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Abstract
Introduction  Identifying occurrences of medication side effects and adverse drug events (ADEs) is an important and chal-
lenging task because they are frequently only mentioned in clinical narrative and are not formally reported.
Methods  We developed a natural language processing (NLP) system that aims to identify mentions of symptoms and drugs 
in clinical notes and label the relationship between the mentions as indications or ADEs. The system leverages an existing 
word embeddings model with induced word clusters for dimensionality reduction. It employs a conditional random field 
(CRF) model for named entity recognition (NER) and a random forest model for relation extraction (RE).
Results  Final performance of each model was evaluated separately and then combined on a manually annotated evaluation 
set. The micro-averaged F1 score was 80.9% for NER, 88.1% for RE, and 61.2% for the integrated systems. Outputs from 
our systems were submitted to the NLP Challenges for Detecting Medication and Adverse Drug Events from Electronic 
Health Records (MADE 1.0) competition (Yu et al. in http://bio-nlp.org/index​.php/proje​cts/39-nlp-chall​enges​, 2018). Sys-
tem performance was evaluated in three tasks (NER, RE, and complete system) with multiple teams submitting output from 
their systems for each task. Our RE system placed first in Task 2 of the challenge and our integrated system achieved third 
place in Task 3.
Conclusion  Adding to the growing number of publications that utilize NLP to detect occurrences of ADEs, our study illus-
trates the benefits of employing innovative feature engineering.

Key Points 

Narrative clinical notes in electronic health records 
are frequently the only documentation of an occurred 
adverse drug event (ADE).

Natural language processing (NLP) can be employed to 
identify mentions of drugs and symptoms to facilitate 
detection of ADE mentions in clinical text.

While still an active area of research, progress is made in 
improving methods for NLP for ADE mention detection 
using advanced algorithms.

1  Introduction

Pharmacovigilance is a broad spectrum of activities that focus 
on identifying and preventing adverse drug events (ADEs), 
as well as understanding the risk factors and causes of ADEs 
when they do occur [2]. Relying on ADEs formally and 
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spontaneously reported to the Food and Drug Administra-
tion (FDA) will inevitably lead to underestimating the risks 
imposed by medications [3]. In an effort to improve patient 
safety as well as mitigating risks, healthcare organizations have 
started implementing automated ADE detecting systems in 
electronic health records (EHRs) [4]. It has been long rec-
ognized that clinical narrative is the best source of informa-
tion about suspected events related to medication [5]. While 
structured data in EHRs typically contain prescription and 
fill information for medications, as well as coded diagnoses, 
clinical narratives often provide descriptions of relationships 
between these concepts, such as a medicine prescribed to treat 
a condition or a side effect or ADE that may have occurred 
because of treatment. A wide variety of natural language pro-
cessing (NLP) approaches have been previously explored in 
order to discover relationships between drugs and symptoms 
in EHRs as well as to learn about potential risks from biomedi-
cal literature [6, 7]. Despite progress in development of text 
processing techniques, clinical narrative continues to be an 
underutilized source of data for identifying unreported ADEs. 
Language variability as well as local environmental differences 
between different clinical settings limit adoption of NLP solu-
tions across organizational boundaries [8].

Powerful machine learning algorithms based on deep 
learning, such as recurrent neural network (RNN) and con-
volutional neural network (CNN) that use pre-trained word 
embeddings [9, 10], have shown great results in their abil-
ity to capture complex relationships between concepts in text 
without effortful feature engineering [11]. RNN models have 
been accepted as the current state-of-the-art approach to labe-
ling sequential data. While often high performing, training 
RNN is a computationally intensive process that takes time 
and possibly specialized hardware such as a graphic processing 
unit (GPU) [12]. Healthcare organizations as well as clinical 
research teams frequently lack the computational infrastructure 
needed for implementation of the latest text processing tech-
niques, thus limiting their adoption [13]. Therefore, despite 
great advances in availability of high-performance computing 
infrastructures, it is essential to develop NLP systems that are 
fast, accurate, easily trainable in a new domain, and do not 
require specialized hardware.

We present a system that automatically identifies ADEs 
explicitly stated in clinical narratives as well as other infor-
mation about patient drug treatments as submitted to the 
NLP Challenges for Detecting Medication and Adverse Drug 
Events from Electronic Health Records (MADE 1.0) and our 
methods for all three tasks of the challenge [1, 14].

2 � Methods

2.1 � Data

A research team at the University of Massachusetts 
(UMASS) Medical School organized a shared task to 
tackle the problem of accurate detection of adverse drug 
events in clinical narrative. Detailed description of the 
shared task is presented elsewhere [14]. The shared task 
organizers prepared a set of de-identified clinical notes 
from the UMASS hospital and manually annotated them 
with the following categories:

•	 Drug, defined as any mention of a medication, includ-
ing brand and generic names, as well as frequently used 
abbreviations.

•	 Indication, defined as a symptom that is a reason for 
drug administration.

•	 Adverse Drug Event (ADE), defined as a sign or symp-
tom that resulted from a drug.

•	 Other Signs, Symptoms and Diseases (SSLIF), defined 
as any other sign or symptom that is not directly related 
to any drug mentioned in the note.

•	 Drug Frequency, defined as prescribed or suggested 
frequency of drug administration, such as ‘once per 
day’, or ‘as needed’.

•	 Drug Dose, or Dosage, defined as the amount of drug 
administered at one time.

•	 Drug Duration, defined as the length of time of a sin-
gle prescription episode, such as ‘for 10 days’, or ‘for 
2 weeks’.

•	 Drug Route, defined as the mode of administering the 
medication, such as ‘oral’, or ‘intravenous’.

•	 Severity, defined as the extent the disease or symptom 
affects the patient, such as ‘some’, or ‘severe’.

The annotated set also included relationships between 
different concepts (drugs, ADEs, indications, and signs 
and symptoms) that linked drug names to drug attrib-
utes (dose, route, frequency, and duration), drug names 
to ADEs, drug names to indications, and symptoms to 
severity.

The data set was split into two parts for training and 
testing of NLP systems and the sets were distributed to the 
participating teams at different times (see Table 1).

2.2 � System Design

In accordance with a well established approach, our NLP 
system has two main modules: (1) identifying mentions of 
drugs, drug attributes, and symptoms as they are mentioned 
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in clinical notes; and (2) classifying relationships between 
concepts with a set of predefined labels [6, 15].

2.2.1 � Named Entity Recognition (NER)

Named Entity Recognition (NER) is a fundamental task 
in NLP that focuses on discovering mentions of a limited 
set of concept types. The traditional approach to the task is 
to use a predefined dictionary and expert-driven syntactic 
and semantic rules [16]. In the absence of a comprehensive 
dictionary for broad categories, statistical and supervised 
learning methods have been widely employed. Sequence-
based classifier algorithms allow incorporating contextual 
information into the classification model. Deep learning 
algorithms for sequence-based classification are becoming 
increasingly popular for clinical NER because they alleviate 
the need for manual feature selection [17]. The main limi-
tation of using neural networks is that model optimization 
typically involves hundreds or thousands of training itera-
tions to perform hyperparameter search and cross-validation. 
While computational intensity of deep learning algorithms 
is widely recognized, challenges of working with such 
algorithms are frequently dismissed by citing availability 
of specialized hardware such as GPUs. In practice, while 
GPU acceleration aids in training neural network models, 
such hardware may not be available in all development and 
deployment environments. As Domingos writes, “machine 
learning is not a one shot process of building a dataset and 

running a learner, but rather an iterative process of running 
the learner, analyzing the results, modifying the data and/
or the learner, and repeating” [18]. When deciding on an 
appropriate algorithm, system designers have to consider 
the balance between the expert time and computational time. 
Due to the timing and resource constraints, we have selected 
to use a less computationally intensive algorithm and focus 
on feature engineering. Conditional random field (CRF) is 
a supervised machine learning classification algorithm that 
is simpler and, thus, faster training than RNN, but has the 
potential to perform well with minimal feature engineering 
[19]. The purpose of the constructed NER module was to 
label each token identified in clinical documents as one of 
the categories listed in Sect. 2.1.

Feature engineering is often a major step in building 
machine learning applications. One approach to representing 
words in text as numeric vectors is called word embeddings. 
The main benefit of word embeddings is that a model can 
be created from a large set of unlabeled documents and then 
reused for a variety of use cases [20]. For our system we 
used two sets of pretrained word embeddings as the basis for 
features. One set was trained as a continuous bag of words 
from public sources and nearly 100,000 EHR notes [21, 22]. 
Another set was trained as skip gram without any EHR data 
[23]. These sets are referred to as EHR and NoEHR embed-
dings in our system design description.

Following a previously described approach [20, 24–26], 
we included word embedding as cluster features rather than 
continuous values. The word embeddings vocabulary con-
tained over 5 million features, therefore, we trained clus-
ters with Mini-batch K-Means to work within available 
memory [27]. In addition, we included multiple cluster 
sizes (K = 500, 5000, 10000) and compound cluster features 
formed from token bigrams (e.g., “Cluster17_Cluster22”) to 
capture generalizable phrases as opposed to strict bigrams 
as suggested by Guo et al. [20].

To identify known medications, the system included a 
lexicon of drug names using resources from MedEx [28]. 
This lexicon was then used to perform term matching in both 
local windows and in the entire sentence context.

The NER processing contained the following steps:

1.	 Sentence splitting using both a limited set of custom 
regular expressions and the Natural Language Toolkit 
(NLTK) [29].

2.	 Tokenization and part of speech (POS) labeling using 
NLTK.

3.	 Detecting mentions of known drug names using a lexi-
con developed from MedEx resources.

4.	 Building feature vectors from a variety of features.

The set of features included in the final model are as 
follows:

Table 1   Concept instance distribution in training and testing sets

ADE adverse drug event, SSLIF other signs, symptoms, and diseases 

Concept Instance count in 
training set

Instance count 
in testing set

Categories
 Drug 13,508 2395
 Indication 3168 636
 Frequency 4147 659
 Severity 3374 534
 Dose 4893 801
 Duration 765 133
 Route 2278 389
 ADE 1509 431
 SSLIF 34,056 5328

Relationships
 Severity 3476 559
 Manner/route 2551 455
 Reason 4554 876
 Dosage 5177 866
 Duration 906 147
 Frequency 4419 730
 Adverse 2082 530
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•	 Local features (window = 2 tokens):

•	 Token, stem, POS tag
•	 Patterns of capitalization, digits, and punctuation
•	 Prefix and suffix characters (n = 2, 3)
•	 Embedding clusters from unigrams and bigrams
•	 Drug lexicon match

•	 Sentence features:
•	 Drug lexicon match to the left or right of the current 

word
We utilized an annotated set of 876 clinical notes pro-

vided by MADE 1.0 organizers for training a CRF model 
for the NER module of the ADE detection system. The CRF 
model was trained using CRFSuite via the sklearn-crfsuite 
package available for scikit-learn [30, 31].

2.2.2 � Relation Extraction (RE)

Once entities are detected in clinical documents, appropriate 
entities have to be linked in a relationship that represents 
the connection between these entities. For our system, rela-
tionships had to be identified between drug names and drug 
attributes—duration, route, frequency, and dosage; between 
drug names and symptoms that they caused—ADEs (labeled 
as Adverse), or that are reasons for prescription—indications 
(labeled as Reason); and between symptoms and severity 
concepts (labeled as Severity). Building the RE module was 
treated as a traditional supervised classification problem. 
We utilized features suggested by [32, 33]. Specifically, we 
extracted three types of features:

•	 Candidate Entities: Information about pairs of entities 
being considered for a relation:

•	 Entity types
•	 Entity word forms

•	 Entities Between: Other entities that appear between can-
didates

•	 Entity types
•	 Number of entities

•	 Surface Features: Tokens and POS tags between and 
neighboring the candidate entities

•	 N-grams (n = 1–3)
•	 Window size (1–3)
•	 Number of tokens.

We divided RE into two subtasks: first, relation detec-
tion, which is a binary classification of whether any sort 

of relation exists between two entities; and second, relation 
classification, in which we classify what specific relation 
type exists [34]. Using a binary model for the first subtask 
helps to remove a number of false relations and improves 
classification precision. The multi-class classifier used by 
the second subtask is applied to all candidate pairs that were 
predicted to have a relation. Both classifiers are random for-
est models implemented in scikit-learn [31].

2.2.3 � Full System

The integrated system combined NER and RE into a single 
pipeline with no additional processing. Source text is pro-
cessed by the NER system preparing documents in BioC 
format [35], which the RE system augments with predicted 
relations.

3 � Results

The NLP system validation was performed against the eval-
uation set provided by the MADE 1.0 challenge and our 
system performance was compared with performances of 
other submitted systems. The MADE 1.0 challenge defined 
a distinction between ‘standard’ and ‘extended’ resources 
employed by designed systems. Standard resources included 
only data resources provided by the challenge organizers, 
which were the EHR trained word embeddings. Any other 
resources could be used in the system design as extended. 
The final challenge results were initially reported on stand-
ard resources only; however, we also share findings when 
additional resources were used (e.g., NoEHR embeddings 
and MedEx) to illustrate how these resources improved 
performance.

The challenge was organized as three tasks: (1) NER, (2) 
RE, and (3) full system. The evaluation set contained 213 
annotated documents that were used to obtain the valida-
tion results. Final performance of each model was evalu-
ated separately and then combined on the evaluation. The 
micro-averaged F1 score was 80.9% for NER, 88.1% for RE, 
and 61.2% for the final system. During development and 
system training, a hold-out set containing 20% of the train-
ing data was used to evaluate the feature contribution for the 
RE model as well as detailed error analysis for the two main 
modules. The full evaluation set was used to evaluate the 
NER model feature contribution and error analysis.

3.1 � Named Entity Recognition (NER) Results

Overall and per-label performance for our optimal NER 
model is presented in Table 2 while Table 3 summarizes 
the contributions from each feature class in the NER model. 



151NLP for ADE Detection in Clinical Notes

Performance was lowest on the ADE and Indication labels 
where recall was much lower than in the other classes.

Besides optimizing for F1, one of our objectives in using 
a CRF model was to allow rapid development of features 
and reduced training times. Wall time on CPU for extracting 
features for over 800 documents was measured at 2.5 min. In 
the system submitted to the MADE challenge, the optimizer 
for the training algorithm was L-BFGS [36].

Following the challenge, we corresponded with some of 
the top performing teams on the NER task. Since many of 

them used some form of RNN, we wanted to compare the 
time required to train our respective models. One example 
of training time comparison between our CRF model and the 
top performing system is shown in Table 4.

While the top performing team reported that one training 
fold of their model required approximately 4 h on GPU, we 
make a rough comparison by estimating the range of CPU 
training time from reported figures of 2 × to 15 × increase in 
training time [12, 38].

3.2 � RE Results

Per-label performance using the final 213 evaluation docu-
ments for the RE model is shown in Table 5. Performance 
was lowest on ‘Adverse’ and ‘Reason’. We performed addi-
tional analysis using an initial hold-out set of 176 documents 
from the training set. The contribution of each feature set is 
shown in Table 6.

3.3 � Integrated System Results

The results for the final system are shown in Table 7.

Table 2   Performance metrics of 
the CRF NER model on the 213 
final evaluation documents

ADE adverse drug event, CRF conditional random field, NER named entity recognition, SSLIF other signs, 
symptoms, and diagnoses

Label Standard resources Extended resources

Precision Recall F1 Precision Recall F1

Route 94.4 87.4 90.8 94.8 89.5 92.1
Drug 90.1 83.7 86.8 91.1 86.1 88.6
Dose 89.2 83.5 86.3 89.8 85.4 87.5
Frequency 85.2 79.2 82.1 88.7 83.2 85.8
Severity 86.8 77.3 81.8 87.3 75.7 81.0
SSLIF 79.1 80.2 79.7 80.1 80.4 80.2
Duration 75.4 69.1 72.2 74.6 68.4 71.4
ADE 75.7 32.5 45.5 75.8 38.5 51.1
Indication 63.2 33.8 44.1 67.0 38.7 49.1
Overall micro 82.8 76.7 79.6 83.8 78.1 80.9

Table 3   Contribution of NER 
model features by strict (exact 
text match) micro-averaged 
metrics

Baseline features were comprised of commonly used NER features such as tokens, stems, parts of speech 
and lexical patterns of capitalization, digits, and punctuation
EHR electronic health record, NER named entity recognition

Features Precision Recall F1

Baseline 82.1 71.4 76.4
+ Character features 75.6 74.6 77.9
+ Drug features 83.1 74.0 78.3
+ EHR embedding clusters (extended) 82.6 75.2 78.7
+ NoEHR embedding clusters (extended) 82.1 75.6 78.7
+ EHR and NoEHR embedding clusters (extended) 82.6 76.4 79.3
+ All features (standard) 82.8 76.7 79.6
+ All features (extended) 83.8 78.1 80.9

Table 4   Comparison of training time between our system and the top 
performing submission in the NER task

Bi bidirectional, CRF conditional random field, LSTM long short-
term memory, NER named entity recognition

Model type Team Time per train-
ing iteration 
(CPU)

Bi-LSTM-CRF Worcester Polytechnic 
Institute [37]

480–3600 min

CRF University of Utah 23 min
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3.4 � Error Analysis

As the overall micro-averaged F1 score of the NER is rela-
tively similar to the performance of other submissions, an 
error analysis was performed on the false negatives and 
positives on the ADE and Indication labels to categorize its 
incorrect predictions. We have identified the categories of 
errors starting with the most common in Table 8. Table 9 
outlines the main categories of errors found when evaluating 
accuracy of relationship classification.

4 � Discussion

Table 10 shows our final F1 scores on the 213 evaluation 
documents as reported by MADE 1.0 organizers using stand-
ard resources only. Table 11 shows the scores of our origi-
nal test submissions alongside the three highest-performing 
submissions. Our system was ranked first in Task 2 and third 
in Task 3. Our scores have improved in each task since test 
submission. The score for the NER system was improved by 
incorporating extended resources that were not considered 
in reporting of top submissions. The score for the RE system 
was improved by fixing an error with sampling techniques 
during training.

A useful contribution of our approach to building an NER 
model is that it can be trained relatively quickly on com-
monly available hardware compared with neural network 
approaches. Noting that training times in Table 4 reflect a 
single fold of training, model optimization is clearly a highly 
computationally intensive task. Completing model optimi-
zation requires either long running processes on a single 
compute node or resources such as compute clusters or cloud 

Table 5   Performance metrics of the relation extraction model on the 
final 213 evaluation documents

Relation category Precision Recall F1

Dosage 95.7 96.2 96.0
Frequency 97.1 92.3 94.7
Route 96.1 92.1 94.1
Severity 91.1 96.2 93.6
Duration 93.7 91.2 92.4
Reason 78.0 73.9 75.8
Adverse 78.7 68.3 73.1
Overall micro 90.3 85.9 88.1

Table 6   Contribution of features for the relation extraction model 
using a hold-out set of 176 documents

Features Precision Recall F1

Entities between candidates 28.4 35.4 31.5
Candidate entities 42.7 72.8 53.9
Surface 74.6 66.2 70.2
Candidate entities + other enti-

ties between
81.6 90.4 85.8

All features 91.7 91.2 91.4

Table 7   Micro-averaged performance metrics of the final integrated 
model on the final 213 evaluation documents

Relation category Precision Recall F1

Overall micro 72.1 53.4 61.2

Table 8   Error analysis from NER predictions related to ADE and indication labels

ADE adverse drug event, NER named entity recognition, SSLIF other signs, symptoms, and diseases

Error category Example Explanation

Mislabeled Indication when Drug is not 
mentioned

“Treating currently as if she had lymphoma” Without a mention of a Drug, Indication was 
predicted as SSLIF

Mislabeled SSLIF when unrelated Drug is 
mentioned

“History of lymphoma and was previously 
admitted for unrelated transplant and 
received aspirin at that time”

SSLIF was predicted as Indication due to Drug 
used in other treatment

Mislabeled SSLIF when Drug is not men-
tioned

“DISCHARGE DIAGNOSIS: Lymphoma” Unexplained error when SSLIF was labeled as 
Indication when there was no mention of a 
Drug or treatment

Misclassification in short sentences “No urinary symptoms” Sentence contains too few words and urinary 
symptoms was incorrectly predicted as SSLIF

New note formatting “ALLERGIES: Patient reported no itching or 
symptoms with the medication”

Allergy section format is different from training 
data, and ADE label was not assigned

Inconsistent prediction in a list “Discussed potential side effects which 
include headaches, nausea, vomiting, diar-
rhea”

Unexplained error when vomiting was predicted 
as SSLIF while the others were correctly 
predicted as ADE

Contraindication mislabeledf as ADE “Do not want to put her back on colchicine 
because of her peripheral neuropathy”

Contraindication diagnosis was predicted as 
ADE when Drug is mentioned
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computing services. Our findings suggest that employing 
deep learning techniques can be prohibitively expensive for 
a smaller research team with a short deadline. Using rapid 
feature engineering and training, we were able to quickly 
evaluate if our development efforts were successful.

Feature contribution shows that the NER model ben-
efited from feature engineering including usage of a drug 
lexicon. Additionally, embedding cluster features improved 

performance where the optimal performance was achieved 
by employing both sets of pretrained embeddings, even 
though one embedding set did not include EHR documents 
in its training corpus.

The RE system performed best on categories such as 
‘Route’, ‘Frequency’, and ‘Dose’, which are relatively simple 
statements that connect two entities that are often in close 
proximity in the text. The more challenging categories such 
as ‘Reason’ and ‘Adverse’ are often more linguistically com-
plex and may involve some inference to understand that the 
two involved entities are connected. These categories will 
benefit from a more thorough analysis.

Feature engineering was an important component of the 
RE system. Of the three base feature sets that we considered, 
the surface features were by far the highest performing on 
the hold-out validation set. Although using only informa-
tion about the entities being considered had a fairly low per-
formance, adding information about what kinds of entities 

Table 9   Error analysis on relation extraction errors from a hold-out set of 176 documents

ADE adverse drug event

Error category Example Explanation

Implicit relation “He did not have a fever with either cycles of 
chemotherapy, but he did have 1 episode of 
shingles”

Drug was not explicitly stated to cause ADE

Entities more than two sentences away from 
each other

“50yo male with a lymphoma. …PLAN: 1…, 
2. Thalidomide 50 mg a day”

Drug occurred in a different note section than 
Indication

Identical entity between first and second entity “Her hematologist looking to initiate eryth-
ropoietin. I have discussed side effects of 
erythropoietin and would start weekly 
injections”

Another mention of identical Drug occurred 
closer to Route

Relation belongs to similar entity “Patient received lidocaine and hydrocorti-
sone injection”

A different Drug has Route

Historical treatment “Patient presents for seventh cycle of hyper-
CVAD for mantle cell lymphoma. Prior treat-
ment consisted of cyclophosphamide”

Drug is not currently used as treatment for 
Indication

Annotation error “Gabapentin 300 mg 3 times daily” Frequency was not annotated with Drug

Table 10   Final evaluation 
scores for each task

NER named entity recognition, 
RE relation extraction

F1

Task 1—NER 79.6
Task 2—RE 88.1
Task 3—Integrated 

system
61.2

Table 11   F1 scores reported by 
the MADE 1.0 organizers of the 
original test submissions

The top three scores plus our score are shown for each task. Our scores are shown in italics
NER named entity recognition, RE relation extraction

Team name References Submission F1

Task 1—NER Worcester Polytechnic Institute [37] 82.9
IBM Research [39] 82.9
University of Florida [40] 82.3
University of Utah 79.6

Task 2—RE University of Utah 86.8
IBM Research [39] 84.0
University of Arizona [41] 83.2

Task 3—Integrated 
system

IBM Research [39] 61.7
University of Arizona [41] 59.9
University of Utah 59.2
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occur between them boosted performance considerably and 
resulted in a fairly competitive score. Using the union of all 
three resulted in the highest score.

The final integrated system combined both the NER and 
RE systems. The performance was significantly lower than 
the RE system using annotated documents, which shows the 
challenge of the integrated task.

Despite competing against more powerful and more com-
putationally intensive approaches implemented by other sub-
mitted systems, our system achieved comparable results. The 
RE model was the top performing model in its task and the 
final system placed among the top three submissions.

4.1 � Limitations

One limitation of the NER system is that the model assigns 
labels to SSLIF, ADE, and Indication in a single phase. 
Since these labels are all signs and symptoms with differing 
causality with respect to drugs, one possible improvement 
would be to establish a two-stage process. The first stage 
would combine the labels SSLIF/ADE/Indication into one 
label so that a second stage could disambiguate between 
these. Since the context window of the current CRF imple-
mentation is limited, the second stage could be a separate 
classifier that would use much more context than a single 
sentence to determine which label is the most appropriate. 
Features for this phase could include the current set but the 
features used in the RE system could also provide benefit. It 
would be interesting to see how such a staged architecture 
would perform compared with RNN models, which were the 
top performers in the challenge. Since feature engineering 
remained minimal, the CRF model would likely benefit from 
additional feature engineering for ADEs related in previ-
ous work [32]. One final limitation of the NER system that 
was seen during error analysis was that the current sentence 
detection algorithm was imperfect and often divided docu-
ments into sentences that were too small. Improved sentence 
breaking might particularly ameliorate the performance of 
ADE and Indication labels, as the current implementation 
limited the context available to one sentence, which was 
often far too short in size.

One other limitation of the integrated system was that 
we did not adjust either of the components (NER or RE) 
when combining them. Future work could focus on addi-
tional processing to improve the results when using both 
systems together.

Finally, since this challenge was conducted on a set of 
notes from oncology patients, it is unclear how well these 
models might generalize for pharmacovigilance in other 
medical domains. In future work, we intend to evaluate these 
models in the Department of Veterans Affairs to determine 
how well this work may translate to improving outcomes.

5 � Conclusion

Automatic detection of adverse drug events can potentially 
have a profound effect on patient safety and accurate drug 
risk assessment. We developed a natural language process-
ing system that can be retrained and applied in a new clinical 
setting without the use of specialized hardware, while still 
achieving performances comparable to more computation-
ally intensive algorithms without requiring extensive fea-
ture engineering. Future work will include additional fea-
tures and testing the system on a new dataset and in a new 
environment.

Source code for the NER system including feature extrac-
tion methods available at https​://githu​b.com/burge​rsmok​e/
MADE-CRF.
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