariates and the full set of available covariates between 
paracetamol and ibuprofen in the two propensity score mod-
els as model diagnostics. SMDs measure covariate balance 

1 Examples of conditions based on the SNOMED hierarchy of condi-
tions include essential hypertension, dyspnea, and osteoarthritis.
2 Examples of drugs include analgesics, antithrombotic agents, and 
codeine. Covariates for both individual products as recorded in the 
database, as well as at the ingredient level. The products recorded in 
the CPRD include strength, form, and ingredients (e.g., 20-mg atorv-
astatin oral tablet), but not box size.

3 An example of an observation is the tobacco smoking behavior.
4 An example of a procedure is a radiologic examination.

https://github.com/OHDSI/StudyProtocolSandbox/tree/master/ParacetamolvIbuprofen_MI
https://github.com/OHDSI/StudyProtocolSandbox/tree/master/ParacetamolvIbuprofen_MI
https://ohdsi.github.io/CohortMethod/
https://ohdsi.github.io/CohortMethod/
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between the two treatment groups and are the difference in 
prevalence in each cohort divided by the standard deviation. 
A large absolute value SMD on a covariate is an indication 
of significant disparity in the proportion of patients with the 
covariate between the two groups. An SMD > 0.1 is used as 
an ad-hoc heuristic for what constitutes “large” [23]. Pref-
erence scores, which are propensity scores normalized for 
imbalance in cohort size, were plotted [24]. Overlap of at 
least 50% of each cohort in the range 0.3–0.7 was taken to 
indicate clinical equipoise, i.e., patients are near the point 
of indifference in treatment selection.

The propensity scores were used to perform one-to-one 
matching (using a standardized caliper of 0.25 × propen-
sity score standard deviation). The matched sets were used 
within a conditional (on matching) univariate Cox regression 
model, which estimated the effect of exposure on the inci-
dence of each outcome, without further adjustment.

2.4  Negative Control Outcomes

Negative control outcomes are those determined a priori to 
have no causal relationship with the exposure of interest 
[25, 26]. We conducted an automated search of the medical 
literature and the relevant medication labels [27], followed 
by a clinical review. Thirty-nine outcomes believed to have 
no association with the exposures of interest were identified 
as negative controls. It is further assumed that confounding 
for the outcomes of interest is sampled from the same distri-
bution as the confounding of the negative controls.

• Achilles tendinitis
• Atrophic vaginitis
• Breath smells unpleasant
• Bronchiectasis
• Disorders of initiating and maintaining sleep
• Ear problem
• Erythema nodosum
• Falls
• Foot-drop
• Ganglion and cyst of synovium, tendon and bursa
• Hemangioma
• Hydrocele
• Hyperthyroidism
• Impaired glucose tolerance
• Impingement syndrome of shoulder region
• Impotence
• Incontinence of feces
• Interpersonal relationship finding
• Irregular periods
• Irritability and anger
• Joint stiffness
• Loss of sense of smell
• Mixed hyperlipidemia

• Osteitis deformans
• Panic attack
• Perforation of tympanic membrane
• Pes planus
• Polymyalgia rheumatica
• Premature menopause
• Prolapse of female genital organs
• Pure hypercholesterolemia
• Respiratory symptom (only inclusive of the concepts res-

piratory symptom, snoring symptoms, and complaint of 
postnasal drip)

• Restless legs
• Restlessness and agitation
• Rosacea
• Simple goiter
• Skin sensation disturbance
• Snapping thumb syndrome
• Urinary symptoms

Models that adequately control for confounding factors 
should produce HR estimates of the null value (1.0) for 
these negative control outcomes. These models allow for 
the examination of the extent of bias in the data which is 
reflected in the degree that they produce significant HR esti-
mates different from 1.0. Under the null hypothesis, with 
little to no residual bias, we would expect no more than one 
or two HRs to be significantly different from unity based on 
a p value of less than 0.05. An empirical distribution of the 
HR under the null was developed.

2.5  Positive Control Outcomes

In addition to negative control outcomes, we also included 
synthetic positive control outcomes. Positive control out-
comes were based on the negative controls described above, 
but the true effect size was artificially increased to a desired 
effect size by injection of additional, simulated outcomes. 
To preserve confounding, these additional outcomes were 
sampled from predicted probabilities generated using a fit-
ted predictive model. For each negative control outcome, 
three positive control outcomes were generated with true 
RRs of 1.5, 2, and 4. The residual error estimated from 
these positive controls was used to perform CI calibration 
[15, 16].

3  Results

The total number of patients in the CPRD dataset eligible for 
inclusion in the study between January 1, 2005 and Decem-
ber 31, 2014 was 9,365,462. The number of eligible patients 
during this time period, with new exposures for paracetamol 
and ibuprofen, was 288,967 and 382,749, respectively. The 
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loss of patients differed slightly for each incident event anal-
ysis due to the exclusion of those with a prior event (Fig. 1; 
Table 1). Following propensity score matching on the pub-
lication covariates, 56% of the original sample population 
remained in the study. Following propensity score match-
ing on the full set of covariates, 40% of the original sample 
population remained in the study. 

The distributions of preference scores for paracetamol 
and ibuprofen using the publication covariates are shown 
in Fig. 2a. The overlap in the preference scores between 0.3 
and 0.7 was greater than 50% for the publication covariates 
(Table 2). Matching on this set of covariates would, techni-
cally, fulfill the criteria for clinical equipoise in a compara-
tive effectiveness assessment for the two treatment options. 
However, when utilizing the full set of covariates (Fig. 2b), 

Fig. 1  Flow of patients from 
the Clinical Practice Research 
Datalink (CPRD) to the analytic 
study population. GI gastro-
intestinal, Ibu ibuprofen, MI 
myocardial infarction, NSAID 
nonsteroidal anti-inflammatory 
drug, Para paracetamol YO 
years old
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the proportion of overlap dropped below 50% and was evi-
dence that the majority of patients were not near clinical 
equipoise with respect to the selection of paracetamol versus 
ibuprofen.

Selected demographic, prior condition, and drug charac-
teristics of the pre- and post-matching populations are shown 
in Table 3. Prior to matching, there was a large difference 
in age distributions between the paracetamol (mean age 
61 years) and ibuprofen (mean age 46 years) groups, which 
was reduced after matching (mean age approximately 62 
across all groups). The proportion with each diagnosis and 

Table 1  Sample sizes for each outcome of interest before and after propensity score matching

GI gastrointestinal, MI myocardial infarction

Stroke MI GI bleed Renal failure

N % Matched N % Matched N % Matched N % Matched

Before matching 671,716 670,138 628,680 672,099
Publication covariates matched 374,274 55.7 374,022 55.8 349,212 55.5 374,336 55.7
Full set of covariates matched 265,820 39.6 265,550 39.6 249,348 39.7 265,912 39.6

Fig. 2  Distribution of propensity scores a and b before and c and d after matching from publication covariates and the full set of covariates for 
paracetamol and ibuprofen cohorts

Table 2   Propensity score using publication and full set of covariates 
with preference score distribution between 0.3 and 0.7

Analgesic All scores 0.3 ≤ preference ≤ 0.7

N N %

Publication covariates
 Paracetamol 288,967 138,273 47.9
 Ibuprofen 382,749 220,442 57.6

Full set of covariates
 Paracetamol 288,967 85,800 29.7
 Ibuprofen 382,749 107,453 28.1
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Table 3   Distribution of selected characteristics 1 year prior to first use of paracetamol and ibuprofen during 2005–2015 among users in the 
study populations before and after matching on the publication variables propensity score model and the large-scale propensity score model

Characteristic Before matching After matching on publication 
covariates

After matching on full set of 
covariates

Paracetamol Ibuprofen Std. diff Paracetamol Ibuprofen Std. diff Paracetamol Ibuprofen Std. diff

Number 288,967 382,749 187,137 187,137 132,910 132,910
Female % 62.9 57.8 0.105 61.5 62.5 − 0.020 61.0 61.7 − 0.014
Mean age, years (SD) 61.2 (20.6) 46.3 (17.3) 52.3 (18.9) 52.0 (18.9) 52.7 (19.5) 52.9 (19.3)
Age, years %
 15–19 2.6 5.1 − 0.133 4.0 4.1 − 0.004 4.4 4.4 − 0.001
 20–24 4.2 7.7 − 0.148 6.0 6.1 − 0.005 6.1 5.9 0.005
 25–29 4.3 7.4 − 0.132 6.1 6.3 − 0.009 5.8 5.6 0.007
 30–34 4.4 7.9 − 0.144 6.4 6.6 − 0.009 6.1 6.0 0.002
 35–39 4.5 9.0 − 0.181 6.4 6.4 − 0.002 6.4 6.2 0.009
 40–44 4.7 9.8 − 0.200 6.6 6.5 0.003 6.8 6.5 0.010
 45–49 4.9 9.4 − 0.175 6.9 6.7 0.006 6.9 6.7 0.008
 50–54 5.3 8.4 − 0.125 7.1 7.0 0.007 7.0 6.8 0.006
 55–59 6.0 7.7 − 0.070 7.8 7.7 0.004 7.3 7.4 − 0.003
 60–64 9.4 9.7 − 0.009 11.8 11.9 − 0.004 11.2 11.7 − 0.013
 65–69 9.5 6.8 0.098 10.5 10.6 − 0.004 9.9 10.4 − 0.017
 70–74 10.0 4.8 0.201 8.8 8.7 0.001 8.4 8.7 − 0.012
 75–79 10.2 3.2 0.282 6.1 5.9 0.005 6.5 6.7 − 0.008
 80–84 9.4 1.9 0.331 3.4 3.3 0.003 4.2 4.2 0.004
 85–89 6.6 0.8 0.307 1.5 1.4 0.005 2.1 1.9 0.010
 90–94 3.1 0.3 0.222 0.5 0.5 0.006 0.7 0.6 0.011
 95–99 0.9 0.1 0.120 0.1 0.1 0.005 0.2 0.1 0.009

Index year (%)
 2005 12.7 14.1 − 0.041 12.3 14.0 − 0.052 13.4 13.3 0.005
 2006 11.2 13.0 − 0.054 11.0 12.9 − 0.059 12.1 11.8 0.010
 2007 10.2 11.8 − 0.050 9.9 11.7 − 0.056 10.7 10.4 0.009
 2008 10.3 11.2 − 0.030 10.2 11.0 − 0.026 10.5 10.6 − 0.004
 2009 10.1 10.7 − 0.021 10.2 10.6 − 0.015 10.2 10.1 0.004
 2010 9.9 10.0 − 0.003 10.1 9.9 0.008 9.8 9.8 0.000
 2011 9.5 9.2 0.010 9.5 9.1 0.015 9.3 9.2 0.002
 2012 9.8 8.0 0.060 10.0 8.2 0.062 9.2 9.5 − 0.012
 2013 8.9 6.7 0.081 9.1 6.9 0.079 8.1 8.3 − 0.006
 2014 7.6 5.4 0.088 7.6 5.6 0.082 6.8 7.1 − 0.011

Conditions, %
 Smoker 2.0 2.0 0.000 2.2 2.2 0.005 2.2 2.1 0.001
 Osteoarthritis 19.4 9.4 0.286 14.5 13.4 0.030 14.4 14.5 − 0.004
 Neoplasm of prostate 1.1 0.4 0.078 0.6 0.7 − 0.016 0.7 0.7 − 0.002
 Hyperthyroidism 0.9 0.6 0.031 0.7 0.7 0.002 0.7 0.7 0.001
 Inflammatory bowel disease 0.6 0.3 0.055 0.5 0.3 0.019 0.4 0.4 − 0.002
 Rheumatoid arthritis 1.0 0.4 0.077 0.8 0.6 0.024 0.6 0.7 − 0.006
 Heart failure 2.3 0.2 0.192 0.5 0.3 0.028 0.5 0.4 0.011
 Ischemic heart disease 3.9 0.6 0.220 1.3 1.0 0.021 1.3 1.2 0.011
 Essential hypertension 16.1 7.9 0.254 11.5 11.8 − 0.009 11.7 12.1 − 0.014
 Hyperlipidemia 7.3 4.1 0.141 5.7 5.7 − 0.001 5.7 5.8 − 0.005
 Cerebrovascular disease 3.2 0.4 0.209 0.8 0.7 0.015 0.9 0.8 0.005

Drugs, %
 Cardiac glycosides 3.0 0.2 0.229 0.4 0.3 0.020 0.5 0.4 0.020
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drug was higher in the paracetamol cohort than the ibupro-
fen cohort, reflecting channeling, which was reduced after 
matching. In general, matching on either the publication or 
the full set of covariates reduced the differences between 
the cohorts.

The reductions in the SMDs for the covariates between 
cohorts following matching varied (Fig. 3). Prior to match-
ing on the publication covariates (Fig. 3a), the SMDs ranged 
up to about 0.42 (x-axis), indicating appreciable differences 
in the distributions of these covariates between the two pop-
ulations. Following matching, the SMDs ranged to less than 

0.05 (y-axis), indicating more balance in baseline character-
istics between the populations.

As an indication of the residual difference in the data after 
matching on publication variables, the SMDs for the full set 
of covariates in the model using propensity scores developed 
only from the publication covariates (Fig. 3b) shows poor 
balance both before and after matching. Prior to matching, 
the SMDs ranged up to about 0.5. After matching the SMDs 
were still as high as 0.35, indicating a substantial imbalance 
among variables not represented in the past publications, 
despite adequate balance of the publication variables. The 
following are representative of the covariates for which the 

NSAID nonsteroidal anti-inflammatory drug, SD standard deviation, Std. diff standardized difference
a These were from the period prior to 12 months prior to index date

Table 3  (continued)

Characteristic Before matching After matching on publication 
covariates

After matching on full set of 
covariates

Paracetamol Ibuprofen Std. diff Paracetamol Ibuprofen Std. diff Paracetamol Ibuprofen Std. diff

 Corticosteroids for systemic 
use

17.2 10.2 0.205 13.3 13.6 − 0.011 13.0 13.1 − 0.003

 Antibacterials for systemic 
use

51.7 41.7 0.201 48.4 49.0 − 0.011 47.2 47.7 − 0.010

 Proton pump inhibitors 23.8 14.1 0.250 19.5 19.6 − 0.001 17.8 18.2  − 0.010
 Agents acting on the renin-

angiotensin system
21.5 8.6 0.365 13.5 13.5 − 0.002 13.7 13.9 − 0.008

 Other NSAIDs and nonsteroi-
dal anti-rheumaticsa

1.2 1.1 0.015 1.3 1.2 0.008 1.3 1.3 − 0.001

 Other  analgesicsa 16.5 5.8 0.344 16.0 6.7 0.296 10.0 9.9 0.003
 Anxiolytics 7.9 5.8 0.085 7.0 7.2 − 0.008 6.7 6.6 0.001
 Hypnotics and sedatives 9.3 4.8 0.176 7.2 6.6 0.026 6.7 6.7 0.002
 HMG-CoA reductase inhibi-

tors
18.8 8.1 0.316 12.4 12.5 − 0.001 12.6 12.8 − 0.006

 Vitamin K antagonists 7.2 0.5 0.356 1.4 0.9 0.056 1.4 1.1 0.028

Fig. 3  Scatter plot of the covariate balance standardized mean differ-
ence a publication covariates before and after matching on the publi-
cation variable model, b covariate balance of all covariates before and 

after matching on the publications variable model, and c covariate 
balance of all covariates before and after matching on the all covari-
ates model
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SMD was among the highest: pain at a specific anatomical 
site, opioid prescription on or in the 30 days prior to the 
index date, prescription for cough and cold preparations on 
or prior to the index date, and prescription for codeine on or 
prior to the index date.

For the full set of covariates (Fig. 3c), prior to matching, 
the SMDs varied up to about 0.5 in the publication covari-
ates. Following matching, the SMDs were no more than 0.05.

The area under the receiver operating characteristics 
curve (ROC AUC) was derived from the models limited to 
the publication covariates and, separately, from the models 
including the full set of covariates. The full set of covari-
ates model provided better discrimination (AUC = 0.88) 
between the patients receiving paracetamol and those receiv-
ing ibuprofen compared to the publication covariates model 
(AUC = 0.77).

The distribution of exposure time for patients exposed 
to either paracetamol or ibuprofen was examined (On-line 
Fig. 1; see the electronic supplementary material). The mean 
ages of the two cohorts differed substantially. Over 75% of 
each cohort was exposed for 30 days or fewer. By 90 days 
after the index date, less than 10% of each cohort continued 
to be exposed to either paracetamol or ibuprofen.

To check that the proportional hazards assumption held 
for each of the analyses, Kaplan–Meier plots for the on-treat-
ment exposure for each outcome of interest were generated 
(On-line Fig. 2; see the electronic supplementary material). 
The curves suggest that the proportional hazards assumption 
holds for analyses of stroke, MI, and GI bleeding, but may 
not hold for renal insufficiency.

The results of the primary analysis are shown in Table 4 
and Fig. 4. After matching on the publication covariates 

propensity score model, all outcomes resulted in a statis-
tically significant uncalibrated HR of paracetamol versus 
ibuprofen, except for MI (HR 1.48, 95% CI 0.88–2.54). For 
stroke, the HR was 2.67 (95% CI 1.10–7.43), for GI bleed 
it was 1.81 (95% CI 1.49–2.20), and for renal failure it was 
4.86 (95% CI 2.29–11.95). In contrast, in the models after 
matching using all available covariates in the propensity 
score model, the HRs were attenuated compared to those 
based on the publication variables and none of the outcomes 
were statistically significant using traditional (uncalibrated) 
p value calculations, with the exception of GI bleed (HR 
1.36, 95% CI 1.10–1.68). The HR for stroke was 2.20 (95% 
CI 0.80–6.98), for MI was 1.29 (95% CI 0.69–2.47) and for 
renal failure was 1.25 (95% CI 0.59–2.72). Using calibrated 
p values and CIs, none of the associations were statistically 
significant (see Table 4). 

Figure 4 shows scatter plots of the HR by standard error 
from the Cox proportional hazard models with calibrated 
confidence regions for both adjustment approaches. The fig-
ures include the negative control HR outcomes (blue points) 
and the HRs for the outcomes of interest (yellow diamonds). 
Estimates below the dashed line (gray area) have p < 0.05 
using the traditional p value calculation. Estimates below the 
dark orange line have p < 0.05 using the calibrated p values. 
The shaded region around the dark orange line represents the 
uncertainty (as reflected by a 95% credible interval) in the 
empirical calibration. The extent of systematic error is dem-
onstrated in the distance the negative controls are from the 
vertical line at 1.0 and the number that fall in the traditional 
significance region (below the dashed line). The asymmetry 
of the distribution around 1.0 is evidence of bias.

Fig. 4  Hazard ratio and standard error estimates from a propensity 
score matched comparison on-treatment analysis between paraceta-
mol and ibuprofen users using either a publication covariates or b 
the full set of covariates. Estimates below the dashed line (grey area) 

have a p value of < 0.05 using traditional p value calculation. Esti-
mates below the orange line have a p value of < 0.05 using the cali-
brated p values. Blue dots indicate negative controls, and yellow dia-
monds indicate the outcomes of interest
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The negative controls showed there was considerable con-
founding in the data (Fig. 4) and were observed to produce 
estimates anywhere in the range from HR = 0.5 to 2 that 
would meet traditional conventions of statistical significance 
at p < 0.05. The rate of error was well beyond the 5% false 
positive expected by chance alone. The residual confounding 
under the publication variables model (Fig. 4a) was substan-
tial. The residual confounding under the full set of covari-
ates propensity score model (Fig. 4b) was also substantial, 
though less so than for the publication covariates model. The 
graphs in Fig. 4 also show the outcomes of interest (yellow 
diamonds), which were mostly not significant after propen-
sity score matching according to the traditional p value cut-
off (except for renal failure in the publications model) and 
after calibration (exceed the dark orange line).

We conducted two sensitivity analyses assessing both 
90-day and 365-day paracetamol and ibuprofen exposures. 
These results are shown in Table 5 and Figs. 5 and 6. A 
similar pattern was seen here where the models using full 
covariate matching had consistently smaller effect estimates 
relative to the publication covariates for all outcomes. The 
CIs in the LSPS-based models were narrowed compared to 
the publication covariate models, showing greater precision. 
However, for the calibrated estimates, the negative controls 
indicated that there was still substantial risk of residual con-
founding, preventing valid statistical interpretation of the 
CIs.

4  Discussion

In this study, we assessed whether using LSPS matching 
would enable estimation of the causal association of par-
acetamol versus ibuprofen for risk of MI, stroke, GI bleed, 
and acute renal failure. In a prior study of paracetamol and 

ibuprofen [13], the objective of which was to assess chan-
neling bias, LSPS matching was better at controlling for 
residual confounding in estimating associations between 
exposure and negative control outcomes than the use of a 
selected list of variables in the propensity score model. As in 
the prior study, this study showed that using LSPS matching 
improved control for confounding, as evidenced by exami-
nation of the covariate balance. Additional confounding 
adjustment using the LSPS model had a material impact by 
reducing the effect estimates for these outcomes.

Matching on publication covariates and using on-treat-
ment time at risk in the Cox models showed much larger 
residual bias than matching on LSPS. The change in sig-
nificance of the outcomes of interest between the two Cox 
models (publication covariates vs. full set of covariates) sug-
gests that the more complete approach to confounding con-
trol substantially impacts study results and raises questions 
about conclusions from earlier comparative outcome studies 
that used selected covariates for confounder control. It is 
important to point out that we capture covariates before (and 
on) the day of treatment assignment. Therefore, even if the 
covariates are differentially misclassified, one would expect 
decreases in precision (i.e., power), not increases in bias.

Even after matching on LSPS, the HRs for the negative 
controls remained very broadly dispersed and over 20% fell 
into the traditional significance region, violating the premise 
of a 5% probability of significance by chance alone under 
the null hypothesis and indicating substantial residual bias. 
After p value calibration, no outcomes of interest were statis-
tically significant. Given this dispersion of the negative con-
trols, we can neither confirm nor reject the possibility of an 
increased risk of these outcomes with paracetamol compared 
to ibuprofen. This does not imply there is no effect, just 
that given the observed residual bias, using these methods 
on these data, we are not able to discern an effect. In other 

Table 4  Cox proportional 
hazard analysis of on-treatment 
exposure to paracetamol vs. 
ibuprofen on stroke, MI, GI 
bleeding, and renal failure (non-
chronic) with patients matched 
by either publication covariates 
or the full set of covariates

Bold text indicates statistically significant results
CI confidence interval, GI gastrointestinal, HR hazard ratio, MI myocardial infarction

Propensity score matched Calibrated estimates

HR (95% CI) Null p HR (95% CI) Null p

Publication covariates
 Stroke 2.67 (1.10–7.43) 0.045 3.53 (0.51–62.91) 0.154
 MI 1.48 (0.88–2.54) 0.150 1.89 (0.28–21.78) 0.405
 GI bleed 1.81 (1.49–2.20) < 0.001 2.34 (0.42–27.27) 0.241
 Renal failure 4.86 (2.29–11.95) < 0.001 6.65 (1.17–143.67) 0.026

Full set of covariates
 Stroke 2.20 (0.80–6.98) 0.154 2.89 (0.60–35.84) 0.155
 MI 1.29 (0.69–2.47) 0.428 1.60 (0.41–10.27) 0.397
 GI bleed 1.36 (1.10–1.68) 0.004 1.68 (0.60–9.12) 0.232
 Renal failure 1.25 (0.59–2.72) 0.569 1.54 (0.34–10.62) 0.475
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Table 5  Cox proportional 
hazard analysis of 90-day 
or 365-day intent to treat 
exposures to paracetamol vs. 
ibuprofen on stroke, MI, GI 
bleeding, and renal failure (non-
chronic) with patients matched 
by either publication covariates 
or the full set of covariates

Bold text indicates statistically significant results
CI confidence interval, GI gastrointestinal, HR hazard ratio, MI myocardial infarction

90-day intent to treat 365-day intent to treat

HR (95% CI) Null p Calibrated p HR (95% CI) Null p Calibrated p

Publication covariate matched
 Stroke 2.05 (1.22–3.57) 0.009 0.195 1.78 (1.31–2.43) < 0.001 0.104
 MI 1.12 (0.85–1.49) 0.432 0.699 1.15 (0.99–1.33) 0.071 0.578
 GI bleed 1.44 (1.28–1.63) < 0.001 0.409 1.31 (1.22–1.40) < 0.001 0.358
 Renal failure 3.12 (2.03–4.94) < 0.001 0.045 2.58 (2.00–3.35) < 0.001 0.009

Full set of covariates matched
 Stroke 1.65 (0.91–3.07) 0.107 0.173 1.15 (0.81–1.64) 0.426 0.441
 MI 1.12 (0.82–1.54) 0.474 0.559 1.00 (0.84–1.19) 1.000 0.803
 GI bleed 1.12 (0.97–1.28) 0.114 0.524 1.14 (1.05–1.24) 0.001 0.298
 Renal failure 1.35 (0.81–2.26) 0.253 0.334 1.54 (1.14–2.10) 0.005 0.036

Fig. 5  Hazard ratio and standard error estimates from a propensity score matched comparison of 90 day exposure analyses between paracetamol 
and ibuprofen users using either a publication covariates or b the full set of covariates

Fig. 6  Hazard ratio and standard error estimates from a propensity score matched comparison of 365 day exposure analyses between paraceta-
mol and ibuprofen users using either a publication covariates or b the full set of covariates
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studies [28–30], where we used negative controls selected in 
a similar way, we observed far less residual bias, suggesting 
that it is the comparison between paracetamol and ibuprofen 
that is problematic; neither of the two approaches to adjust 
for confounding were able to fully adjust for the inherent 
differences between these two exposure groups.

The purpose of the sensitivity analyses was to explore 
the robustness of the on-treatment results by repeating the 
analyses under 90-day and 365-day risk windows. Under 
these scenarios, the observation windows were increased 
beyond the prescription duration, which was 30 days, on 
average. With the expanded time-at-risk window, the num-
ber of events increased, leading to narrower CIs; however, 
the dispersion of the negative controls, while reduced, dem-
onstrated substantial systematic error in comparison with 
the outcomes of interest. In the end, it was not possible to 
discriminate RRs of the outcomes of interest from the nega-
tive controls.

There have been numerous prior observational cohort 
studies examining adverse outcomes in paracetamol use with 
inconsistent results [1–3, 7–11]. The extent to which they 
attempted to control for confounding varied, though all were 
likely influenced by residual confounding. A few examples 
are offered here. One was a Danish population-based cohort 
study of cause of death among adult paracetamol users [2]. 
They used a standardized mortality ratio (SMR) analysis, 
which only controlled for age group, to compare to the gen-
eral population. Mortality was significantly elevated for all 
causes of death examined, including specific cancers (e.g., 
breast, prostate, ovary), liver and renal disease, and cardio-
vascular diseases. SMRs were highest in the first year after 
prescription and tended toward 1.0 with increasing years of 
follow-up. Patterns by number of prescriptions were essen-
tially flat for most outcomes except renal failure (a known 
adverse event for NSAIDs), which increased risk with more 
prescriptions. The authors noted that cancer is a “registered 
indication for use of paracetamol in Denmark” and also that 
standard textbooks in Denmark recommend paracetamol for 
first-line treatment of pain in chronic, nonmalignant condi-
tions, and cancer, in office practice as well as in hospital. 
According to the authors, these patterns of association were 
likely due to confounding with the indication, and stated 
future studies would need to evaluate such confounding in 
the assessment of causal association.

Several studies have examined incident hypertension and 
change in kidney function [creatinine and estimated glomer-
ular filtration rate (eGFR)] in established cohorts such as 
the Nurses’ Health Study (NHS) and the Physicians’ Health 
study (PHS) [7, 9–11]. Curhan et al. [11] used the NHS to 
examine the effects of lifetime use of paracetamol, aspirin, 
and NSAIDs in an 11-year follow-up study, adjusting for 
selected covariates at baseline. They reported a significant 
decline in GFR with increased lifetime paracetamol use. 

However, no significant differences were found for aspirin 
and NSAIDs. Given the warnings about renal disease in the 
labels for NSAIDS, this pattern is suggestive of channeling 
and confounding by contraindication.

In another NHS study, Dedier et al. [9] examined the risk 
of incident hypertension with the use of paracetamol, aspi-
rin, and NSAIDs, compared to no use (of each analgesic in 
separate regressions) over an 8-year follow-up period. After 
adjusting for selected covariates, the odds ratios (ORs) for 
incident hypertension among women with the highest fre-
quency of use (22 days/month) were significantly increased 
for paracetamol, aspirin, and NSAIDs. For each analgesic 
type, there was a significant trend in frequency of use.

Chan et al. [4] using the NHS examined frequency of use 
of paracetamol, NSAIDs, and aspirin on the risk of cardio-
vascular events including nonfatal MI, nonfatal stroke, fatal 
coronary heart disease, and fatal stroke. In multivariate mod-
els with selected covariates, including other analgesics, com-
pared to no use, using at least 22 days per month the relative 
risk (RR) for paracetamol was 1.35 (95% CI 1.14–1.59). 
Frequent (≥ 22 days/month) use of NSAIDs compared to no 
use was also associated with increased risk for cardiovas-
cular events: RR = 1.44 (95% CI 1.27–1.65). The results for 
aspirin were not significant and did not suggest increased 
risk for cardiovascular outcomes.

Kurth et al. [7] used the PHS to examine creatinine and 
GFR associated with analgesics use (lifetime total number of 
pills) compared to no use in a 14-year follow-up study. After 
adjusting for selected baseline covariates including total 
analgesic use (one of the few that did), ORs for paracetamol, 
aspirin, and other NSAIDs were not significantly associated 
with increased creatinine levels or decreased GFRs.

De Vries et al. [3] used the same data source as the pre-
sent study to examine risk of several outcomes, including 
MI, stroke, GI bleeding, renal failure, congestive heart fail-
ure, and mortality, for prescription of paracetamol alone, 
ibuprofen alone, and concomitant exposure (both paraceta-
mol and ibuprofen prescribed on the same day). Recogniz-
ing the presence of substantial heterogeneity, they tested the 
robustness of the data by analyzing risks for varying dosage 
patterns (first prescription, long gap, medication posses-
sion ratio) in current use. For MI, stroke, and renal failure, 
the RR for first prescription of current versus past use was 
statistically significant for paracetamol alone (without con-
comitant ibuprofen), in multivariable models adjusted for 
selected covariates. The corresponding RRs for ibuprofen 
alone and concomitant with paracetamol were only signifi-
cant for renal failure.

Most recently, Roberts et al. [1] conducted a systematic 
review of observational studies of adverse effects of paracet-
amol compared with non-use. Because exposure and out-
come measures differed across studies, combined estimates 
could only be generated (online supplement) for incident 
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hypertension based on Curhan et al. [10] and Dedier et al. 
[9] and showed significant results for frequencies over 5 days 
per month. Forest plots for other outcomes by dose, fre-
quency, or quantity suggested associations. While acknowl-
edging that channeling bias may have played an important 
role, they did not consider that bias due to severity of disease 
or symptoms being treated were also consistent with the 
dose–response results.

The sensitivity analyses to understand the robustness of 
results included a 90-day and 365-day treatment window. 
The 90-day risk window is plausible for medications taken 
as needed, while a 365-day risk window is less plausible. The 
sensitivity analyses risked introducing bias by lengthening the 
time between measurement of the exposure, baseline covari-
ates, and outcome and increasing the possibility that confound-
ers were misclassified. These sensitivity analyses may more 
closely replicate findings from prior cohort studies with long 
follow-up times [3, 4, 7, 9–11] than the on-treatment analy-
ses. Curhan et al. [11] examined renal function decline over 
a period of 11 years. Chan et al. [4] followed participants for 
12 years, and Dedier et al. [9] followed participants for 8 years. 
Kurth et al. [7] followed participants in the PHS for 14 years. 
Lipworth et al. [2], using a retrospective database, had a mean 
follow-up of 3.5 years since first prescription. De Vries et al. 
[3] had a mean follow-up of 6.9 years for the paracetamol and 
4.4 years for the ibuprofen cohorts. In the primary analyses, 
the treatment windows were defined as current use ending 
3 months after the estimated end of the prescription. In addi-
tional analyses by De Vries et al., crude hazard rates were cal-
culated up to 36 months following first exposure.

In the current study, full covariate adjustment had a sub-
stantial impact on the risk estimates for all outcomes. Prior 
publications have presented effect estimates on a variety of 
adverse outcomes using adjustment methods based on lim-
ited selections of baseline variables and likely understated 
the degree of uncertainty inherent in their conclusions due to 
residual error in their analytic design. We found that, despite 
LSPS adjustment and calibration for negative controls, sub-
stantial risk of residual error persisted, suggesting the need 
for caution in the interpretation of nominal statistics. A strik-
ing feature of the calibrated CIs is how wide they are. These 
models are recognizing the variability in the negative control 
outcome HR estimates and appropriately add uncertainty 
into the estimates.

4.1  Strengths

As part of the assessment of adverse outcomes in paraceta-
mol use, we also demonstrated the impact of incomplete 
adjustment for confounding. In prior studies, much of the 
confounding has been attributed to channeling bias, but the 
extent of that influence has not been measured. Here we 
used standardized differences to measure the adequacy of 

adjustment. The large magnitude in numerous standard-
ized differences in a wider range of available variables after 
matching on publication covariates indicated important dif-
ferences in the comparison groups.

This is the first study of adverse outcomes in paracetamol 
versus ibuprofen to make use of negative controls to evaluate 
the adequacy of the study design to control for systematic 
bias. We observed that there was substantial error in the data 
after controlling for possible confounding through the use 
of LSPS matching. The magnitude of error contradicts and 
questions the certainty of conclusions in some prior studies 
on the risk of paracetamol versus other OTC analgesics.

4.2  Limitations

The data source for this study does not capture all exposures 
for single-ingredient paracetamol and ibuprofen since small 
quantity packages are also available OTC. The reasons for a 
GP to prescribe a medication that is available OTC are dis-
cussed in Sect. 2.2 and include patient need for long-term med-
ication as well as issues related to cost. Patients in the study 
therefore may be either sicker or in a lower income group than 
those missed, since long-term or lower income users would be 
more likely to benefit from having the prescription dispens-
ings where there is no cost. Non-differential misclassification 
of exposure is expected to bias estimates toward 1.0, but the 
direction of potential exposure misclassification is unknown 
here. Despite our use of both LSPS matching and negative 
controls for calibration, we were not able to entirely mitigate 
the error in the data. Exposure due to OTC use as well as 
potentially important confounders such as exercise, education, 
and occupation were not captured in the data.

Furthermore, the censoring on discontinuation of a drug 
could be informative censoring if the discontinuation is for 
reasons that are predictive of study outcomes.

Ideally, negative controls would be selected not only for 
not being impacted by the exposure of interest, but also 
for being subject to the same mechanism of confounding 
as might affect the study being conducted. However, we 
believe the mechanism of confounding is unknowable, and if 
knowable, such perfect negative controls may not exist. Our 
selection of negative controls therefore focused on the for-
mer criterion and used a large sample of negative controls, 
assuming that this samples from the types of confounding 
that could exist in our study.

5  Conclusions

In this comparative cohort study assessing use of propen-
sity score matching in the estimation of risk of MI, stroke, 
GI bleed, and acute renal failure in patients treated with 
paracetamol versus ibuprofen, results varied substantially 
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depending on the models used to control for confound-
ing and bias. LSPS matching resulted in attenuated effects 
and increased precision. After calibration, substantial bias 
remained, undermining the ability to reasonably discern 
or rule out an effect of paracetamol exposure on these out-
comes. For comparisons of paracetamol versus ibuprofen, 
when using our methods against the CPRD, it is only possi-
ble to distinguish true effects, if those true effects are large 
(HR > 2), due to residual bias. For the outcomes under 
study here, where we would expect smaller HRs even if 
there were a true effect, they cannot be readily differenti-
ated from null effects. In other words, only true effects that 
rise above the null effects, as estimated by the negative 
controls, can be detected. Therefore, we cannot conclude 
that paracetamol increases risk relative to ibuprofen, nor 
can we conclude it does not, based on these data alone. 
Future research on adverse health outcomes’ association 
with paracetamol versus ibuprofen should demonstrate 
adequate adjustment for bias or include a measure of the 
success of such adjustment.
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