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Abstract
Introduction Adverse event (AE) under-reporting has been a recurrent issue raised during health authorities Good Clinical 
Practices (GCP) inspections and audits. Moreover, safety under-reporting poses a risk to patient safety and data integrity. 
The current clinical Quality Assurance (QA) practices used to detect AE under-reporting rely heavily on investigator site 
and study audits. Yet several sponsors and institutions have had repeated findings related to safety reporting, and this has led 
to delays in regulatory submissions. Recent developments in data management and IT systems allow data scientists to apply 
techniques such as machine learning to detect AE under-reporting in an automated fashion.
Objective In this project, we developed a predictive model that enables Roche/Genentech Quality Program Leads oversight 
of AE reporting at the program, study, site, and patient level. This project was part of a broader effort at Roche/Genentech 
Product Development Quality to apply advanced analytics to augment and complement traditional clinical QA approaches.
Method We used a curated data set from 104 completed Roche/Genentech sponsored clinical studies to train a machine 
learning model to predict the expected number of AEs. Our final model used 54 features built on patient (e.g., demographics, 
vitals) and study attributes (e.g., molecule class, disease area).
Results In order to evaluate model performance, we tested how well it would detect simulated test cases based on data 
not used for model training. For relevant simulation scenarios of 25%, 50%, and 75% under-reporting on the site level, our 
model scored an area under the curve (AUC) of the receiver operating characteristic (ROC) curve of 0.62, 0.79, and 0.92, 
respectively.
Conclusion The model has been deployed to evaluate safety reporting performance in a set of ongoing studies in the form 
of a QA/dashboard cockpit available to Roche Quality Program Leads. Applicability and production performance will be 
assessed over the next 12–24 months in which we will develop a validation strategy to fully integrate our model into Roche 
QA processes.
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Key Points 

Safety under-reporting is a recurrent issue in clinical 
trials.

We built a machine learning model that detects under-
reporting of adverse events.

This model is used to trigger quality assurance activities 
to protect patient safety and to avoid delayed filing.

1 Introduction

Compliance with the fundamental principles of Good Clini-
cal Practice (GCP) ensures the rights, safety, and wellbe-
ing of research subjects and ensures the integrity of clinical 
research data. Trial sponsors are required by the Interna-
tional Conference on Harmonization (ICH) guidelines to 

implement and maintain quality assurance (QA) and quality 
control systems to achieve these objectives [1].

One of the main issues reported in GCP health authority 
inspections and sponsor audits is the lack of adverse event 
(AE) reporting from the investigator sites to the sponsor [2, 
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3]. Under-reporting poses a significant risk to data integrity 
and to patient safety [1, 4–6]. Furthermore, several sponsors 
have failed to mitigate AE under-reporting and this has led 
to delays in regulatory submission or to non-approval of 
new drugs [6, 7].

Finally, there are also some concerns that safety data col-
lected in randomized controlled trials (RCTs) have limita-
tions [8] that could be aggravated by AE under-reporting. 
First of all, the sample size of RCTs is tailored to detect drug 
efficacy but not to statistically detect incidents that occur 
with a lower rate than a positive drug response. Furthermore, 
RCT AE reporting and analysis standards (lack of time-to-
event reporting, using standardized incidence ratios, and 
normalizing by patient-years) favor the detection of AEs that 
can occur with a uniform risk rate over the entire observation 
window over detection of those AEs that have high risk rates 
at a specific time frame inside the observation window [8]. 
In the light of these limitations, which make statistical AE 
detection in the setting of RCTs very challenging, it becomes 
evident that AE under-reporting poses a great risk to the 
detection of AEs and to patient safety.

Current clinical QA practices heavily rely on audits to 
detect sites or studies with quality issues, including AE 
under-reporting [9]. The increasing number of clinical tri-
als and sites and the growing complexity of study designs 
make it challenging to detect AE under-reporting. Current 
site monitoring strategies, which rely on on-site source 
data verification (SDV) and on risk-based approaches, are 
attempting to address the issue [10, 11], yet AE under-
reporting remains as a common audit and inspection find-
ing [2].

A holistic QA approach that addresses the above raised 
issues concerning AE reporting is not currently available. 
However, the industry has recently been trying to leverage 
modern developments in data management and IT systems 
that facilitate the cross-analysis of clinical studies. Sta-
tistical analysis can be performed on this data based on 
certain attributes to help identify issues in safety reporting 
and to be able to estimate or predict the number of AEs 
reported per patient. We used our combined, historical 
clinical study data to develop a predictive model for the 
expected number of AEs per patient based on study and 
patient attributes including but not limited to therapeu-
tic area, study design, mechanism of drug action, mode 
of administration, vitals, commonly assessed laboratory 
measurements, medical history and concomitant medica-
tions. We propose a model that will provide insight to 
clinical QA professionals to detect and mitigate safety 
reporting risks more holistically and efficiently.

The development of a predictive model that can help 
detect under-reporting requires a deep understanding of 
data science, clinical safety, and QA. The project has been 
conducted by the Roche/Genentech quality data analytics 

team, a team of data scientists, in collaboration with 
Roche/Genentech clinical and QA subject matter experts 
(SMEs).

The mission of the Roche/Genentech quality data ana-
lytics team is to build data-driven solutions for clinical 
QA at Roche/Genentech to complement and augment tra-
ditional QA approaches to improve the quality and over-
sight of GCP—and Good Pharmacovigilance Practices 
(GVP)—regulated activities.

2  Method

2.1  Outline and Assumptions

The objective of this proof-of-concept (PoC) effort was to 
develop and assess the performance of a predictive model 
that can help detect AE under-reporting and to develop a 
visual interface for QA professionals. The scope of this 
PoC was to predict AE under-reporting, not predicting 
adverse drug reactions that should occur in clinical trials. 
GCPs require all AEs, whether or not there might be a 
causal relationship between the intake of the drug and the 
events, to be reported timely to the sponsor [1].

The identification of study investigator sites suspected 
of under-reporting amounts to an unsupervised anomaly 
detection problem [12]. In this class of problems, one tries 
to identify which elements of a data set are anomalous; 
for example, which objects in a production line show a 
defect, or which study sites are not compliant with GCP. 
The main difference from a classification task is that the 
data points are unlabeled. Under the assumption that a 
majority of them behave normally, a possible approach to 
solve these problems is to fit a probability distribution to 
the data and flag as anomalous those data points that have 
a likelihood below a certain threshold. The performance 
of the anomaly detector can then be assessed with a small 
sample of anomalous points, either manually detected or 
simulated, and regular ones in the same way as one would 
assess a classifier, namely with metrics such as the area 
under the receiver operating characteristic (ROC) curve, 
precision, recall, or accuracy.

Working on the assumption that the curated data set of 
finished and completed studies used for model training 
contained a majority of compliant study sites (see also 
Sect. 2.2.1.), we could build a probabilistic model for 
the random variable Ysite describing the number of AEs 
reported by a given study site. We collected data from each 
site, which were modeled as a random variable Xsite , a fea-
ture vector that we believed had a direct influence on Ysite.

When we considered a new study site and made obser-
vations of the feature vector xsite and of the number ysite 
of reported AEs, from the conditional probability density 
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p
(
Ysite|Xsite

)
 of our model we computed the probability of 

observing this number of AEs or less, that we defined as 
the significance level. We then picked a threshold and we 
decided to act for significance levels below it.

Clinical trial data can be interpreted as a set of mul-
tivariate time series of measurements for each patient in 
the study (some of them being constant, for instance the 
demographic data). Furthermore, this data is typically col-
lected during the patient visits, which is when AEs are 
reported to the investigator [13]. Therefore, we decom-
posed the number of AEs ysite reported by a site into the 
sum of the numbers of AEs reported by the corresponding 
patients,

and similarly, the number of AEs reported by a patient into 
the sum of the numbers of AEs reported at each visit,

We could make predictions either at the site level, patient 
level, or visit level. Given the granularity of clinical data, we 
decided to focus on the visit level. A sudden change in vital 
parameters such as the weight could be indicative of health 
deterioration and thus the occurrence of AEs [14]. Moreover, 
once we used this model on ongoing studies, we wanted to be 
able to update our predictions as new data from the sites came 
in, which was easier to do if we started at the visit level.

We were thus interested in the probability density 
p
(
Yvisit|Xvisit

)
 conditioned on the feature vector Xvisit that sum-

marizes information on the patient known at the time of the 
visit. To estimate the relation between Xvisit and Yvisit , given 
the amount of historical data at our disposal, we decided to 
apply machine learning algorithms. The usual least squared 
error regression was ill-advised in this situation as it would 
imply that predicting zero AE instead of five costs the same 
as predicting 95 instead of 100, which was not the case. We 
could have considered logarithmic least squares, but since we 
were dealing with a count variable, it was best to minimize the 
Poisson deviance. In this class of models, the random variable 
Yvisit was interpreted as a Poisson process,

where we had to express the Poisson parameter �visit as a 
function of Xvisit . Due to the complexity of the underly-
ing biology of AEs, the empirical approach seemed more 
promising than theoretical modeling and we decided to 
use machine learning for this task. The advantage of this 
approach was that Poisson processes are additive in their 
parameters, so we immediately obtained:

Ysite =
∑

patient∈ site

Ypatient,

Ypatient =
∑

visit∈ patient

Yvisit.

Yvisit ∼ Poi
(
�visit

)
,

Ypatient ∼ Poi
(
�patient

)
, �patient =

∑

visit∈ patient

�visit,

Furthermore, assuming our estimate of �site was accurate, 
we could calculate the significance level of an observation 
of ysite adverse events,

Even if these assumptions did not hold perfectly and 
P
(
Ysite ≤ ysite|xsite

)
 was thus not a well-calibrated prob-

ability, we could still use it as a scoring function to detect 
under-reporting and evaluate its discriminating power with 
a ROC curve.

2.2  Data

2.2.1  Raw Data

The raw data set we used came from Roche/Genentech-spon-
sored clinical trials. We used common data attributes from 
104 completed studies that covered various molecule types 
and disease areas. The data set included 3231 individual 
investigator sites, with 18,682 study subjects that underwent 
288,254 study visits. Of note, any study subject data was 
used in a de-identified format. To mitigate the risk of having 
studies with under-reporting in our data set, we used only 
data from completed and terminated clinical trials, where 
AE reconciliation and SDV had been performed as part of 
the study closure activities. The six common patient data 
attributes across the studies that we selected in our curated 
data set were demographics, medical history, concomitant 
medications, vitals, visits, and adverse events, following the 
Study Data Tabulation Model (SDTM) standard [15]. As 
mentioned above, we focused on the visits, which we labeled 
by study code, patient number, and visit date. We also con-
sidered study attributes available in the Roche Clinical Trial 
Management System (CTMS) and included them in our data 
set: study type, route of administration, concomitant agents, 
disease area, blinding, randomization, and study phase. We 
used a different classification for the molecule classes and 
the disease areas from the one used in the Roche CTMS 
to ensure their clinical relevance in terms of AE reporting. 
Molecules were classified using the Anatomical Therapeutic 
Chemical (ATC) classification system [16]. For the disease 
areas, we used a simple classification that reflects the popu-
lations enrolled in our clinical trials (healthy participants, 
malignancies, autoimmune diseases, neurodegenerative 
diseases, respiratory diseases, skin disorders, lung diseases, 
infectious diseases, others). As we needed to have a model 
that can generalize to the diversity and volume of clinical 
studies we run at Roche/Genentech, we purposely chose 

Ysite ∼ Poi
(
�site

)
, s�site =

∑

patient∈ site

�patient.

S
(
xsite, ysite

)
= P

(
Ysite ≤ ysite|xsite

)
=

ysite∑

k=0

�
k
site

k!
e−�site .
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study and patient attributes that are systematically captured 
in our clinical programs. See Table 1 below for an overview 
of our curated data set.

2.2.2  Features and Targets

Each AE was assigned to the first visit following the onset 
date and all AEs assigned to a specific visit were aggregated 
into the observation yvisit , that we tried to predict.

To construct features, we needed to project all data 
attributes to the visit level. For demographic characteris-
tics that were constant, such as sex and ethnicity, or had 
a direct dependence on the date, such as age, this was 
straightforward. For medical history, we counted the 
events that occurred before every visit. Since new entries 
from screening in the medical history section of the elec-
tronic case report form (eCRF) normally correspond to 
AEs that should get reported, they provide a strong signal. 
Similarly, we counted concomitant medications, because 
the more drugs a patient receives, the more AEs he will 
likely experience [14, 17]. From the vitals reported at each 
visit, we included blood pressure and its relative variation 
since the previous visit. We also used patient weight, its 
relative variation since the previous visit, and the trend 
over the last 3 weeks as attributes, as a change in weight 
could be linked to a worsening of health and hence the 
occurrence of AEs. The disease area, the molecule class 
and mechanism of action, and the route of administration 
were also included as categorical features, as these charac-
teristics have a strong influence on the type and number of 
AEs [14]. We picked the drug class instead of the molecule 
itself as a feature to ensure generalization to previously 
unseen drugs, consenting to increase the bias in order to 
reduce the variance. For a selection of the created features 
and how they correlate with the number of reported AEs, 
see Electronic Supplementary Material 1.

Before regrouping the features in the vector xvisit , we 
used one-hot encoding on the categorical variables, we 

raised the age variable to the power 1.4 in order to have 
a roughly normal distribution, and we standardized the 
continuous variables.

Once the set of features was selected, we relied on 
machine learning algorithms to pick the best ones through 
optimization of a loss function.

In our model, we used 54 features, with the highest 
contribution coming from the following ones:

• Number of previous visits made by the patient
• Cumulative count of concomitant medications up to the 

current visit
• Disease is a malignancy (Boolean)
• Disease is pulmonary but non-malignant (Boolean)
• Administration is oral (Boolean)

See Electronic Supplementary Material 2 for the full 
list of features used in the final model.

2.2.3  Training, Validation, and Test Sets

As in most machine learning projects, we split our data 
into a training, a validation, and a test set. The training set 
was used to minimize the loss function with respect to the 
parameters of the model, the validation set to control for 
overfitting and to pick the hyper-parameters of the model 
via grid search, and the test set finally to assess the gen-
eralization performance to new data [18]. In our case, the 
test set was also used for the simulation of under-reporting 
introduced in the outline.

It should be noted that we could not randomly assign 
each pair 

(
xvisit, yvisit

)
 to one of the three sets as we were 

ultimately interested in ysite , the count of adverse events 
reported by a single site. We needed to work on subsets 
Vsite =

{(
xvisit, yvisit

)
|visit ∈ site

}
 and assign each of them 

to one of the training, validation, and test sets. At the level 

Table 1  Attributes available in our curated data-set

AEs adverse events, SDTM study data tabulation model

Level Source Extracted data

Patient SDTM demographics Age, sex, ethnicity
Visit SDTM medical history Number of co-occurring conditions
Visit SDTM concomitant medications Number of concomitant medications
Visit SDTM vitals Height, weight, blood pressure
Visit SDTM visits Number of previous visits
Visit SDTM adverse events Number of reported AEs
Study Clinical Trial Management System Intervention type, route of administration, use of concomitant 

agents, phase, randomization, blinding, molecule class, disease 
type
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of the prediction for yvisit , this prevented data leakage due 
to a patient finding himself in two different sets.

We assumed that the molecule class had a signifi-
cant influence on the number of AEs [17]; therefore, we 
decided to stratify the sites by this factor when splitting 
them into the training, validation, and test sets, to ensure 
a representation of every class in each set.

While respecting these constraints, we tried to assign 
roughly 60% of the sites to the training set and 20% each 
to the validation and test sets.

2.3  Under‑Reporting Simulation

In order to evaluate how the significance level S
(
xsite, ysite

)
 

discriminates under-reporting anomalies from normal behav-
ior, we had to simulate under-reporting sites due to the lack of 
real-world examples where all necessary data attributes had 
been captured. To do so, we picked a sample EUR of the test 
set Etest where we artificially lowered the AE count ysite to 
simulate under-reporting. Explicitly, for each pair (
xsite, ysite

)
∈ EUR from this sample of the test set, we built an 

under-reporting pair 
(
xsite, y

site

)
 , with y

site
< ysite. How much 

smaller than ysite depended on how we wanted to define under-
reporting, which required input from subject matter experts. 
We defined three types of scenarios (described below), one 
following a statistical approach, one reducing all AEs by a 
fixed ratio, and one simulating absence of reporting.

The negative cases 
{(

xsite, ysite, lsite = 0
)
|site ∈ Etest

}
 of 

under-reporting, where lsite denotes the label for the classifica-
tion problem, from the test set could then be merged with the 
positive cases 

{(
xsite, y

site
, lsite = 1

)
|site ∈ EUR ⊂ Etest

}
 of 

under-reporting from the simulated under-reporting set to form 
the classification test set, from which we could build a ROC 
curve for the significance levels S

(
xsite, ysite

)
 and S

(
xsite, y

site

)
 . 

We selected a sample instead of the whole test set to exclude 
sites where the difference between ysite and y

site
 would be too 

low to be worrisome from a quality perspective and would 
therefore add unnecessary noise in the evaluation of the mod-
els. In defining the under-reporting scenarios, we thus had to 
specify y

site
 as a function of ysite and which sites to keep in EUR.

2.3.1  Statistical Scenario

The ‘statistical scenario’ relied on the assumption that the total 
number of AEs reported by a single site followed a Poisson 
distribution, Ysite ∼ Poi

(
�site

)
 . Our best estimate for �site was 

given by the observed number ysite of AEs, and a low number 
of reported AEs could be defined as the first percentile of this 
distribution Poi

(
ysite

)
,

where QD denotes the quantile function of probability distri-
bution D . Table 2 summarizes a few values of this function. 
We kept in the under-reporting sample EUR only the sites 
with ysite ≥ 8.

2.3.2  Ratio Scenarios

In the ‘ratio scenarios’, we arbitrarily kept a fixed fraction of 
AEs. We tried several values, namely y

site
= 0.75 × ysite (25% 

under-reporting), y
site

= 0.5 × ysite (50% under-reporting), 
y
site

= 0.33 × ysite (67% under-reporting), y
site

= 0.25 × ysite 
(75% under-reporting) and y

site
= 0.10 × ysite (90% under-

reporting), and again we kept in the under-reporting sample 
EUR only the sites with ysite ≥ 8.

2.3.3  Zero Scenario

The ‘zero scenario’ simulated the absence of reporting from 
the smaller sites, so we set y

site
= 0 and retained only those 

with 10 patients or fewer but at least six reported AEs in 
total for the positive cases. In our test set, those represented 
329 sites out of 643.

2.4  Machine Learning Algorithm

The problem of modeling the number of adverse 
events reported on a given visit as a Poisson process, 
Yvisit ∼ Poi

(
�visit

)
 , could be tackled with machine learning. 

Given observations xvisit and yvisit of the features and num-
bers of reported AEs, the goal was to find an approximation 
f
(
xvisit

)
 of yvisit that minimizes a loss function,

where the sum runs over all visits in the training set and the 
individual loss l

(
yvisit, f

(
xvisit

))
 penalizes inaccuracy in the 

individual prediction of yvisit . Its exact form depends on the 
type of modeling. For Poisson processes, it is the Poisson 
deviance

y
site

= QPoi(ysite)(0.01),

L(f ) =
∑

visit

l
(
yvisit, f

(
xvisit

))
,

Table 2  Examples of simulated values of under-reporting in the statistical scenario

y
site

1 5 10 50 100 500 1000
y
site

0 1 3 34 77 449 927
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Several algorithms are suitable to optimize this loss func-
tion, the most commonly used are generalized linear models 
[19], gradient boosting machines [20], and neural networks. 
We dismissed neural networks as we felt the limited signal 
to noise ratio did not justify the investment in computational 
power and architecture design. We tried the other two algo-
rithms and obtained the best performance with gradient 
boosting machines, so we settled for this one. A thorough 
introduction can be found in The elements of statistical 
learning: data mining, inference and prediction [21], but 
we provide a brief overview of the algorithm here.

A regression tree would try to solve this optimization 
problem by successively splitting regions of the feature 
space in halves and assigning a value for f

(
xvisit

)
 to each 

region of the final partition. While the accuracy of a single 
tree is fairly low, ensemble methods such as gradient boost-
ing machines or random forests aggregate the predictions 
of many trees in a weighted average and achieve a much 
better performance. A gradient boosting machine constructs 
this average iteratively: it starts with a simple estimate and 
successively updates its current prediction with a new tree 
that tries to replicate the current gradient of the loss func-
tion. This approach was inspired by the gradient descent 
methods widely used in optimization, which gave the name 
of the algorithm.

2.5  Implementation

We stored our data in a Hadoop [22] cluster to ensure scal-
ability to an arbitrary number of studies, with the data 
preprocessing and feature engineering coded in PySpark. 
Several software packages offer more or less sophisticated 
implementations of gradient boosting machines. They 
mainly differ by the way single trees are fit to the current 
gradient of the loss function and by different performance 
optimizations. We used the Sparkling Water [23] implemen-
tation of H2O, which would allow our entire pipeline to be 
easily exported as a Spark application if we decided, for 
instance, to move to a cloud-based solution.

3  Results

Based on the simulated under-reporting scenarios described 
in Sect. 2.3 and the predictions of our trained gradient boost-
ing machines on the test set, we obtained the following ROC 
curves for the task of detecting under-reporting with a score 
function given by the significance levels of the observations 
and the simulated reduced values. For the statistical scenario 

l
(
yvisit, f

(
xvisit

))
= 2

(
yvisit log

yvisit

f
(
xvisit

) − yvisit + f
(
xvisit

)
)
.

Fig. 1  Receiver operating characteristic (ROC) curve for the statisti-
cal scenario

Fig. 2  Receiver operating characteristic (ROC) curve for the zero sce-
nario (for small investigator sites)

Fig. 3  Receiver operating characteristic (ROC) curves for the per-
centage scenarios. UR under-reporting
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(see Sect. 2.3.2), our model scored an area under the ROC 
curve of 0.67 (see Fig. 1).

For the zero scenario (small investigator site), our model 
scored an area under the ROC curve of 0.97 (see Fig. 2). For 
the scenarios of 25%, 50%, 67%, and 75% under-reporting 
on the site level, our model scored an area under the ROC 
curve of 0.62, 0.79, 0.89, and 0.92, respectively (see Fig. 3).

We used a trade-off between true positive rates and false pos-
itive rates to define alert levels in order to prioritize the study 
sites to be further investigated. See Sect. 4 for more details.  

4  Discussion

We built a visual and interactive dashboard using 
 Tableau®. Data from ongoing clinical studies were col-
lected on a monthly basis and fed to our model in order 
to get updated values and predictions for the volume of 
reported AEs. Of note, it is planned to feed our model 
with data from ongoing clinical studies on a daily basis to 
generate updated predictions in real time.

In order to detect sites that were at risk of under-report-
ing, we used the findings from the simulation scenarios 
to derive an alert level (AL) flagging system. The signifi-
cance level score for each site allowed us to rank the sites 
by risk of under-reporting; however, a reasonable cut-off 
had to be found to determine which of the high-risk sites 
needed to be flagged for the end user. In order to calcu-
late the best trade-off between maximizing true positive 
rate (tpr) and minimizing false positive rate (fpr), we used 
Youden’s J statistics [24] on each simulation scenario. We 
identified three consecutive threshold values that allowed 
us to group all sites into four groups (AL3, AL2, AL1, 
AL0), with AL3 indicating the highest risk and AL0 the 
lowest risk for under-reporting. The tpr for all simulation 
scenarios and the corresponding fpr are listed in Table 3.

The fpr of each alert level is indicative of the minimum 
percentage of sites that will be flagged in a set of data from 
ongoing studies, all of which will need to be screened in 
order to detect true under-reporting sites with the indicated 
performance metrics. If the percentage of under-reporting 
sites in our sample were exceptionally high (> 1%), the 

percentage of sites being flagged would increase accord-
ingly but without affecting the tpr metric. Based on those 
assumptions, we can interpret the performance for AL3 
as follows: by reviewing the top ~ 14% of the sites with 
the highest under-reporting risk predicted by our model, 
we will identify 95% of small sites not reporting any 
AEs, 80% of all sites with 75% under-reporting, 72% of 
all sites with 67% under-reporting, 50% of all sites with 
50% under-reporting and 31% of all sites with 25% AE 
under-reporting. We can reasonably increase these detec-
tion rates by including sites flagged with AL2 and AL1 
into our reviewing process.

The alert levels are displayed on the dashboard along 
with other important site parameters. Access to it has been 
granted to quality program leads at Roche/Genentech. 
It allows a holistic and nearly real-time quality oversight 
for safety reporting. Studies and sites that are suspected of 
under-reporting will be considered at risk and will trigger 
additional quality activities (e.g., audits). The tool will also 
be used by auditors to select sites and/or patients for review 
during study or investigator site audits.

As explained in the introduction, current clinical QA 
practices heavily rely on investigator and study audits [9]. 
For quality oversight activities, our predictive model has a 
significant advantage, as it enables holistic and real-time 
monitoring of safety reporting at various levels, which had 
not been possible when solely relying upon audits. With the 
current performance, a site that reported significantly fewer 
AEs than predicted (e.g., 67% under-reporting and more, 
see Sect. 3) would very likely be detected early enough 
that quality program leads can trigger mitigation activities. 
For audit selection and planning, risk factors such as high 
recruiting sites/studies and other quality indicators were 
used to prioritize audits. The output of our predictive model 
could be integrated to refine the current risk assessment pro-
cess. During audits, the current practice for site or patient 
selection was mainly based on random sampling and adher-
ence to defined quality indicators; hence our model enables 
data-driven selection of patients (during site audits) and of 
study sites (during study audits).

Health Authorities inspectors and GCP requirements do 
not provide any defined threshold on what is considered AE 

Table 3  Performance metrics 
for sites grouped by different 
alert levels

fpr false positive rate, tpr true positive rate

Alert level 3 Alert level 2–3 Alert level 1–3 Alert level 0

fpr 0.14 0.22 0.25 0.75
Zero scenario tpr 0.95 0.99 0.99 0.01
75% under-reporting tpr 0.80 0.90 0.91 0.09
67% under-reporting tpr 0.72 0.84 0.86 0.14
50% under-reporting tpr 0.50 0.64 0.66 0.36
25% under-reporting tpr 0.31 0.37 0.39 0.61
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under-reporting. However, the regulatory guidelines empha-
size that a risk-based approach should be applied and quality 
assurance teams must focus on the highest risk areas [1–3]. 
Hence, we proposed various thresholds of under-reporting 
(Sect. 2.3.1) to assess if the model performance will enable 
detection of the most problematic investigator sites. In this 
context, our model allows us to pursue a risk-based approach 
when screening sites for safety reporting issues. By focusing 
on 14% of the high-risk study sites as ranked by our model, 
we will be able to detect 95% of small sites with no under-
reporting, 80% of sites with 75% under-reporting, 72% 
of sites with 67% under-reporting, 50% of sites with 50% 
under-reporting, and 31% of sites with 25% under-report-
ing. The level of performance of our predictive model was 
perfectly acceptable in the context of being used by quality 
program leads (program, study, and site oversight), quality 
strategists (audit selection and planning) and auditors (site 
and patient review selection), as it provided a more robust 
quantification of the risk of under-reporting than the current 
standard. Our predictive model and its associated visualiza-
tion have been designed to be fit for purpose for clinical 
QA. However, we will share our approach, our models, and 
the associated tool with other teams responsible for study 
oversights, namely study teams and clinical monitors. Such 
a tool and approach could also be used for site monitoring, 
especially in the context of centralized and/or risk-based 
monitoring.

4.1  Limitations

The main obstacle we had to overcome in this work was 
the absence of labeled positive cases of under-reporting to 
evaluate our models. As a work-around, we simulated under-
reporting at the site level because our end-goal was the iden-
tification of suspicious sites, and summation across several 
patients made our somehow simplistic statistical scenarios 
more likely than if we had applied them at patient level. We 
picked our approach of combining machine learning with a 
probabilistic interpretation of the results for computational 
reasons and the immediate availability of off-the-shelf prod-
ucts. The price to pay was that the significance levels we 
computed were not well-calibrated probabilities, because 
they failed to capture the uncertainty in the prediction of 
�visit and by extension of �patient . As a result, we could not be 
certain that a good performance at detecting under-reporting 
at the site level would translate well to the patient level. 
A fully probabilistic, well-calibrated model would be more 
reliable. Potential approaches include probabilistic graphical 
models and Bayesian neural networks.

Our models have been trained solely on Roche/Genen-
tech-sponsored clinical trial data. Access to clinical trial 
data from other sponsors would be a prerequisite to assess 
the performance of our models on non-Roche/Genentech 

clinical studies. We are considering approaching other spon-
sors and regulators to further assess the performance of our 
models and possibly teaming up to build the next version 
of the model to detect AE under-reporting. Further analysis 
using real-world data will also be performed with an upcom-
ing collaboration effort with Flatiron Health that provide 
curated real-world data. Once we have extended our data 
corpus, we will seek to develop a new modeling strategy 
that allows us to differentiate between study types during 
the evaluation of model performance.

At the time of the experiment, we did not have access to 
a curated data set that would allow us to map clinical inves-
tigator sites to specific countries/regions. As AE reporting 
culture might differ from one country/region to another [25], 
we are considering the integration of geographical locations 
of studies and sites as a feature in the next version of our 
model.

5  Conclusions

In this paper, we presented the development of a predictive 
model that enabled detection of suspected AE under-report-
ing. Our model scored an AUC of the ROC curve of 0.62, 
0.79, and 0.92 when tested at different scenarios: 25%, 50%, 
and 75% of AE under-reporting, respectively. The model 
is now being used by Quality Program Leads at Roche/
Genentech on a limited number of ongoing studies. It will 
be deployed in production in the course of 2019/2020 and 
will be applied to all ongoing clinical studies. This is part 
of a broader effort at Roche/Genentech Product Quality to 
leverage advanced analytics to augment and complement tra-
ditional clinical QA approaches. With regards to the model 
itself, there are plans to enhance it in the coming months. 
The next version will assess alternative machine learning 
models (as explained in Sect. 4.). It will also integrate addi-
tional clinical study data sets and other data sources, such 
as—but not limited to—site/study geographical location.
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