Skip to main content
Log in

Over the Counter Supplements for Memory: A Review of Available Evidence

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

In 2021, the Global Brain Health Supplement Industry Market size was valued at US$7.6 billion. It is predicted to increase to US$15.59 billion by 2030. Memory and its enhancement are a segment of the market that comprised the highest global revenue share in 2021. In the USA alone, dietary supplement sales reached US$18 billion in 2018. The US Food and Drug Administration (FDA) does not have the authority to approve dietary supplements’ safety, effectiveness, or labeling before products go on the market. The FDA often does not even review supplements before they go to market. Supplement manufacturers are thus responsible for ensuring their products are safe and that their claims are truthful. An extensive review of current supplements on the market was performed by surveying memory products for sale at local and national pharmacies and grocery stores. A list of 103 supplements was compiled and the ingredients in these memory supplements were reviewed. The 18 most common ingredients in these supplements were identified. Each of the supplements included at least one of the 18 most common ingredients. Scientific data relative to these ingredients and their effect on memory was searched using PubMed and Cochrane library databases. Currently, there is no compelling evidence for use of apoaequorin, coenzyme Q10, coffee extracts, L-theanine, omega-3 fatty acids, vitamin B6, vitamin B9, or vitamin B12 supplementation for memory. On the other hand, there is some current evidence for memory benefit from supplementation with ashwagandha, choline, curcumin, ginger, Lion’s Mane, polyphenols, phosphatidylserine, and turmeric. There are current studies with mixed results regarding the benefit of carnitine, gingko biloba, Huperzine A, vitamin D, and vitamin E supplementation for memory. Dietary supplements geared toward improving cognition are a billion-dollar industry that continues to grow despite lacking a solid scientific foundation for their marketing claims. More rigorous studies are needed relative to the long-term use of these supplements in homogenous populations with standardized measurements of cognition. Health care providers need to be aware of any and all supplements their older adult patients may be consuming and be educated about their side effects and interactions with prescription medications. Lastly, the FDA needs to take an active position relative to monitoring marketed supplements regarding safety, purity and claims of efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Straits Research. Brain health supplements market is projected to reach USD 15.59 billion by 2030, growing at a CAGR of 8.31 %. Yahoo Finance. 2022. https://finance.yahoo.com/news/brain-health-supplements-market-projected-163000171.html. Accessed 3 Nov 2022.

  2. Loria K. Shop smarter for supplements: Plant-derived supplements make many health enhancement claims, and yet the market is largely unregulated. Consumer Reports. 2020. https://www.consumerreports.org/supplements/shop-smarter-for-supplements/. Accessed 15 Dec 2022.

  3. U.S. Government. S.784 - 103rd Congress (1993-1994): Dietary supplement health and education act of 1994. http://www.congress.gov/. Accessed 3 Nov 2022.

  4. AMA. Dietary supplements: What physicians should know. American Medical Association. 2022. https://edhub.ama-assn.org/module/2792872. Accessed 3 Nov 2022.

  5. Office of the Commissioner. FDA 101: Dietary supplements. U.S. Food and Drug Administration. FDA; 2022. https://www.fda.gov/consumers/consumer-updates/fda-101-dietary-supplements. Accessed 3 Nov 2022.

  6. Tan CSS, Lee SWH. Warfarin and food, herbal or dietary supplement interactions: a systematic review. Br J Clin Pharmacol. 2021;87(2):352–74. https://doi.org/10.1111/bcp.14404.

    Article  CAS  PubMed  Google Scholar 

  7. Hickson SV, Darnell LK. Enhancing cognitive function with herbal supplements. Nurs Clin North Am. 2021;56(1):59–67. https://doi.org/10.1016/j.cnur.2020.10.005.

    Article  PubMed  Google Scholar 

  8. Spence J, Chintapenta M, Kwon HI, et al. A brief review of three common supplements used in Alzheimer’s disease. Consult Pharm. 2017;32(7):412–4. https://doi.org/10.4140/TCP.n.2017.412.

    Article  PubMed  Google Scholar 

  9. Moran DL, Underwood MY, Gabourie TA, et al. Effects of a supplement containing Apoaequorin on verbal learning in older Adults in the community. Adv Mind Body Med. 2016;30(1):4–11.

    PubMed  Google Scholar 

  10. Alzheimer's Drug Discovery Foundation. Apoaequorin. Cognitive Vitality. 2016. https://www.alzdiscovery.org/uploads/cognitive_vitality_media/Apoaequorin-Cognitive-Vitality-For-Researchers.pdf. Accessed 7 Nov 2022.

  11. Prevagen. Answers to frequently asked questions. Prevagen. https://www.prevagen.com/. Accessed June 24, 2023.

  12. ALSUntangled Group. ALSUntangled no. 18: apoaequorin (Prevagen). Amyotroph Lateral Scler Frontotemporal Degener. 2013;14(1):78–9. https://doi.org/10.3109/17482968.2012.727302.

  13. Kuboyama T, Tohda C, Komatsu K. Effects of Ashwagandha (roots of Withania somnifera) on neurodegenerative diseases. Biol Pharm Bull. 2014;37(6):892–7. https://doi.org/10.1248/bpb.b14-00022.

    Article  CAS  PubMed  Google Scholar 

  14. Farooqui AA, Farooqui T, Madan A, et al. Ayurvedic medicine for the treatment of dementia: mechanistic aspects. Evid Based Complement Alternat Med. 2018;15(2018):2481076. https://doi.org/10.1155/2018/2481076.

    Article  Google Scholar 

  15. Wadhwa R, Konar A, Kaul SC. Nootropic potential of ashwagandha leaves: beyond traditional root extracts. Neurochem Int. 2016;95:109–18. https://doi.org/10.1016/j.neuint.2015.09.001.

    Article  CAS  Google Scholar 

  16. Gregory J, Vengalasetti YV, Bredesen DE, et al. Neuroprotective herbs for the management of Alzheimer’s disease. Biomolecules. 2021;11(4):543. https://doi.org/10.3390/biom11040543.

    Article  CAS  PubMed Central  Google Scholar 

  17. Choudhary D, Bhattacharyya S, Bose S. Efficacy and safety of ashwagandha (Withania somnifera (L) dunal) root extract in improving memory and cognitive functions. J Diet Suppl. 2017;14(6):599–612. https://doi.org/10.1080/19390211.2017.1284970.

    Article  Google Scholar 

  18. Pingali U, Pilli R, Fatima N. Effect of standardized aqueous extract of Withania somnifera on tests of cognitive and psychomotor performance in healthy human participants. Pharmacognosy Res. 2014;6(1):12–8. https://doi.org/10.4103/0974-8490.122912.

    Article  PubMed Central  Google Scholar 

  19. Ng QX, Loke W, Foo NX, et al. A systematic review of the clinical use of Withania somnifera (Ashwagandha) to ameliorate cognitive dysfunction. Phytother Res. 2020;34(3):583–90. https://doi.org/10.1002/ptr.6552.

    Article  PubMed  Google Scholar 

  20. Kumar A, Kulkarni SK. Effect of herbals on sleep and their interactions with hypnotic drugs. Indian J Pharm Sci. 2005;67:391–3.

    CAS  Google Scholar 

  21. Shukla SD, Bhatnagar M, Khurana S. Critical evaluation of ayurvedic plants for stimulating intrinsic antioxidant response. Front Neurosci. 2012;6:112.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pennisi M, Lanza G, Cantone M, et al. Acetyl-L-Carnitine in dementia and other cognitive disorders: a critical update. Nutrients. 2020;12(5):1389. https://doi.org/10.3390/nu12051389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hudson S, Tabet N. Acetyl-L-carnitine for dementia. Cochrane Database Syst Rev. 2003;2003(2):3158. https://doi.org/10.1002/14651858.CD003158.

    Article  Google Scholar 

  24. Blusztajn JK, Slack BE, Mellott TJ. Neuroprotective actions of dietary choline. Nutrients. 2017;9(8):815. https://doi.org/10.3390/nu9080815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gámiz F, Gallo M. A systematic review of the dietary choline impact on cognition from a psychobiological approach: insights from animal studies. Nutrients. 2021;13(6):1966. https://doi.org/10.3390/nu13061966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wiedeman AM, Barr SI, Green TJ, et al. Dietary choline intake: current state of knowledge across the life cycle. Nutrients. 2018;10(10):1513. https://doi.org/10.3390/nu10101513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nakazaki E, Mah E, Sanoshy K, et al. Citicoline and memory function in healthy older adults: a randomized, double-blind, placebo-controlled clinical trial. J Nutr. 2021;151(8):2153–60. https://doi.org/10.1093/jn/nxab119.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ylilauri MPT, Voutilainen S, Lönnroos E, et al. Associations of dietary choline intake with risk of incident dementia and with cognitive performance: the Kuopio Ischaemic Heart Disease Risk Factor Study. Am J Clin Nutr. 2019;110(6):1416–23. https://doi.org/10.1093/ajcn/nqz148.

    Article  PubMed  Google Scholar 

  29. Fioravanti M, Yanagi M. Cytidinediphosphocholine (CDP-choline) for cognitive and behavioural disturbances associated with chronic cerebral disorders in the elderly. Cochrane Database Syst Rev. 2005. https://doi.org/10.1002/14651858.CD000269.pub3.

    Article  PubMed  Google Scholar 

  30. Pradhan N, Singh C, Singh A. Coenzyme Q10 a mitochondrial restorer for various brain disorders. Naunyn Schmiedebergs Arch Pharmacol. 2021;394(11):2197–222. https://doi.org/10.1007/s00210-021-02161-8.

    Article  CAS  PubMed  Google Scholar 

  31. Manzar H, Abdulhussein D, Yap TE, et al. Cellular consequences of coenzyme Q10 deficiency in neurodegeneration of the retina and brain. Int J Mol Sci. 2020;21(23):9299. https://doi.org/10.3390/ijms21239299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rauchová H. Coenzyme Q10 effects in neurological diseases. Physiol Res. 2021;70(4):S683–714. https://doi.org/10.33549/physiolres.934712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Isobe C, Abe T, Terayama Y. Increase in the oxidized/total coenzyme Q-10 ratio in the cerebrospinal fluid of Alzheimer’s disease patients. Dement Geriatr Cogn Disord. 2009;28(5):449–54. https://doi.org/10.1159/000256209.

    Article  CAS  PubMed  Google Scholar 

  34. Durán-Prado M, Frontiñán J, Santiago-Mora R, et al. Coenzyme Q10 protects human endothelial cells from β-amyloid uptake and oxidative stress-induced injury. PLoS ONE. 2014;9(10): e109223. https://doi.org/10.1371/journal.pone.0109223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chang KH, Cheng ML, Chiang MC, et al. Lipophilic antioxidants in neurodegenerative diseases. Clin Chim Acta. 2018;485:79–87. https://doi.org/10.1016/j.cca.2018.06.031.

    Article  CAS  PubMed  Google Scholar 

  36. Momiyama Y. Serum coenzyme Q10 levels as a predictor of dementia in a Japanese general population. Atherosclerosis. 2014;237(2):433–4. https://doi.org/10.1016/j.atherosclerosis.2014.08.056.

    Article  CAS  PubMed  Google Scholar 

  37. Galasko DR, Peskind E, Clark CM, et al. Antioxidants for Alzheimer disease: a randomized clinical trial with cerebrospinal fluid biomarker measures. Arch Neurol. 2023;69(7):836–41.

    Google Scholar 

  38. Shults CW. Coenzyme Q10 in neurodegenerative diseases. Curr Med Chem. 2003;10(19):1917–21. https://doi.org/10.2174/0929867033456882.

    Article  CAS  PubMed  Google Scholar 

  39. Young AJ, Johnson S, Steffens DC, et al. Coenzyme Q10: a review of its promise as a neuroprotectant. CNS Spectr. 2007;12(1):62–8. https://doi.org/10.1017/s1092852900020538.

    Article  PubMed  Google Scholar 

  40. Carman AJ, Dacks PA, Lane RF, et al. Current evidence for the use of coffee and caffeine to prevent age-related cognitive decline and Alzheimer’s disease. J Nutr Health Aging. 2014;18(4):383–92. https://doi.org/10.1007/s12603-014-0021-7.

    Article  CAS  PubMed  Google Scholar 

  41. Arendash GW, Cao C. Caffeine and coffee as therapeutics against Alzheimer’s disease. J Alzheimers Dis. 2010;20(Suppl 1):S117–26. https://doi.org/10.3233/JAD-2010-091249.

    Article  CAS  PubMed  Google Scholar 

  42. Londzin P, Zamora M, Kąkol B, et al. Potential of Caffeine in Alzheimer’s disease-a review of experimental studies. Nutrients. 2021;13(2):537. https://doi.org/10.3390/nu13020537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhou A, Taylor AE, Karhunen V, et al. Habitual coffee consumption and cognitive function: a Mendelian randomization meta-analysis in up to 415,530 participants. Sci Rep. 2018;8(1):7526. https://doi.org/10.1038/s41598-018-25919-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Eskelinen MH, Ngandu T, Tuomilehto J, et al. Midlife coffee and tea drinking and the risk of late-life dementia: a population-based CAIDE study. J Alzheimers Dis. 2009;16(1):85–91. https://doi.org/10.3233/JAD-2009-0920.

    Article  CAS  PubMed  Google Scholar 

  45. Chen JQA, Scheltens P, Groot C, et al. Associations between caffeine consumption, cognitive decline, and dementia: a systematic review. J Alzheimers Dis. 2020;78(4):1519–46. https://doi.org/10.3233/JAD-201069.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Robertson D, Frölich JC, Carr RK, et al. Effects of caffeine on plasma renin activity, catecholamines and blood pressure. N Engl J Med. 1978;298(4):181–6. https://doi.org/10.1056/NEJM197801262980403.

    Article  CAS  PubMed  Google Scholar 

  47. Cano-Marquina A, Tarín JJ, Cano A. The impact of coffee on health. Maturitas. 2013;75(1):7–21. https://doi.org/10.1016/j.maturitas.2013.02.002.

    Article  CAS  PubMed  Google Scholar 

  48. Willson C. The clinical toxicology of caffeine: a review and case study. Toxicol Rep. 2018;3(5):1140–52. https://doi.org/10.1016/j.toxrep.2018.11.002.

    Article  CAS  Google Scholar 

  49. Echeverria V, Echeverria F, Barreto GE, et al. Estrogenic plants: to prevent neurodegeneration and memory loss and other symptoms in women after menopause. Front Pharmacol. 2021;12: 644103. https://doi.org/10.3389/fphar.2021.644103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kiyama R. Nutritional implications of ginger: chemistry, biological activities and signaling pathways. J Nutr Biochem. 2020;86: 108486. https://doi.org/10.1016/j.jnutbio.2020.108486.

    Article  CAS  PubMed  Google Scholar 

  51. Li XH, McGrath KC, Tran VH, et al. Attenuation of proinflammatory responses by s-(6)-gingerol via inhibition of ROS/NF-Kappa B/COX2 activation in HuH7 cells. Evid Based Complement Alternat Med. 2013;2013: 146142. https://doi.org/10.1155/2013/146142.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Marefati N, Abdi T, Beheshti F, et al. M. Zingiber officinale (ginger) hydroalcoholic extract improved avoidance memory in rat model of streptozotocin-induced diabetes by regulating brain oxidative stress. Horm Mol Biol Clin Investig. 2021;43(1):15–26. https://doi.org/10.1515/hmbci-2021-0033.

    Article  CAS  PubMed  Google Scholar 

  53. Saenghong N, Wattanathorn J, Muchimapura S. Zingiber officinale improves cognitive function of the middle-aged healthy women. Evid Based Complement Alternat Med. 2012;2012: 383062. https://doi.org/10.1155/2012/383062.

    Article  PubMed  Google Scholar 

  54. Birks J, Grimley EJ. Ginkgo biloba for cognitive impairment and dementia. Cochrane Database Syst Rev. 2009. https://doi.org/10.1002/14651858.CD003120.pub3.

    Article  PubMed  Google Scholar 

  55. Lorca C, Mulet M, Arévalo-Caro C, et al. Plant-derived nootropics and human cognition: a systematic review. Crit Rev Food Sci Nutr. 2022;3:1–25. https://doi.org/10.1080/10408398.2021.2021137.

    Article  CAS  Google Scholar 

  56. Sloley BD, Urichuk LJ, Morley P, et al. Identification of kaempferol as a monoamine oxidase inhibitor and potential neuroprotectant in extracts of Ginkgo biloba leaves. J Pharm Pharmacol. 2000;52(4):451–9. https://doi.org/10.1211/0022357001774075.

    Article  CAS  PubMed  Google Scholar 

  57. Snitz BE, O’Meara ES, Carlson MC, et al. Ginkgo biloba for preventing cognitive decline in older adults: a randomized trial. JAMA. 2009;302(24):2663–70. https://doi.org/10.1001/jama.2009.1913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li YY, Lu XY, Sun JL, et al. Potential hepatic and renal toxicity induced by the biflavonoids from Ginkgo biloba. Chin J Nat Med. 2019;17(9):672–81. https://doi.org/10.1016/S1875-5364(19)30081-0.

    Article  CAS  PubMed  Google Scholar 

  59. Türközü D, Şanlier N. L-theanine, unique amino acid of tea, and its metabolism, health effects, and safety. Crit Rev Food Sci Nutr. 2017;57(8):1681–7. https://doi.org/10.1080/10408398.2015.1016141.

    Article  CAS  PubMed  Google Scholar 

  60. Nathan PJ, Lu K, Gray M, et al. The neuropharmacology of L-theanine(N-ethyl-L-glutamine): a possible neuroprotective and cognitive enhancing agent. J Herb Pharmacother. 2006;6(2):21–30.

    CAS  PubMed  Google Scholar 

  61. Sharma E, Joshi R, Gulati A. l-Theanine: an astounding sui generis integrant in tea. Food Chem. 2018;1(242):601–10. https://doi.org/10.1016/j.foodchem.2017.09.046.

    Article  CAS  Google Scholar 

  62. Deb S, Dutta A, Phukan BC, et al. Neuroprotective attributes of L-theanine, a bioactive amino acid of tea, and its potential role in Parkinson’s disease therapeutics. Neurochem Int. 2019;129: 104478. https://doi.org/10.1016/j.neuint.2019.104478.

    Article  CAS  PubMed  Google Scholar 

  63. Williams J, Sergi D, McKune AJ. The beneficial health effects of green tea amino acid l-theanine in animal models: promises and prospects for human trials. Phytother Res. 2019;33(3):571–83. https://doi.org/10.1002/ptr.6277.

    Article  PubMed  Google Scholar 

  64. Dietz C, Dekker M. Effect of green tea phytochemicals on mood and cognition. Curr Pharm Des. 2017;23(19):2876–905. https://doi.org/10.2174/1381612823666170105151800.

    Article  CAS  PubMed  Google Scholar 

  65. Mancini E, Beglinger C, Drewe J, et al. Green tea effects on cognition, mood and human brain function: a systematic review. Phytomedicine. 2017;15(34):26–37. https://doi.org/10.1016/j.phymed.2017.07.008.

    Article  CAS  Google Scholar 

  66. Noguchi-Shinohara M, Yuki S, Dohmoto C, et al. Consumption of green tea, but not black tea or coffee, is associated with reduced risk of cognitive decline. PLoS ONE. 2014;9(5): e96013. https://doi.org/10.1371/journal.pone.0096013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang Hy. New insights into huperzine A for the treatment of Alzheimer’s disease. Acta Pharmacol Sin. 2012. https://doi.org/10.1038/aps.2012.128.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Yang G, Wang Y, Tian J, et al. Huperzine A for Alzheimer’s disease: a systematic review and meta-analysis of randomized clinical trials. PLoS ONE. 2013;8(9): e74916. https://doi.org/10.1371/journal.pone.0074916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Meng Q, Wang A, Hua H, et al. Intranasal delivery of huperzine A to the brain using lactoferrin-conjugated N-trimethylated chitosan surface-modified PLGA nanoparticles for treatment of Alzheimer’s disease. Int J Nanomed. 2018;1(13):705–18. https://doi.org/10.2147/IJN.S151474.

    Article  Google Scholar 

  70. Wang BS, Wang H, Wei ZH, et al. Efficacy and safety of natural acetylcholinesterase inhibitor huperzine A in the treatment of Alzheimer’s disease: an updated meta-analysis. J Neural Transm (Vienna). 2009;116(4):457–65. https://doi.org/10.1007/s00702-009-0189-x.

    Article  CAS  PubMed  Google Scholar 

  71. Wu SL, Gan J, Rao J, et al. Pharmacokinetics and tolerability of oral dosage forms of huperzine A in healthy Chinese male volunteers: a randomized, single dose, three-period, six-sequence crossover study. J Huazhong Univ Sci Technolog Med Sci. 2017;37(5):795–802. https://doi.org/10.1007/s11596-017-1807-8.

    Article  CAS  PubMed  Google Scholar 

  72. Xing SH, Zhu CX, Zhang R. Huperzine A in the treatment of Alzheimer’s disease and vascular dementia: a meta-analysis. Evid-Based Complement Alternat Med. 2014. https://doi.org/10.1155/2014/363985.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Friedli MJ, Inestrosa NC. Huperzine A and its neuroprotective molecular signaling in Alzheimer’s disease. Molecules. 2021;26(21):6531. https://doi.org/10.3390/molecules26216531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shukla M, Wongchitrat P, Govitrapong P. A synopsis of multitarget potential therapeutic effects of huperzine A in diverse pathologies-emphasis on Alzheimer’s disease pathogenesis. Neurochem Res. 2022;47(5):1166–82. https://doi.org/10.1007/s11064-022-03530-2.

    Article  CAS  PubMed  Google Scholar 

  75. Qian ZM, Ke Y. Huperzine A: is it an effective disease-modifying drug for Alzheimer’s disease? Front Aging Neurosci. 2014;19(6):216. https://doi.org/10.3389/fnagi.2014.00216.

    Article  Google Scholar 

  76. Rafii MS, Walsh S, Little K. A phase II trial of huperzine A in mild to moderate Alzheimer disease. Neurology. 2011;76(16):1389–94. https://doi.org/10.1212/WNL.0b013e318216eb7b.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zafonte RD, Fregni F, Bergin MJG, et al. Huperzine A for the treatment of cognitive, mood, and functional deficits after moderate and severe TBI (HUP-TBI): results of a phase II randomized controlled pilot study: implications for understanding the placebo effect. Brain Inj. 2020;34(1):34–41. https://doi.org/10.1080/02699052.2019.1677941.

    Article  PubMed  Google Scholar 

  78. Laver K, Dyer S, Whitehead C, et al. Interventions to delay functional decline in people with dementia: a systematic review of systematic reviews. BMJ Open. 2016;6(4): e010767. https://doi.org/10.1136/bmjopen-2015-010767.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Cui CC, Sun Y, Wang XY, et al. The effect of anti-dementia drugs on Alzheimer disease-induced cognitive impairment: a network meta-analysis. Medicine (Baltimore). 2019;98(27): e16091. https://doi.org/10.1097/MD.0000000000016091.

    Article  PubMed  Google Scholar 

  80. Ghassab-Abdollahi N, Mobasseri K, Dehghani AA. The effects of Huperzine A on dementia and mild cognitive impairment: an overview of systematic reviews. Phytother Res. 2021;35(9):4971–87. https://doi.org/10.1002/ptr.7126.

    Article  CAS  PubMed  Google Scholar 

  81. Ha GT, Wong RK, Zhang Y. Huperzine a as potential treatment of Alzheimer’s disease: an assessment on chemistry, pharmacology, and clinical studies. Chem Biodivers. 2011;8(7):1189–204.

    Article  CAS  PubMed  Google Scholar 

  82. He X, Wang X, Fang J, et al. Structures, biological activities, and industrial applications of the polysaccharides from Hericium erinaceus (Lion’s Mane) mushroom: a review. Int J Biol Macromol. 2017;97:228–37. https://doi.org/10.1016/j.ijbiomac.2017.01.040.

    Article  CAS  PubMed  Google Scholar 

  83. Yanshree A, Yu WS, Fung ML, et al. The monkey head mushroom and memory enhancement in Alzheimer’s disease. Cells. 2022;11(15):2284. https://doi.org/10.3390/cells11152284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lai PL, Naidu M, Sabaratnam V, et al. Neurotrophic properties of the Lion’s mane medicinal mushroom, Hericium erinaceus (Higher Basidiomycetes) from Malaysia. Int J Med Mushrooms. 2013;15(6):539–54. https://doi.org/10.1615/intjmedmushr.v15.i6.30.

    Article  PubMed  Google Scholar 

  85. Ryu SH, Hong SM, Khan Z, et al. Neurotrophic isoindolinones from the fruiting bodies of Hericium erinaceus. Bioorg Med Chem Lett. 2021;31: 127714. https://doi.org/10.1016/j.bmcl.2020.127714.

    Article  CAS  PubMed  Google Scholar 

  86. Lewis JE, Poles J, Shaw DP, et al. The effects of twenty-one nutrients and phytonutrients on cognitive function: a narrative review. J Clin Transl Res. 2021;7(4):575–620.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Mori K, Inatomi S, Ouchi K, et al. Improving effects of the mushroom Yamabushitake (Hericium erinaceus) on mild cognitive impairment: a double-blind placebo-controlled clinical trial. Phytother Res. 2009;23(3):367–72. https://doi.org/10.1002/ptr.2634.

    Article  CAS  PubMed  Google Scholar 

  88. Saitsu Y, Nishide A, Kikushima K, et al. Improvement of cognitive functions by oral intake of Hericium erinaceus. Biomed Res. 2019;40(4):125–31. https://doi.org/10.2220/biomedres.40.125.

    Article  CAS  PubMed  Google Scholar 

  89. Li IC, Chang HH, Lin CH, et al. Prevention of early Alzheimer’s disease by erinacine a-enriched Hericium erinaceus mycelia pilot double-blind placebo-controlled study. Front Aging Neurosci. 2020;3(12):155. https://doi.org/10.3389/fnagi.2020.00155.

    Article  CAS  Google Scholar 

  90. Lee LY, Li IC, Chen WP, et al. Thirteen-week oral toxicity evaluation of erinacine enriched lion’s mane medicinal mushroom, Hericium erinaceus (agaricomycetes), mycelia in sprague-dawley rats. Int J Med Mushrooms. 2019;21(4):401–11. https://doi.org/10.1615/IntJMedMushrooms.2019030320.

    Article  PubMed  Google Scholar 

  91. Marin R, Marrero-Alonso J, Fernandez C, et al. Estrogen receptors in lipid raft signalling complexes for neuroprotection. Front Biosci (Elite Ed). 2012;4(4):1420–33. https://doi.org/10.2741/471.

    Article  PubMed  Google Scholar 

  92. Rushworth JV, Hooper NM. Lipid rafts: linking Alzheimer’s amyloid-β Production, aggregation, and toxicity at neuronal membranes. Int J Alzheimers Dis. 2010;2011: 603052. https://doi.org/10.4061/2011/603052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Taoro-González L, Pereda D, Valdés-Baizabal C, et al. Effects of dietary n-3 LCPUFA supplementation on the hippocampus of aging female mice: impact on memory, lipid raft-associated glutamatergic receptors and neuroinflammation. Int J Mol Sci. 2022;23(13):7430. https://doi.org/10.3390/ijms23137430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Andrieu S, Guyonnet S, Coley N, et al. Effect of long-term omega 3 polyunsaturated fatty acid supplementation with or without multidomain intervention on cognitive function in elderly adults with memory complaints (MAPT): a randomised, placebo-controlled trial. Lancet Neurol. 2017;16(5):377–89. https://doi.org/10.1016/S1474-4422(17)30040-6.

    Article  CAS  PubMed  Google Scholar 

  95. Maltais M, Lorrain D, Léveillé P, et al. Long-chain omega-3 fatty acids supplementation and cognitive performance throughout adulthood: a 6-month randomized controlled trial. Prostaglandins Leukot Essent Fatty Acids. 2022;178: 102415. https://doi.org/10.1016/j.plefa.2022.102415.

    Article  CAS  PubMed  Google Scholar 

  96. Burckhardt M, Herke M, Wustmann T, Watzke S, Langer G, Fink A. Omega-3 fatty acids for the treatment of dementia. Cochrane Database Syst Rev. 2016. https://doi.org/10.1002/14651858.CD009002.pub3.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Reinisalo M, Kårlund A, Koskela A, et al. Polyphenol stilbenes: molecular mechanisms of defence against oxidative stress and aging-related diseases. Oxid Med Cell Longev. 2015. https://doi.org/10.1155/2015/340520.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Schaffer S, Asseburg H, Kuntz S, et al. Effects of polyphenols on brain ageing and Alzheimer’s disease: focus on mitochondria. Mol Neurobiol. 2012;46:161–78. https://doi.org/10.1007/s12035-012-8282-9.

    Article  CAS  PubMed  Google Scholar 

  99. Bastianetto S, Ménard C, Quirion R. Neuroprotective action of resveratrol. Biochim Biophys Acta. 2015;1852(6):1195–201. https://doi.org/10.1016/j.bbadis.2014.09.011.

    Article  CAS  PubMed  Google Scholar 

  100. Cheng N, Bell L, Lamport DJ, et al. Dietary flavonoids and human cognition: a meta-analysis. Mol Nutr Food Res. 2022;66(21): e2100976. https://doi.org/10.1002/mnfr.202100976.

    Article  CAS  PubMed  Google Scholar 

  101. Barrera-Reyes PK, de Lara JC, González-Soto M, et al. Effects of cocoa-derived polyphenols on cognitive function in humans. Plant Foods Hum Nutr. 2020;75(1):1–11. https://doi.org/10.1007/s11130-019-00779-x.

    Article  CAS  PubMed  Google Scholar 

  102. Mandel SA, Amit T, Kalfon L, et al. Cell signaling pathways and iron chelation in the neurorestorative activity of green tea polyphenols: special reference to epigallocatechin gallate (EGCG). J Alzheimers Dis. 2008;15(2):211–22. https://doi.org/10.3233/jad-2008-15207.

    Article  CAS  PubMed  Google Scholar 

  103. Gkotzamanis V, Panagiotakos D. Dietary interventions and cognition: a systematic review of clinical trials. Psychiatriki. 2020;31(3):248–56. https://doi.org/10.22365/jpsych.2020.313.248.

    Article  CAS  PubMed  Google Scholar 

  104. Uddin MS, Hasana S, Ahmad J, et al. Anti-neuroinflammatory potential of polyphenols by inhibiting NF-κB to halt Alzheimer’s disease. Curr Pharm Des. 2021;27(3):402–14. https://doi.org/10.2174/1381612826666201118092422.

    Article  CAS  PubMed  Google Scholar 

  105. Potì F, Santi D, Spaggiari G, et al. Polyphenol health effects on cardiovascular and neurodegenerative disorders: a review and meta-analysis. Int J Mol Sci. 2019;20(2):351. https://doi.org/10.3390/ijms20020351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bakhtiari M, Panahi Y, Ameli J, et al. Protective effects of flavonoids against Alzheimer’s disease-related neural dysfunctions. Biomed Pharmacother. 2017;93:218–29. https://doi.org/10.1016/j.biopha.2017.06.010.

    Article  CAS  PubMed  Google Scholar 

  107. Tosatti JAG, Fontes AFDS, Caramelli P, et al. Effects of resveratrol supplementation on the cognitive function of patients with Alzheimer’s disease: a systematic review of randomized controlled trials. Drugs Aging. 2022;39(4):285–95. https://doi.org/10.1007/s40266-022-00923-4.

    Article  CAS  PubMed  Google Scholar 

  108. Kumari N, Daram N, Alam MS, et al. Rationalizing the use of polyphenol nano-formulations in the therapy of neurodegenerative diseases. CNS Neurol Disord Drug Targets. 2022;21(10):966–76. https://doi.org/10.2174/1871527321666220512153854.

    Article  CAS  PubMed  Google Scholar 

  109. Kobayashi H, Murata M, Kawanishi S, et al. Polyphenols with anti-amyloid β aggregation show potential risk of toxicity via pro-oxidant properties. Int J Mol Sci. 2020;21(10):3561. https://doi.org/10.3390/ijms21103561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sawda C, Moussa C, Turner RS. Resveratrol for Alzheimer’s disease. Ann N Y Acad Sci. 2017;1403(1):142–9. https://doi.org/10.1111/nyas.13431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Liu B, Zhang N, Yang J, et al. Preparation, characterization, evaluation of neuroprotective effect, and related mechanisms of phosphatidylserine emulsion in 5- and 12-week-old mice. J Agric Food Chem. 2022;70(6):1852–64. https://doi.org/10.1021/acs.jafc.1c07403.

    Article  CAS  PubMed  Google Scholar 

  112. Moré MI, Freitas U, Rutenberg D. Positive effects of soy lecithin-derived phosphatidylserine plus phosphatidic acid on memory, cognition, daily functioning, and mood in elderly patients with Alzheimer’s disease and dementia. Adv Ther. 2014;31(12):1247–62. https://doi.org/10.1007/s12325-014-0165-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Mitre M, Mariga A, Chao MV. Neurotrophin signalling: novel insights into mechanisms and pathophysiology. Clin Sci (Lond). 2017;131(1):13–23. https://doi.org/10.1042/CS20160044.

    Article  CAS  PubMed  Google Scholar 

  114. Vakhapova V, Cohen T, Richter Y, et al. Phosphatidylserine containing omega-3 fatty acids may improve memory abilities in non-demented elderly with memory complaints: a double-blind placebo-controlled trial. Dement Geriatr Cogn Disord. 2010;29(5):467–74. https://doi.org/10.1159/000310330.

    Article  CAS  PubMed  Google Scholar 

  115. Vakhapova V, Cohen T, Richter Y, et al. Phosphatidylserine containing omega-3 fatty acids may improve memory abilities in non-demented elderly individuals with memory complaints: results from an open-label extension study. Dement Geriatr Cogn Disord. 2014;38(1–2):39–45. https://doi.org/10.1159/000357793.

    Article  CAS  PubMed  Google Scholar 

  116. Reddy PH, Manczak M, Yin X, et al. Protective effects of Indian spice curcumin against amyloid-β in Alzheimer’s disease. J Alzheimers Dis. 2018;61(3):843–66. https://doi.org/10.3233/JAD-170512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lee MS, Wahlqvist ML, Chou YC, et al. Turmeric improves post-prandial working memory in pre-diabetes independent of insulin. Asia Pac J Clin Nutr. 2014;23(4):581–91. https://doi.org/10.6133/apjcn.2014.23.4.24.

    Article  PubMed  Google Scholar 

  118. Rainey-Smith SR, Brown BM, Sohrabi HR, et al. Curcumin and cognition: a randomised, placebo-controlled, double-blind study of community-dwelling older adults. Br J Nutr. 2016;115(12):2106–13. https://doi.org/10.1017/S0007114516001203.

    Article  CAS  PubMed  Google Scholar 

  119. Cox KHM, White DJ, Pipingas A, et al. Further evidence of benefits to mood and working memory from lipidated curcumin in healthy older people: a 12-week, double-blind, placebo-controlled, partial replication study. Nutrients. 2020;12(6):1678. https://doi.org/10.3390/nu12061678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Small GW, Siddarth P, Li Z, et al. Memory and brain amyloid and tau effects of a bioavailable form of curcumin in non-demented adults: a double-blind, placebo-controlled 18-month trial. Am J Geriatr Psychiatry. 2018;26(3):266–77. https://doi.org/10.1016/j.jagp.2017.10.010.

    Article  PubMed  Google Scholar 

  121. Tsai IC, Hsu CW, Chang CH, et al. The effect of curcumin differs on individual cognitive domains across different patient populations: a systematic review and meta-analysis. Pharmaceuticals (Basel). 2021;14(12):1235. https://doi.org/10.3390/ph14121235.

    Article  CAS  PubMed  Google Scholar 

  122. Amalraj A, Pius A, Gopi S, et al. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives—a review. J Tradit Complement Med. 2016;7(2):205–33. https://doi.org/10.1016/j.jtcme.2016.05.005.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Malouf R, Grimley EJ. Vitamin B6 for cognition. Cochrane Database Syst Rev. 2003. https://doi.org/10.1002/14651858.CD004393.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Haußmann R, Sauer C, Neumann S, et al. Folic acid and vitamin B12 determination in the assessment of cognitive disorders: overview and data analysis from a university outpatient memory clinic. Nervenarzt. 2019;90(11):1162–9. https://doi.org/10.1007/s00115-019-0710-x.

    Article  PubMed  Google Scholar 

  125. Mandaviya PR, Stolk L, Heil SG. Homocysteine and DNA methylation: a review of animal and human literature. Mol Genet Metab. 2014;113(4):243–52. https://doi.org/10.1016/j.ymgme.2014.10.006.

    Article  CAS  PubMed  Google Scholar 

  126. Kwok T, Wu Y, Lee J, et al. A randomized placebo-controlled trial of using B vitamins to prevent cognitive decline in older mild cognitive impairment patients. Clin Nutr. 2020;39(8):2399–405. https://doi.org/10.1016/j.clnu.2019.11.005.

    Article  CAS  PubMed  Google Scholar 

  127. Buell JS, Dawson-Hughes B. Vitamin D and neurocognitive dysfunction: preventing "D”ecline? Mol Aspects Med. 2008;29(6):415–22. https://doi.org/10.1016/j.mam.2008.05.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Banerjee A, Khemka VK, Ganguly A, et al. Vitamin D and Alzheimer’s disease: neurocognition to therapeutics. Int J Alzheimers Dis. 2015;2015: 192747. https://doi.org/10.1155/2015/192747.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Liu H, He Y, Beck J, et al. Defining vitamin D receptor expression in the brain using a novel VDRCre mouse. J Comp Neurol. 2021;529(9):2362–75. https://doi.org/10.1002/cne.25100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Christakos S, Dhawan P, Verstuyf A, et al. Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiol Rev. 2016;96(1):365–408. https://doi.org/10.1152/physrev.00014.2015.

    Article  CAS  PubMed  Google Scholar 

  131. Castle M, Fiedler N, Pop LC, et al. Three doses of vitamin D and cognitive outcomes in older women: a double-blind RCT. J Gerontol A Biol Sci Med Sci. 2020;75(5):835–42. https://doi.org/10.1093/geona/glz041.

    Article  CAS  PubMed  Google Scholar 

  132. Beauchet O, Cooper-Brown LA, Allali G. Vitamin D supplementation and cognition in adults: a systematic review of randomized controlled trials. CNS Drugs. 2021;35(12):1249–64. https://doi.org/10.1007/s40263-021-00876-z.

    Article  CAS  PubMed  Google Scholar 

  133. Kang JH, Cook N, Manson J, et al. A randomized trial of vitamin E supplementation and cognitive function in women. Arch Intern Med. 2006;166(22):2462–8. https://doi.org/10.1001/archinte.166.22.2462.

    Article  CAS  PubMed  Google Scholar 

  134. Dysken MW, Sano M, Asthana S, et al. Effect of vitamin E and memantine on functional decline in Alzheimer disease: the TEAM-AD VA cooperative randomized trial. JAMA. 2014;311(1):33–44. https://doi.org/10.1001/jama.2013.282834.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Farina N, Llewellyn D, Isaac MG, et al. Vitamin E for Alzheimer’s dementia and mild cognitive impairment. Cochrane Database Syst Rev. 2017. https://doi.org/10.1002/14651858.CD002854.pub5.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haley Hersant.

Ethics declarations

Funding

There is no funding for this research or manuscript preparation.

Conflicts of interest

Authors Haley Hersant, Sean He, Peter Maliha, and George Grossberg have no conflicts of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Authors’ contributions

Co-author GG had the idea for the article. Co-authors HH and SH performed the literature search and drafted the article. Co-authors PM and GG critically revised the work. All authors have read and approved the final submitted manuscript and agree to be accountable for the work.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 104 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hersant, H., He, S., Maliha, P. et al. Over the Counter Supplements for Memory: A Review of Available Evidence. CNS Drugs 37, 797–817 (2023). https://doi.org/10.1007/s40263-023-01031-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-023-01031-6

Navigation