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Abstract
Background  Pharmacokinetic models are evaluated using three types of metrics: those based on estimating the typical 
pharmacokinetic parameters, those based on predicting individual pharmacokinetic parameters and those that compare data 
and model distributions. In the third groups of metrics, the best-known methods are Visual Predictive Check (VPC) and 
Normalised Prediction Distribution Error (NPDE). Despite their usefulness, these methods have some limitations, especially 
for the analysis of dependent concentrations, i.e., evaluated in the same patient.
Objective  In this work, we propose an evaluation method that accounts for the dependency between concentrations.
Methods  Thanks to the study of the distribution of simulated vectors of concentrations, the method provides one probability 
per individual that its observations (i.e., concentrations) come from the studied model. The higher the probability, the better 
the model fits the individual. By examining the distribution of these probabilities for a set of individuals, we can evaluate 
the model as a whole.
Results  We demonstrate the effectiveness of our method through two examples. Our approach successfully detects mis-
specification in the structural model and identifies outlier kinetics in a set of kinetics.
Conclusion  We propose a straightforward method for evaluating models during their development and selecting a model 
to perform therapeutic drug monitoring. Based on our preliminary results, the method is very promising but needs to be 
validated on a larger scale.

1  Introduction

Population pharmacokinetic (PK) models are commonly 
used in the field of pharmacology. Building a model 
involves several steps, including an evaluation step, that 
is crucial in ensuring the model’s predictive performance. 
The criteria used to evaluate a model belong to three 
families.

The first family of criteria comprises graphs that rely 
on estimating the typical PK parameters, which in turn 
enable the estimation of typical concentrations. These 
graphs serve the purpose of assessing the suitability of the 
structural model and provide visual insights into the vari-
ability between individuals as well as within individuals. 
They offer graphic representations that aid the evaluation 
of the appropriateness of the model and provide informa-
tion regarding inter-individual and intra-individual disper-
sion. The second family of criteria groups together graphs 

that are based on predicting the individual PK parameters. 
These graphs allow to check the appropriateness of the 
distribution assumptions, such as Individuals Weighted 
Residuals (IWRES) versus time or observed concentra-
tion versus individual prediction. However, due to shrink-
age [1, 2], the prediction of individual PK parameters can 
sometimes be poor, especially when there are only a small 
number of concentrations per individual. While there are 
some corrections of shrinkage that can be considered [3], 
the average distance (actually the rate of convergence) to 
the actual value of these parameters cannot be smaller than 
a value inversely proportional to the number of subjects.

The third family of criteria aims to evaluate whether the 
concentrations used to build the model reasonably belong 
to the concentration distribution imposed by the model, 
which is obtained through simulation [4]. The gold stand-
ards of these methods are the Visual Predictive Check 
(VPC) and Normalised Prediction Distribution Errors 
(NPDE) [1]. The VPC is a graph that displays both the 
prediction interval provided by the model and the observed 
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Key Points 

This study presents a novel methodology for evaluating 
pharmacokinetic models during their construction or 
selecting consistent models for therapeutic drug monitor-
ing.

The main advantage of the method is its ability to 
account for the dependence between concentrations 
measured in the same individual.

The performances of the method have been evaluated 
through two simulation examples: to detect a misspecifi-
cation in the structural model and to identify outliers in a 
set of kinetics.

concentrations at each time point [5–7]. Although this tool 
has been corrected in several forms to improve its perfor-
mance, it does not account for the dependence between 
concentrations assessed in the same individual.

The second method involves calculating the NPDE, 
which is a tool derived from Prediction Discrepancy (PD) 
[8]. The PD of an observation corresponds to its percen-
tile in its own predictive distribution. However, since 
the concentrations observed in the ith individual are not 
independent, it is not possible to evaluate the distribu-
tion of PD as soon as there is more than one observa-
tion per subject in the study. As a consequence, Brendel 
et al., proposed decorrelating PD to make it independent, 
resulting in the NPDE [9, 10]. However, as noted by the 
authors themselves, this implies independence only when 
the vector of concentrations of each individual is drawn 
from a Gaussian distribution [11]. A basic theorem of sta-
tistics says that the unique function of independent Gauss-
ian random variables preserving normality is the linear 
(more precisely affine) function. As the nonlinear mixed 
effects model (NLME) is a nonlinear function of Gauss-
ian random variables, the resulting vector of concentra-
tions cannot be Gaussian. As a consequence, as the vector 
of concentrations is not Gaussian, decorrelation does not 
imply independence.

In the end, PD and NPDE are very useful in detecting 
significant deviations from the model when a single concen-
tration, or several concentrations spaced in time, are avail-
able for each individual. In all other cases, it is expected that 
some concentrations will be incorrectly classified as outliers, 
while others will be erroneously considered compatible with 
the studied model.

In this article, we propose a method that allows to evalu-
ate a model accounting for the dependence between concen-
trations in the same individual. This method is based on a 
free adaptation to our context of the ideas presented in the 
first chapter of the book by Chacόn and Duong [12].

2 � Materials and Methods

This section comprises four subsections. The first subsection 
presents the model and notation that will be used throughout 
the paper. In the second subsection, we explain the theo-
retical basis of the proposed method. The third subsection 
shows the implementation of the method in the field of phar-
macology, and the fourth subsection is a simulation study 
that (1) illustrates the method’s application and (2) evaluates 
its performance in two aspects: detecting misspecifications 
in the structural model and identifying individuals with out-
lier kinetic profiles.

2.1 � Model and Notation

Let us consider the following population PK model

This model describes the evolution of the concentrations 
(

Yt
)

t
 with time t  in an individual according to some of its 

individual characteristics C (covariates) and known popula-
tion PK parameters (�,Ω, �).

� represents the vector of individual PK parameters.
m represents the function describing the structural 

model, g represents the function describing the error 
model and h represent the function describing the relation 
between the individual PK parameters � , the covariate C , 
the population parameters � and the individual random 
effects �.

Assume now that ni concentrations (Yi1,… , Yini ) have 
been observed at times (ti1,… , tini ) in the ith individual 
of a sample of N individuals. The covariates values of all 
individuals (Ci) are also assumed to be known.

2.2 � The Theoretical Basis

Consider a random variable X ∈ R
p with a probability dis-

tribution function (pdf) denoted f  . For technical reasons 
that can easily be relaxed, we assume that f  is non-con-
stant on all non-empty subsets of Rp. For all � ≥ 0, we con-
sider the level set of all x such that f(x) is greater than �:

(1)
{

Yt = m(t,�,C) + g(t;�;C;�)�t where �t ∼iid ℕ(0, 1)

� = h(�,C, �) where � ∼ ℕ(0,Ω)
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Notice that the sequence of sets 
(

A�

)

�≥0 is decreasing for 
the inclusion. In other terms, for all 0 ≤ �1 ≤ �2 , A𝜆2

⊆ A𝜆1
.

Let us now consider the function

where Ac
𝜆
= {x ∈ R

p, f (x) < 𝜆} and 1Ac
�
(x) = 1 when 

x ∈ Ac
�
 and 1Ac

�
(x) = 0 otherwise.

Using these sets, we can see that for all � ≥ 0,

The sets A� are, therefore, the prediction regions of 
the random vector X. By their very construction, they are 
even the smallest (with respect to their volume) prediction 
regions of X that can be built. This idea for constructing 
small prediction regions has already been proposed for 
multidimensional discrete random variables [13].

Now, let us inverse the process of Eq. (2), i.e., we fix X 
and look for the � verifying X ∈ A�. We thus consider the 
random variable

F o r  a n y  �1 ≥ 0,  P
(

�(X) > �1
)

= P
(

f (X) > �1
)

= 1 − F
(

�1
)

. From this last equality we derive that the 
cumulative distribution function of the univariate ran-
dom variable �(X) is F. This allows to write the following 
property:

Let X be a multidimensional random variable, F(�) and 
�(X) be respectively defined as in Eqs. (2) and (3), then 
P(X) ≜ F(�(X)) is distributed according to a uniform dis-
tribution on ]0,1[.

A noticeable property of P(X) = F(�(X)) is that its dis-
tribution does not depend on the dimension of X.

2.3 � Application to Population Pharmacokinetic 
Model

This theoretical property can be applied to PK models. 
Returning to our notations, we consider N vectors, y1,… , yN , 
containing, respectively, the concentrations observed in N 
independent individuals. An unknown model, denoted M0 , 
is at the origin of the observed concentrations.

We want to test whether the observed concentrations 
can be considered to come from the population PK model 
described by Eq. (1). Because this model depends on the 
unknown parameter � = (�,Ω, �) we denote this model 
M� . Let us denote 𝜏 the estimation of � obtained from the 
observed concentrations y1,… , yN . Conditionally on 𝜏 , i.e. 

A� = {x ∈ R
p, f (x) ≥ �}

F(�) = 1 − ∫ f (x)1A�
(x)dx = ∫ f (x)1Ac

�
(x)dx

(2)1 − F(�) = P
(

X ∈ A�

)

= P(f (X) ≥ �)

(3)�(X) = sup {� ≥ 0 so that f (X) ≥ �}

assuming that the actual value of � is 𝜏 , our initial question, 
“is the model M� valid?” translates into “is M𝜏 equal to M0?”.

To answer this question, we first have to compute the 
probability P

(

yi
)

 of observing the concentration vector yi 
for each individual.

For the ith individual, using the population model given 
by the Eq. (1), we simulate vectors of concentrations 
( Yit1 ,… , Yitn ) at the same time points at which the individual 
was sampled. We set f  to be the pdf of the joint distribution 
of the concentration vector.

We need to compute:

1.	 the function F(�) = P
(

f
(

Yit1 ,… , Yitn

) ≤ �
)

.

2.	 �
(

yi
)

 , where yi =
(

yi1,… , yin
)

 is the vector containing 
the concentrations observed in the ith individual; yi 
should not be confused with the theoretical concentra-
tions ( Yit1 ,… , Yitn ) simulated with the model (Eq. 1). A 
large value of �

(

yi
)

 indicates that the observed kinetic 
profile in the individual is in the “heart” of the distribu-
tion of the kinetic profiles given by the model. On the 
contrary, a low value of �

(

yi
)

 indicates that the observed 
kinetic profile is far from the one expected by the model.

3.	 the multivariate exact discrepancy (MED) is defined as 
P
(

yi
)

= F
(

�
(

yi
))

 that, when multiplied by 100, gives 
the percentage of kinetic profiles given by the model 
that are more “extreme” than the observed profile. For 
example, if F

(

�
(

yi
))

= 1 × 10−6 , it means that only 
one individual in a million has a kinetic profile from the 
model that is more extreme than the one observed in our 
individual. In other words, the model is inadequate for 
describing the kinetic of the individual.

Because f  is the pdf of a marginal distribution, it is quite 
difficult to obtain directly through computation. Instead, we 
propose to approximate f  through simulations as follows:

(a)	 Simulate K vectors 
(

Y
(k)

it1
,… , Y

(k)

itn

)

k=1,…,K
 using model 

Eq. (1).
(b)	 Compute an approximation f̃  of f  using a kernel esti-

mator based on the K vectors simulated at step (a). To 
approximate f̃  , we chose to use the function kde avail-
able in the package ks in R.

(c)	 For a given � , an approximation F̃(𝜆) of F(�) is given 
by the percentage of f̃

(

Y
(k)

it1
,… , Y

(k)

itn

)

 smaller than � ; in 
other terms,

(4)F̃(𝜆) =
1

K

K
∑

k=1

1[
f̃
(

Y
(k)

it1
,…,Y

(k)

itn

)≤𝜆]
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The quality of the approximation of f  and F(�) depends 
solely on the number of simulated vectors K. The greater the 
number of concentrations per individual, the greater K. We 
have no guidelines for choosing K at present.

A summary of the MED calculation for one patient is 
shown in Fig. 1. To make it easier to understand, the Fig. 1 
shows the MED calculation when only one concentration is 
available for one patient.

If we repeat the proposed method to each individual, we 
obtain one probability per individual, P

(

y1
)

,… ,P
(

yN
)

.
If we return to the question of whether or not M𝜏 describes 

the data well, we can state that if M𝜏 = M0 , the P
(

yi
)

 values 
should be distributed according to a uniform distribution on 
[0, 1]. Therefore, if the distribution of the P

(

yi
)

 values is not 
uniform, M𝜏 ≠ M0 and the model M𝜏 is invalidated.

It remains to be checked whether the distribution of the 
P(y) ’s is uniform on [0, 1]. Any test that compares a sample 
distribution to a reference distribution (uniform on ]0; 1[) 
can be used. In this context, tests such as the Kolmogorov-
Smirnov test, Anderson Darling test, chi-square tests are 
appropriate; each having its own advantages and drawbacks. 
In the remainder of this article, we will use the Kolmogorov-
Smirnov test without discussing this choice.

To summarise the interpretation of MED, we know that 
MED coming from the true model are expected to be drawn 
from a uniform distribution over [0, 1]. There is thus a small 
probability (< alpha = 5%) to observe a MED less than 5% 

coming from the true model. In this respect, MED can be 
interpreted as a p-value.

The great advantage of this method is its ability to iden-
tify outliers. Indeed, an individual’s probability determines 
whether or not the individual’s kinetic belongs to the model. 
To do that, a probability threshold must be defined: if an 
individual’s probability falls below this threshold, then the 
individual is identified as an outlier. When an individual is 
considered as an outlier, their entire PK profile is rejected, 
not just certain concentrations. Detection of outliers can be 
useful both in building a model and in performing therapeu-
tic drug monitoring.

Usually in statistics, an outlier is defined as a value that 
has a small probability to come from the studied model. 
Similarly, we will classify an individual as an outlier if their 
kinetic profile has a small probability of being generated by 
the population PKs under investigation. The search of outlier 
kinetics is quite distinct from the search of outlier concen-
trations, which involves comparing each concentration to a 
chosen model without considering the other concentrations 
obtained in the same individual.

Consider N vectors, y1,… , yN , containing the concentra-
tions observed in N independent individuals. These vectors 
do not necessarily have the same size because the number of 
concentrations per individual may vary. Additionally, these 
concentrations may not have been obtained at the same times 
post-administration. Our goal is to identify individuals with 

Fig. 1   Schematic representation of the multivariate exact discrepancy 
(MED) computation in one dimension. The a (on the left) represents 
the different notation used to compute the MED. The x-axis repre-
sents the concentrations that can be observed with the tested model 
at a given time with fixed values of covariates. The y-axis represents 
the probability density function f(x) of these concentrations. The red 
crosses represented on the x-axis are concentrations simulated with 
the model. A large value of f(x) indicates a large density of (simu-
lated) concentrations. For a given value of � , we can compute A� , 
the set of concentrations whose density is higher than � . From A� , 
we can calculate 1 − F(�) = P

(

X ∈ A�

)

 , that can be seen as the per-
centage of simulated concentrations with a density higher than � , and 
F(�) , the percentage of simulated concentrations with a density lower 

than lambda. Now that these sets have been defined, let’s see how to 
use them to define MED. The figure b (on the right) illustrates how 
to compute the MED for a patient for whom we have measured one 
concentration ( Cobs ) represented on the x-axis. The y-axis still repre-
sents the pdf f(x). We can calculate the set A�Cobs for which Cobs is 
at the boundary and the corresponding � that will be denoted �Cobs

 . 
The MED are defined as the probability that a concentration does 
not belong to A�Cobs  that can be seen as the percentage of simulated 
concentrations standing in a region where f (x) ≤ �Cobs

 . If the MED 
is large, the observed concentration stands in a region of high density 
and the concentration is consistent with the model. On the contrary, if 
the MED is low, we have a low probability of observing the concen-
tration with the model tested
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a kinetic profile that can be considered as outliers with 
respect to the model described by Eq. (1). This model con-
tains estimation of population parameters, 𝜏 , obtained from 
the observed concentrations y1,… , yN . We assume that 𝜏 
is the true value of � and is known without any impreci-
sion. For all individuals, we can compute P

(

y1
)

,… ,P
(

yN
)

 
using the method described above. When N is large, we can 
expect to observe very low and very large values of the P

(

yi
)

 
even if none of the kinetics are outliers. The threshold value 
below which the P

(

yi
)

 ’s can be considered abnormal can be 
derived by their minimum.

Let us consider LL� the limit defined by

The meaning of this limit is the following: only 100 ×� % 
of the samples of N individuals should exhibit a kinetics ( yi) 
coming from the model (Eq. 1) with P

(

yi
) ≤ LL�.

In other terms, if � is chosen small enough (for example, 
� = 0.05 ), a kinetic profile yi with P

(

yi
) ≤ LL� should be 

considered as outlier.
From the property, we know that when y1,… , yN 

are drawn in the model described by (Eq.  1) then 
P
(

yi
)

∼iid U([0, 1]) . It follows that

2.4 � Simulation Study

The objective of the simulation section is (1) to illustrate 
how the method works using a very simple example and (2) 
to evaluate the performance of the method in detecting a 
problem in the model through two examples.

All the population PK models used in this article have 
arbitrarily chosen population parameters and variance. They 
were chosen to ensure a good illustration of the method.

2.4.1 � Illustrative Example

This simplified example demonstrates the practical applica-
tion of the method within the context of TDM (Therapeutic 
Drug Monitoring). In this scenario, we have measured two 

(5a)P
(

min
{

P
(

y1
)

,… ,P
(

yN
)} ≤ LL�

)

= �

(5b)LL� = 1 − (1 − �)1∕N

concentrations in a patient and our objective is to identify 
compatible models.

Assuming a dose D = 100 was administered intravenously 
to an individual at time 0. We observed two concentrations 
(

y1, y2
)

= (1.22, 0.011) in this individual at times t1 = 39 and 
t2 = 99 , respectively.

We would like to determine if the following published 
model can well describe the individual’s kinetics.

The model described in Eq. (6) has the same structure as 

the one of Eq. (1) with θ =

(

cl

V

)

 , there is no covariate so 

no need to write a matr ix C containing their  
v a l u e s ,  m(t,�) =

D

V
e
−

cl

V
t  ,  g(t,�, �) = 0.1 ×

D

V
e
−

cl

V
t  , 

h(�, �) =

(

0.1exp
(

�cl
)

exp
(

�V
)

)

 , Ω =

(

0.22 0

0 0.12

)

.

We simulated K = 100,000 vectors (Y39, Y99) using the 
model Eq. (6).

The kernel density estimator was constructed using simu-
lations with the ks library in R.

The individual’s probability was calculated using Eq. (4). 
For comparison, we analysed the results provided by VPC 
and MED graphically.

2.4.2 � Evaluation of a Population Pharmacokinetic Model

This first example evaluated the method’s ability to detect a 
misspecification in the structural model. In some published 
population PK studies, the PK model used to describe indi-
vidual kinetics is a one compartmental model. These studies 
can exhibit important residual error. For instance, models with 
a combined or proportional residual error model that show 
a coefficient of variation of the residual error much greater 
than the coefficient of variation of the analytical method used.

The following simulations evaluate the performance of 
the proposed method in detecting a model that is too simplis-
tic for analysing data. The data are assumed to come from a 
bi-compartmental model (described by Eq. 7 below) but are 
analysed using a one-compartmental model (Eq. 8).

The following 2-compartment model was used to generate 
L = 200 sets of N = 200 kinetics, each of these including 2 
time points.

(6)

⎧

⎪

⎨

⎪

⎩

Yt =
D

V
e
−

cl

V
t�
1 + 0.1�t

�

where �t ∼iid ℕ(0, 1)
�

cl

V

�

=

�

0.1exp
�

�cl
�

1exp
�

�V
�

�

, where

�

�cl

�V

�

∼ ℕ

�

0,

�

0.22 0

0 0.12

��

(7)

⎧

⎪

⎨

⎪

⎩

y(l)ij =
(

A(l)
i e−�

(l)
i t(l)ij + B(l)

i e−�
(l)
i t(l)ij

)

×
(

1 + 0.2�(l)ij
)

where �(l)ij ∼iid ℕ(0, 1)

log
(

A(l)
i , �(l)

i ,B(l)
i , �(l)i

)

∼iid ℕ
(

(ln (100), ln (0.1), ln (10), ln (�)), 0.12I4
)

, l = 1,… , L, i = 1,… , n, j = 1, 2
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Where iid means independent and identically distributed 
and I4 refers to a 4 × 4 identity matrix

For each value of � within the interval [0.01, 0.1] with 
an increment of 0.01, 200 sets of 200 simulations were per-
formed. The kinetic profiles resulting of these simulations 
are shown in Fig. 2.

For all simulated individuals, the first sampling time t(l)
i1

 
was drawn from a uniform distribution on [0, 125] and the 
second sampling time was set to t(l)

i1
+ 125. This way of choos-

ing the sampling times ensures that the two time points in a 
kinetic profile are sufficiently spaced. Next, for each value 
of � , the closest one compartment model was looked for by 
analysing several datasets generated with Eq. (7) using the 
following model:.

We built the models Eq. (8) using Monolix. To define the 
best one-compartmental models (i.e., the models closest to 
model Eq. 7), we used 1500 individuals with 10 observa-
tions per individual. The times 

(

uij
)

 for all individuals were 
uniformly selected from the time interval [0, 250].

The model described by Eq. (8) was used to simulate 
K  =  10,000 vectors at each time point t(l)

ij
 to compute 

P
(l)

i
= F̃

(l)

i

((

y
(l)

i1
, y

(l)

i2

))

 as described by Eq. (4). For each set 
(each l = 1,… , L ), the distribution of the 

(

P(l)
i

)

i=1,..,n
 was 

compared to a uniform distribution over [0, 1] using a Kol-
mogorov-Smirnov test.

(8)

⎧

⎪

⎨

⎪

⎩

Yij = Aie
−�iuij ×

�

1 + ��ij
�

where �ij ∼iid ℕ(0, 1)

log
�

Ai, �i
�

∼iid ℕ

�

�

ln
�

�A
�

, ln
�

��
��

,

�

�2
A

0

0 �2
�

��

The 200 sets built with � = 0.1 (i.e., the true model) 
allows us to evaluate the type I error, as the percentage of 
the 200 sets where the hypothesis of uniformity distribution 
of the 

(

P
(l)

i

)

i=1,..,n

 was rejected. Similarly, the power of 

detecting the wrong model (beta different from 0.1) was 
evaluated by the percentage of p-values given by the Kol-
mogorov-Smirnov test that were less than 0.05, indicating 
rejection of the uniformity hypothesis made on the distribu-
tion of the 

(

P
(l)

i

)

i=1,..,n
.

We chose to compare the results obtained with MED and 
NPDE as a reference method. However, as we were only 
interested in comparing the power of the tests, we used the 
Prediction Distribution Error (PDE), a non-standardized 
variable, instead of NPDE. PDE were constructed in the 
same way as MED (10,000 concentration vectors simulated 
for each individual) and tested for uniformity using a Kol-
mogorov-Smirnov test. As for MED, we evaluated the type 
I error and the power of PDE.

The power tests obtained with our method and with PDE 
were compared graphically.

2.4.3 � Detection of Individuals with Outlier Kinetics

The second example evaluates the performance of the 
method to detect outlier’s kinetic of individuals. The aim of 
this example is to evaluate the ability of the method to reject 
a model based on the percentage of outliers.

Let us consider the following population PK model

This model, with �cl = 2 L/h, serves as the reference 
model. Therefore, kinetics simulated with this model 
( �cl = 2  L/h) were used to compute f̃  as previously 
described.

Next, a sequence of values of �cl ∈ [1;3] by step of 0.1 
was used to generate outlier kinetics. Three sets of arbitrarily 
fixed observations times were used. The first set of observa-
tion times contained 2 times: t1 = 3 and t2 = 33 ; the second 
set contained 3 times: t1 = 3 , t2 = 16 and t3 = 33 and finally, 
the third set contained 4 times: t1 = 3 , t2 = 10 , t3 = 20 , and 
t4 = 33.

For each simulated outlier kinetic (y) , we computed the 
corresponding P(y) . The kinetics (y) for which P(y) ≤ LL0.05 
were identified as outliers. We computed the percentages of 
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Fig. 2   This figure represents the 5%, 50% (median) and 95% per-
centiles of concentrations (on a logarithmic scale) simulated with a 
2-compartment model (Eq. 7) for several values of � (slow or termi-
nal decay slope) ranging from the 0.01 to 0.1. The curves obtained 
with � = 0.1 corresponds to a one-compartment model (straight line). 
The curves obtained from � = 0.06 to � = 0.09 are almost indistin-
guishable from the one obtained with � = 0.1
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detected outlier kinetics (also called power) for N = 100, N 
= 200 and N = 10,000.

As there are no other methods available to detect outliers, 
we did not compare our tool with any other method.

3 � Results

3.1 � Illustrative Example

The plot of percentiles provided by the model described 
by Eq. (6) are presented in Fig. 3. We have plotted the two 
observed concentrations in red on the plot. It is evident 
that this plot suggests these two concentrations to plausi-
bly come from the model described in Eq. (6).

However, when looking at the shape of the kinetics (in a 
logarithmic scale), all the log-concentrations of a kinetics 
are grouped around a straight line. The plot of percentiles 
roughly show the limits of the straight lines that can be 
encountered. It is also clear that the “beginning” of the 
kinetics represented by a dot line cannot belong to the 90% 
prediction interval.

Figure 4 represents the value of ln(Y99) as a function 
of ln(Y39) , with different coloured areas representing the 
sets A� for various values of �. The darker coloured areas 
were obtained with the largest values of � and they corre-
spond to the area with the highest density of the simulated 
points. Similarly, the areas drawn with light colours cor-
respond to low density of simulated points. The red point 
(ln 1.22, ln 0.011) represents the observed concentrations 

in the individual. The value of � from which the level 
set of the pdf contains (ln 1.22, ln 0.011) is close to zero. 
More precisely �(ln 1.22, ln 0.011) ≃ 7 × 10−10. Finally, 
F̃(𝜆(ln 1.22, ln 0.011)) = 0 indicating that none of the sim-
ulated vectors given by Eq. (6) have a lower pdf value, 
showing that F̃((ln 1.22, ln 0.011)) ≤ 1∕100, 000.

In conclusion, there is a probability ≤ 10−5 that these con-
centrations come from the model Eq. (6).

3.2 � Evaluation of a Population Pharmacokinetic 
Model

In Table  1, we present the estimated parameter values 
obtained by fitting a one-compartment model to the two-
compartment model simulations according to the value of 
� indicated in the first row. As the kinetics become more 
bi-compartmental (decreasing beta), the one-compartment 
model becomes less suitable for the data, resulting in an 
increase in residual variability.

Figure 5 shows the type I error rate when � = 0.1 (i.e., 
one-compartment model). The power of detecting the wrong 
model by our method and by PDE is presented for different 
values of �.

With our method, the kinetics simulated with a value of � 
less than 0.05 are always identified as being simulated with 
a model that is not a one-compartment model: the power is 

Fig. 3   The blue lines represent the 5%, 50% (median) and 95% per-
centiles of concentrations (in logarithmic scale) simulated with a 
1-compartment model (Eq.  6). The two red points represent the 
observed concentrations in a patient and the black points the vari-
ability expected around these points. As both points fall within the 
90% prediction interval, the usual analysis of this figure is mislead-
ing. Indeed, both observed concentrations belong to the prediction 
interval, which suggests that the two concentrations observed on the 
patient are consistent with the model. However, taken as a whole the 
possible kinetic profiles are not compatible with the 1-comparmental 
model described in the Eq. (6)

Fig. 4   The x and y axes of this figure represent, respectively, the con-
centrations (in log-scale) simulated with the 1-compartment model 
(Eq. 6) at times 39 and 99 (C_39 and C_99). The shapes represented 
(close to ellipses) are the sets A� for various values of � . The sets 
shown in red were obtained with the largest values of λ and corre-
spond to the area where most of the concentrations simulated with 
a 1-compartment model (Eq. 6) are found (in logarithmic scale). On 
the contrary, the sets represented in light yellow correspond to the 
area where only few concentrations from the 1-compartment model 
(Eq.  6) can be observed. The area in white (the rest of the picture) 
corresponds to the area where none of the 100,000 concentrations 
simulated with the 1-compartment model (Eq. 6) were observed. In 
this white area, lambda is close to 0. Finally, the point in red corre-
spond to the two concentrations observed in the individual. These two 
concentrations fall in a white area indicating that the 1-compartment 
model (Eq. 6) cannot be used to describe the individual’s kinetics
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100%. This probability decreases when beta get closer to 0.1, 
which corresponds to a one-compartment model. The advan-
tage of the proposed method is that it allows distinguishing 
a two-compartment model from a one-compartment model, 
even for � = 0.06 or 0.07, while visual examination of the data 
cannot achieve this (as shown in Fig. 2). The “power” obtained 
with � = 0.1 corresponds to the level of the statistical test: 0.05.

With the PDE method, only the kinetics simulated with a 
value of � equal to 0.01 are always identified as being simu-
lated with a model that is not a one-compartment model. 
For the value of � between 0.07 and 0.09, the PDE method 
always fails to distinguish a two-compartment model from 
a one-compartment model.

3.3 � Detecting |Individuals with Outlier PK

The detection of outliers is presented with various num-
bers of available subjects, denoted N. Increasing N allows 
for the evaluation of the method’s power to detect outliers 
based on the number of available data. When N = 10,000, 
the number of detected outliers converges to its true value. 

Figure 6 presents the plot of percentiles of the true model 
( �cl equal to 2 L/h) along with examples of outlier kinetic 
profiles simulated with �cl of 1 L/h (in red), 2 L/h (in grey) 
and 3 L/h (in purple).

The results obtained with 2 and 3 observations are pre-
sented in Fig. 7. The curves obtained with four observa-
tion times were found to be superimposable with the one 
obtained using only 3 observation times.

The decision rule used to identify a kinetic profile as 
an outlier was designed to identify the most extreme (i.e., 
with the smallest P(y)) observable kinetics among N kinet-
ics. Therefore, this decision rule depends on the number of 
kinetics among which we search to identify outliers. Figure 7 
shows that as the value of �cl deviates further from 2 L/h, it 
becomes easier for the proposed method and decision rule 
to identify kinetics simulated with �cl different from 2 and 
analysed with �cl = 2. On the other hand, simulated kinetics 
with �cl between 1.5 and 2.5 are not identified as outliers, 
regardless of the number of observation times used.

Table 1   Mono-compartmental 
population pharmacokinetic 
model based on �

� 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

�
A

30.30 32.26 34.48 37.04 40.00 47.62 58.82 76.92 90.91 110
�� 0.017 0.027 0.037 0.048 0.058 0.069 0.078 0.087 0.094 0.1
�
A

0.099 0.094 0.1 0.12 0.14 0.19 0.26 0.27 0.24 0.1
�� 0.069 0.083 0.085 0.087 0.088 0.091 0.089 0.083 0.084 0.1
� 0.52 0.52 0.51 0.5 0.48 0.44 0.37 0.3 0.26 0.2

Fig. 5   This figure represents the probability of detecting that a 
2-points kinetics simulated with the 2-compartment model (Eq.  7) 
does not come from the 1-compartment model (Eq. 8) for 2 different 
methods: the method proposed in this paper and the Prediction Dis-
tribution Error (PDE) (reference method). Several values of � (beta) 
were used to simulate the 2-points kinetics

Fig. 6   This figure displays the 5th, 50th (median) and 95th percen-
tiles of concentrations (in log-scale) simulated with a 1-compartment 
model and an extravascular administration (Eq.  9) for the reference 
clearance (2 L/h), represented in black. Examples of kinetic profiles 
obtained with different �cl are superimposed. Specifically, profiles 
with a �cl equal to 1 L/h, 2 L/h and 3 L/h are, respectively, presented 
in purple, grey and red
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4 � Discussion

In this article, we propose a new tool for evaluating popula-
tion PK models. Our method enables the computation of 
a probability for each individual that their concentration 
profile comes from the model. The implementation of this 
method is done in 3 steps: (a) simulating kinetics using the 
tested model; (b) calculating the pdf with the simulated 
kinetics; and (c) calculating the multivariate exact discrep-
ancy for each observed kinetics (P(y)) with the pdf. The pro-
posed method can be used regardless of individual sampling 
times and their covariate values.

We demonstrated the performance of our method through 
two simulation examples. The first example evaluated its 
ability to detect a misspecification in the structural model. 
Our method showed good statistical properties and outper-
formed PDE in detecting the incorrect structural model. 
One possible explanation is that our method fully exploits 
the non-independence between the concentrations measured 
in an individual.

The second example evaluates the ability of the method 
to detect outliers kinetic. This novel application is highly 
interesting since there is currently no other method to iden-
tify outliers. The rationale behind this application is that, 
during the model building process, if too many observed 
kinetics are not compatible with the model, the model 
should be changed. However, we must recognise that 
the identification of outlier kinetics based on the law of 
extremes (the minimum) did not give the expected results. 
Indeed, we were unable to identify as outliers the simu-
lated kinetics whose mean clearance values were close to 
the reference clearance value. Further work on this subject, 
including exploring other decision rules, is necessary to 
enable better identification of kinetics that deviate signifi-
cantly from the model.

Another direct application of this method is to use it for 
selecting a population PK model in the context of thera-
peutic drug monitoring (TDM). Currently, in hospital prac-
tice, model evaluation remains difficult due to the lack of 
guidelines [14]. However, selecting the correct model is a 
crucial step to ensure that the predictions made are accu-
rate and that the resulting dosage regimen is appropriate. 
The main difficulty is due to the lack of an appropriate 
tool, i.e., a method to select a model at the individual level 
[15]. The proposed method shows great promise for this 
application as it provides one probability per individual 
that their kinetics belong to a model. This probability could 
therefore be used to select a model consistent with the 
observed concentrations at an individual level rather than 
a population level. It can thus be used to flag individuals 
with atypical kinetics, and this information can be used to 
indicate uncertainty in dose recommendations, as well as to 
request additional blood samples to better characterise its 
PK profile. But, as the method evaluates an entire kinetic 
profile, an erroneous observation (due to a wrong dosage or 
sampling time) could lead to an individual being wrongly 
identified as an outlier. This is a limitation of this version 
of the method.

A much more detailed simulation analysis should be car-
ried out to confirm (or refute) these preliminary findings. 
We still need to test the method’s ability to detect various 
other specification errors encountered in the model-build-
ing process (e.g., evaluation of a covariate model…) as 
well as its ability to perform external validation for TDM 
purposes.

Moreover, while the results obtained seem encouraging, 
it is important to note that, like all other model evaluation 
methods, we reason conditionally based on the population 
parameters. In other words, the imprecision of the popula-
tion parameters is not accounted for. This is a limit of the 

Fig. 7   The left (resp. right) figure shows the percentage of 2-point 
(resp. 3-point) kinetic profiles simulated with the 1-compartment 
model and an extravascular administration (Eq.  9) with �cl rang-
ing from 1 to 3 L/h and identified as coming from a 1-compartment 

model and an extravascular administration (Eq. 9) with �cl ≠ 2.0 L/h. 
The decision rule used to declare a kinetic profile as not compatible 
with �cl = 2.0 L/h is described by Eqs. (5a) and (5b)
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method that we do not know how to overcome. This limi-
tation requires us to work with the best available estima-
tors of the population parameters, i.e., with the maximum 
likelihood.

Finally, there is still important work to be done on the 
estimation of the pdf f̃ .

When there are few observations per individual (less 
than 4), the ks library in R can quickly calculate the MED. 
However, when the number of observations per individual 
is greater than 5, ks takes a long time to estimate f  . This is 
probably because ks tries to estimate the optimal bandwidth 
(smoothing parameter), which can be a time-consuming pro-
cess. It is likely, but still needs to be verified, that crude 
(non-optimal) bandwidths would allow model evaluation 
and outlier search questions to be answered efficiently while 
also being computed quickly.

In conclusion, the method proposed in this article shows 
great promise for both model evaluation and selection of 
model to perform TDM. However, it needs to be tested on a 
large scale in order to fully assess its effective power, espe-
cially in the model building process.
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