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Abstract Pharmacovigilance seeks to detect and describe

adverse drug reactions early. Ideally, we would like to see

objective evidence that a chosen signal detection approach

can be expected to be effective. The development and

evaluation of evidence-based methods require benchmarks

for signal detection performance, and recent years have

seen unprecedented efforts to build such reference sets.

Here, we argue that evaluation should be made against

emerging and not established adverse drug reactions, and

we present real-world examples that illustrate the relevance

of this to pharmacovigilance methods development for

both individual case reports and longitudinal health

records. The establishment of broader reference sets of

emerging safety signals must be made a top priority to

achieve more effective pharmacovigilance methods

development and evaluation.

1 Introduction

Once trapped and fenced in at the zoo, zebras are easy to

spot, but in the high grass and vast expanse of the savannah

they will often escape even the trained eye. Zebra-spotting

performance in the zoo cannot be extrapolated to the

savannah, nor can the optimal skill set, although there may

be some correlation. Therefore, aspiring trappers had better

abandon the zoo and seek more relevant terrain for

training.

A similar situation prevails in pharmacovigilance, where

our fundamental aim is to detect and describe adverse drug

reactions early, and where there are numerous possibilities

for how to do so. There are individual case reports [1],

longitudinal health records [2], internet search patterns [3]

and social media [4]. There is disproportionality analysis

[1], regression [5, 6], adjustment by propensity scores [7,

8], self-controlled designs [2, 9] and more. Expert judg-

ment is important in choosing methods and datasets for

pharmacovigilance, but ideally we would like to see

objective evidence that a chosen approach can be expected

to be effective. To this end, we need benchmarks for per-

formance evaluation. This is well-understood and broadly

accepted: recent years have seen unprecedented efforts to

build broad reference sets of established adverse drug

reactions and adverse events without evidence for (or with

evidence against) causal associations with a drug [10, 11].

If these reference sets indirectly (or directly, as in the

Observational Medical Outcomes Partnership studies)

drive our choice of analytical approach, then their choice of

positive and negative controls is essential. In particular, we

must be careful in distinguishing between emerging safety

signals and established causal associations, as they are

different in nature. Below, we present real-world examples

where evaluation of signal detection methods against

established safety signals yield fundamentally different

conclusions than evaluation against emerging safety sig-

nals. We show the relevance of these considerations in

pharmacovigilance methods development for both indi-

vidual case reports and longitudinal health records.
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2 Examples

As a first example, consider narcolepsy in children and

adolescents after Pandemrix vaccination. This safety signal

emerged in the wake of broad vaccination initiatives under

the pandemic threat of 2009. As of June 2014, there are 752

reports from 12 countries on the MedDRA� 1 Preferred

Term (PT) narcolepsy with Pandemrix vaccination in the

WHO global individual case safety reports database Vigi-

Base�. However, if we backdate our analysis to 17 August

2010, when the signal was first communicated to the gen-

eral public [12], there were only three reports of narcolepsy

after Pandemrix vaccination in VigiBase�, all originating

in Sweden. In other words, while early detection of this

signal in VigiBase� would require a reasonably sensitive

signal detection method, use of current data might lead us

to treat this as a true positive for almost any approach.

Now consider the challenge of evaluating signal detec-

tion performance against broad references of such positive

and negative controls. Contemporary research has reported

improved performance of multivariate analytics compared

to disproportionality screening, for the analysis of indi-

vidual case reports [6, 8]. This seems plausible, since the

new methods offer innovations such as adjustment for co-

medications and indications for treatment. On the other

hand, these studies have used established adverse drug

reactions as positive controls in their evaluation, and for

such benchmarks, simple report counts too can outperform

disproportionality analysis: Fig. 1 shows the sensitivity and

specificity for identifying established adverse drug reac-

tions at different thresholds for a disproportionality mea-

sure (lower limit of a 95 % credibility interval for the

Information Component (IC025) [13]) and for the raw

numbers of reports, respectively. Here, individual Med-

DRA� PTs corresponding to adverse reactions listed in

section 4.8 of the summary of product characteristics

(SmPC) for European centrally authorised products2 are

used as positive controls. These results show that report

counts are significantly better predictors than dispropor-

tionality measures for events listed on the SmPC, and based

on that one might be tempted to conclude that, as a com-

munity, we have wasted 15 years pursuing disproportion-

ality analysis, when we would have been better off

continuing to screen based on raw numbers of reports.

However, this conclusion would only be valid to the extent

that the reference were fit-for-purpose, and there is evi-

dence to suggest that it is not: Fig. 2 shows the corre-

sponding graph for historical safety signals from the

European Medicines Agency (EMA) [14] backdated to the

time around the initial signal investigations, at the end of

2004. Against this reference of emerging safety signals, the

pattern is reversed and disproportionality analysis performs

significantly better than raw numbers of reports. This lends

empirical support to our previous cautionary note con-

cerning performance evaluation of signal detection meth-

ods against established adverse drug reactions [15]: such

evaluations should ideally be avoided or else interpreted

with great caution. Furthermore, these results suggest that

any comparison of analysis methods for individual case

reports should include report counts as a comparator.

The sensitivity of spontaneous reporting rates to publi-

cation and selection biases is well-known, but the

1 MedDRA�, the Medical Dictionary for Regulatory Activities,

terminology developed under the auspices of the International

Conference on Harmonization of Technical Requirements for Reg-

istration of Pharmaceuticals for Human Use (ICH). MedDRA�

trademark is owned by the International Federation of Pharmaceutical

Manufacturers and Associations (IFPMA) on behalf of ICH.
2 http://www.imi-protect.eu/documents/FinalRepository_DLP30Jun

2012.xls
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Fig. 1 Sensitivity and specificity for established adverse drug

reactions of disproportionality analysis (IC025) and raw report counts,

respectively. The 16,811 positive controls of this reference set are

individual MedDRA� PTs corresponding to well-established adverse

drug reactions listed on the SmPCs for centrally authorised products

in Europe; the 16,811 negative controls are drugs paired with PTs for

which no other PT in the same MedDRA� High-Level Term were

listed on the drug’s European SmPC in 2012. Data for both positive

and negative controls were from VigiBase� as of May 2013.

Thresholds for the report counts yield better specificity than

thresholds for the disproportionality measure with the same sensitiv-

ity. The AUC values are 0.622 for IC025 and 0.739 for the raw report

counts (p � 0.05 according to DeLong’s test). AUC area under the

receiver operating characteristic curve, IC025 lower limit of a 95 %

credibility interval for the Information Component, PT Preferred

Term, SmPC summary of product characteristics
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distinction between established adverse drug reactions and

emerging safety signals is also important for empirical

evaluation of methods for screening longitudinal health

records. Patient management will differ depending on

whether an adverse event is believed to be causally

associated with the treatment of interest, and this can have

fundamental repercussions. As an example, a history of

gastrointestinal bleeding can be expected to reduce the

likelihood of future exposure to naproxen, as illustrated by

the analysis of UK electronic patient records from The

Health Improvement Network (THIN) shown in Fig. 3:

upper gastrointestinal bleeding is overall less common in

patients that receive naproxen, and particularly so in the

months leading up to first naproxen prescriptions. Such

explicit or implicit contraindications can make the risk

more difficult to detect with cohort designs and will

increase the apparent strength of association in self-

controlled analyses due to the artificially low rate of the

adverse event prior to first prescriptions. Taken together,

these two effects will bias methodological comparisons for

longitudinal health data in favour of self-controlled

designs [16, 17]. Similarly, known risks of adverse drug

reactions may stimulate closer monitoring for that adverse

event under a particular treatment, as exemplified by the

raised rate of acute liver injury (in this case, primarily

abnormal liver function tests) on the day of first simva-

statin prescriptions in Fig. 4. This is likely to reflect an

increased rate of testing in these patients, since statins

(HMG-CoA reductase inhibitors) are known to carry this

risk. However, such patterns of intensified monitoring in

direct conjunction with exposure are unlikely to occur for

drugs not yet suspected to cause the adverse reaction, and

so should not drive our choice of method for signal

detection.

3 Related Work

While still in the minority, there are studies that have gone

against the grain and evaluated methods against emerging

safety signals. One interesting example was the evaluation

undertaken by Bailey et al. [18], where prospective safety

signals identified through regular pharmacovigilance

activities during the course of the study were used as

positive controls. This closely mimics the real pharmaco-

vigilance setting and avoids the use of established adverse

drug reactions for positive controls. However, a main

limitation is the long time typically required to establish

the true status of positive and negative controls, and their

tentative nature along the way. Another significant chal-

lenge is that the signal detection activities to be evaluated

affect the classification of positive and negative controls in

non-trivial ways [19]. A more common approach has been

to use historical safety signals as positive controls, back-

dating the data to before their initial identification, as in

Fig. 2. An early example of this was the retrospective

analysis of VigiBase� by Lindquist et al. [20], whereas

more recent examples include the studies by Alvarez et al.

[14] and Strandell et al. [21]. The reference set proposed by

Alvarez et al. [14] is particularly interesting in that it

provides dates not just for the regulatory action associated

with each signal, but also the first dates that each signal

was first discussed by the EMA’s signal management team.

Retrospective analyses are not suitable for evaluation of

manual or semi-manual approaches since experienced

safety scientists cannot be blinded to the true status of

historical safety signals. However, beyond that, they are

likely to be our best bet. A significant limitation of previ-

ous reference sets of emerging safety signals is their lim-

ited scope. An important step to improve the situation is the
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Fig. 2 Sensitivity and specificity for emerging adverse drug reactions

of disproportionality analysis (IC025) and raw report counts, respec-

tively. The 264 positive controls of this reference set are pairs of

drugs and MedDRA� PTs corresponding to historical safety signals

derived from the study by Alvarez et al [14] backdated to around the

time of the initial signal investigations (2004); the 5,280 negative

controls are drugs paired with PTs for which no other PT in the same

MedDRA� High-Level Term were listed on the drug’s European

SmPC in 2012. Data for both positive and negative controls were

derived from a version of VigiBase� backdated to 2004. Thresholds

for the disproportionality measure yield better or equal specificity

than thresholds for the report count with the same sensitivity. The

AUC values are 0.736 for IC025 and 0.707 for the raw report counts

(p \ 0.05 according to DeLong’s test). AUC area under the receiver

operating characteristic curve, IC025 lower limit of a 95 % credibility

interval for the Information Component, PT Preferred Term, SmPC

summary of product characteristics
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recent initiative to build an openly accessible knowledge

base of all adverse drug reactions, which will include a

time-stamp for every piece of evidence [22]; this will allow

us to backdate our analyses to before adverse drug reac-

tions were known, on a much grander scale than ever

before.

Fig. 3 Chronograph displaying the temporal pattern of upper GI bleeding events relative to first prescriptions of naproxen in THIN. There is an

overall lower rate of upper GI bleeding events in patients prescribed naproxen, which is most pronounced in the months immediately prior to first

naproxen prescription. The x-axis marks 30-day periods relative to first prescriptions of the drug (with the exception of time zero, which

represents the day of prescription). The bars in the bottom panel represent the number of patients with a recorded upper GI bleeding event in each

timeframe (with the number of patients who experienced their first such event ever in this time period marked in lighter shade), and the line

indicates the corresponding expected values, which are based on the number of naproxen patients at risk and the rate of upper GI bleeding events

at different times relative to other first prescriptions, in an external control group [2, 17]. The upper panel displays the base 2 logarithm of a

shrinkage observed-to-expected ratio (‘IC’) with 95 % credibility intervals [2, 17]. THIN is a longitudinal observational health data from general

practitioners in the UK. Upper GI bleeding events were ascertained based on 47 different READ codes, out of which J680.00 Haematemesis,

J681.00 Melaena and J68z.11 GIB–Gastrointestinal bleeding were the most commonly used. GI gastrointestinal, IC Information Component,

THIN The Health Improvement Network

Fig. 4 Chronograph displaying the temporal pattern of acute liver injury events (in this instance, primarily reflecting abnormal liver function test

values), relative to first prescriptions of naproxen in THIN. There is an increased rate of acute liver injury events on the day of first simvastatin

prescriptions as well as after 2 months on simvastatin in the THIN database. The x-axis marks 30-day periods relative to first prescriptions of the

drug (with the exception of time zero, which represents the day of prescription). The bars in the bottom panel represent the number of patients

with a recorded acute liver injury event in each timeframe (with the number of patients who experienced their first such event ever in this time

period marked in lighter shade), and the line indicates the corresponding expected values, which are based on the number of simvastatin patients

at risk and the rate of acute liver injury events at different times relative to other first prescriptions, in an external control group [2, 17]. The upper

panel displays the base 2 logarithm of a shrinkage observed-to-expected ratio (‘IC’) with 95 % credibility intervals [2, 17]. THIN is a

longitudinal observational health data from general practitioners in the UK. Acute liver injury events were ascertained based on 58 different

READ codes, out of which R148.11 LFT’s Abnormal, 44D2.00 Liver function tests abnormal and R024.00 Jaundice (not of newborn) were the

most commonly used. IC Information Component, THIN The Health Improvement Network
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4 Conclusions

The establishment of relevant reference sets of emerging

safety signals must be made a top priority to achieve more

effective pharmacovigilance methods development and

evaluation. If done right, this might bring about just the

type of savannah that we need: pharmacovigilance zebras

dwelling in their natural habitat, challenging but not

impossible to detect in the high grass. Such a training

ground will help us discern which methods and information

sources are most likely to bring value to prospective real-

world surveillance for new adverse effects from drugs.
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