Skip to main content
Log in

Pharmacokinetics of Antiretroviral Drugs in Older People Living with HIV: A Systematic Review

  • Systematic Review
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and objective

The life expectancy of people living with HIV (PLWHIV) has significantly improved in recent decades, mostly due to antiretroviral (ARV) therapy. Aging can affect the pharmacokinetics of drugs and, as a consequence, increase the risk of drug interactions and toxicity that may impact treatment. The aim of this study was to carry out a systematic review of the literature on the effect of aging on ARV pharmacokinetics.

Methods

Searches were performed in the BVS, EMBASE and PUBMED databases until November 2022. All studies available in English, Spanish and Portuguese investigating the pharmacokinetics of ARV approved by the US Food and Drug Administration (FDA) from 2005 to 2020 were selected. Peer-reviewed publications were included if they met all criteria: adults (≥ 18 years of age) living with or without HIV; report any pharmacokinetic parameter or plasma concentration of at least one of the following ARVs: tenofovir alafenamide fumarate (TAF); doravirine (DOR), rilpivirine (RIL) and etravirine (ETR); darunavir (DRV), tipranavir (TPV) and fostemsavir (FTR); dolutegravir (DTG), raltegravir (RAL), bictegravir (BIC) and elvitegravir (EVG); maraviroc (MVC); ibalizumab (IBA); cobicistat (COBI). Pharmacokinetic parameters were reported stratified per age group: young adults (aged 18–49 years) or older (age ≥ 50 years) and all studies were evaluated for quality. The review protocol was registered in the PROSPERO database (registration number CRD42021236432).

Results

Among 97 studies included, 20 reported pharmacokinetic evaluation in older individuals (age ≥ 50 years). Twenty five percent of the articles were phase I randomized clinical trials with HIV-negative participants and non-compartmental pharmacokinetic analysis presenting the parameters area under the curve (AUC) and peak drug concentration (Cmax). Seven age-stratified studies evaluated BIC, ETR, DRV, DTG, DOR and RAL. We found publications with discordant results for ETR and DTG pharmacokinetics in different age groups. DRV exposure was highly variable but modestly increased in aging PLWHIV. In contrast, no influence of age on BIC, DOR and RAL exposure was observed. A variability in pharmacokinetic parameters could be observed for the other ARVs (TAF and MVC) in different age groups.

Conclusion

Exposure to DRV increases modestly with age, while exposure to BIC, DOR and RAL appears to be unaffected by age. As the available evidence to confirm a potential effect of aging on ARV pharmacokinetics is limited, further studies are necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aguiar RB, Leal MCC, Marques AP de O, Torres KMS, Tavares MTDB. Idosos vivendo com HIV—comportamento e conhecimento sobre sexualidade: revisão integrativa. Ciênc Saúde Coletiva. 2020;25:575–84.

  2. HIVinfo. FDA Approval of HIV Medicines - A timeline with all the FDA approval dates for HIV medicines, categorized by drug class. 2022. https://hivinfo.nih.gov/understanding-hiv/infographics/fda-approval-hiv-medicines. Accessed 12 Jan 2022.

  3. World Health Organization. HIV: from a devastating epidemic to a manageable chronic disease. WHO; 2017. https://www.who.int/publications/10-year-review/chapter-hiv.pdf. Accessed 12 Jan 2022.

  4. CANOC Collaboration, Patterson S, Cescon A, Samji H, Chan K, Zhang W, et al. Life expectancy of HIV-positive individuals on combination antiretroviral therapy in Canada. BMC Infect Dis. 2015;15:274.

  5. Hogg R. Life expectancy of individuals on combination antiretroviral therapy in high-income countries: a collaborative analysis of 14 cohort studies. Lancet. 2008;372:293–9.

    Article  Google Scholar 

  6. Samji H, Cescon A, Hogg RS, Modur SP, Althoff KN, Buchacz K, et al. Closing the gap: increases in life expectancy among treated HIV-positive individuals in the United States and Canada. PLoS ONE. 2013;8: e81355.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Smiley CL, Rebeiro PF, Cesar C, Belaunzaran-Zamudio PF, Crabtree-Ramirez B, Padgett D, et al. Estimated life expectancy gains with antiretroviral therapy among adults with HIV in Latin America and the Caribbean: a multisite retrospective cohort study. Lancet HIV. 2021;8:e266–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. UNAIDS. 2020 Global AIDS update—seizing the moment tackling entrenched inequalities to end epidemics. UNAIDS; 2020. https://www.unaids.org/sites/default/files/media_asset/2020_global-aids-report_en.pdf. Accessed 12 Jan 2022.

  9. Calcagno A, Piconi S, Focà E, Nozza S, Carli F, Montrucchio C, et al. Role of normalized T-cell subsets in predicting comorbidities in a large cohort of geriatric HIV-infected patients. J Acquir Immune Defic Syndr. 2017;76:338–42.

    Article  PubMed  Google Scholar 

  10. DeVaughn S, Müller-Oehring EM, Markey B, Brontë-Stewart HM, Schulte T. Aging with HIV-1 infection: motor functions, cognition, and attention—a comparison with Parkinson’s disease. Neuropsychol Rev. 2015;25:424–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Belaunzaran-Zamudio PF, Caro-Vega Y, Giganti MJ, Castilho JL, Crabtree-Ramirez BE, Shepherd BE, et al. Frequency of non-communicable diseases in people 50 years of age and older receiving HIV care in Latin America. Nunes BP, editor. PLoS One. 2020;15:e0233965.

  12. Cardoso SW, Torres TS, Santini-Oliveira M, Marins LMS, Veloso VG, Grinsztejn B. Aging with HIV: a practical review. Braz J Infect Dis. 2013;17:464–79.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chary A, Nguyen NN, Maiton K, Holodniy M. A review of drug–drug interactions in older HIV-infected patients. Expert Rev Clin Pharmacol. 2017;10(12):1329–52.

    Article  CAS  PubMed  Google Scholar 

  14. Schoen JC, Erlandson KM, Anderson PL. Clinical pharmacokinetics of antiretroviral drugs in older persons. Expert Opin Drug Metab Toxicol. 2013;9:573–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Back D, Marzolini C. The challenge of HIV treatment in an era of polypharmacy. J Intern AIDS Soc. 2020;23(2):e25449. https://onlinelibrary.wiley.com/doi/10.1002/jia2.25449. Accessed 31 Jan 2022.

  16. Chary A, Nguyen NN, Maiton K, Holodniy M. A review of drug–drug interactions in older HIV-infected patients. Expert Rev Clin Pharmacol. 2017;10:1329–52.

    Article  CAS  PubMed  Google Scholar 

  17. Guaraldi G, Orlando G, Zona S, Menozzi M, Carli F, Garlassi E, et al. Premature age-related comorbidities among HIV-infected persons compared with the general population. Clin Infect Dis. 2011;53:1120–6.

    Article  PubMed  Google Scholar 

  18. Calcagno A, Moltó J, Borghetti A, Gervasoni C, Milesi M, Valle M, et al. Older age is associated with higher dolutegravir exposure in plasma and cerebrospinal fluid of people living with HIV. Clin Pharmacokinet. 2020;60:103–9.

    Article  Google Scholar 

  19. Tyrberg E, Edén A, Eriksen J, Nilsson S, Treutiger CJ, Thalme A, et al. Higher plasma drug levels in elderly people living with HIV treated with darunavir. PLoS ONE. 2021;16: e0246171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. PRISMA-P Group, Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):1.

  21. Fontela C, Castilla J, Juanbeltz R, Martínez-Baz I, Rivero M, O’Leary A, et al. Comorbidities and cardiovascular risk factors in an aged cohort of HIV-infected patients on antiretroviral treatment in a Spanish hospital in 2016. Postgrad Med. 2018;130:317–24.

    Article  PubMed  Google Scholar 

  22. Maciel RA, Klück HM, Durand M, Sprinz E. Comorbidity is more common and occurs earlier in persons living with HIV than in HIV-uninfected matched controls, aged 50 years and older: a cross-sectional study. Int J Infect Dis. 2018;70:30–5.

    Article  PubMed  Google Scholar 

  23. Daskapan A, Idrus LR, Postma MJ, Wilffert B, Kosterink JGW, Stienstra Y, et al. A systematic review on the effect of HIV infection on the pharmacokinetics of first-line tuberculosis drugs. Clin Pharmacokinet. 2019;58:747–66.

    Article  CAS  PubMed  Google Scholar 

  24. Calza L, Danese I, Colangeli V, Manfredi R, Magistrelli E, Verucchi G, et al. Plasma concentrations of efavirenz, darunavir/ritonavir and raltegravir in HIV-HCV-coinfected patients without liver cirrhosis in comparison with HIV-monoinfected patients. Infect Dis (Lond). 2015;47:625–36.

    Article  CAS  PubMed  Google Scholar 

  25. Vera JH, Jackson A, Dickinson L, Else L, Barber T, Mora-Peris B, et al. The pharmacokinetic profile of raltegravir-containing antiretroviral therapy in HIV-infected individuals over 60 years of age. HIV Clin Trials. 2015;16:39–42.

    Article  CAS  PubMed  Google Scholar 

  26. Johnson DH, Sutherland D, Acosta EP, Erdem H, Richardson D, Haas DW. Genetic and non-genetic determinants of raltegravir penetration into cerebrospinal fluid: A single arm pharmacokinetic study. PLoS ONE. 2013;8(12): e82672.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Cattaneo D, Puoti M, Sollima S, Moioli C, Foppa CU, Baldelli S, et al. Reduced raltegravir clearance in HIV-infected liver transplant recipients: An unexpected interaction with immunosuppressive therapy? J Antimicrob Chemother. 2016;71:1341–5.

    Article  PubMed  Google Scholar 

  28. Calcagno A, Baietto L, Pagani N, Simiele M, Audagnotto S, D’Avolio A, et al. Voriconazole and atazanavir: A CYP2C19-dependent manageable drug-drug interaction. Pharmacogenomics. 2014;15:1281–6.

    Article  CAS  PubMed  Google Scholar 

  29. Cattaneo D, Gervasoni C, Cozzi V, Baldelli S, Fucile S, Meraviglia P, et al. Co-administration of raltegravir reduces daily darunavir exposure in HIV-1 infected patients. Pharmacol Res. 2012;65:198–203.

    Article  CAS  PubMed  Google Scholar 

  30. Cottrell ML, Patterson KB, Prince HMA, Jones A, White N, Wang R, et al. Effect of HIV infection and menopause status on raltegravir pharmacokinetics in the blood and genital tract. Antiviral Ther. 2015;20:795–803.

    Article  CAS  Google Scholar 

  31. Mogalian E, Stamm LM, Osinusi A, Brainard DM, Shen G, Ling KHJ, et al. Drug-Drug Interaction Studies between Hepatitis C Virus Antivirals Sofosbuvir/Velpatasvir and Boosted and Unboosted Human Immunodeficiency Virus Antiretroviral Regimens in Healthy Volunteers. Clin Infect Dis. 2018;67:934–40.

    Article  CAS  PubMed  Google Scholar 

  32. Patterson KB, Prince HA, Stevens T, Shaheen NJ, Dellon ES, Madanick RD, et al. Differential penetration of raltegravir throughout gastrointestinal tissue: implications for eradication and cure. AIDS. 2013;27:1413–9.

    Article  CAS  PubMed  Google Scholar 

  33. Spinner CD, Wille F, Schwerdtfeger C, Thies P, Tanase U, Figura G, et al. Pharmacokinetics of chewed vs. swallowed raltegravir in a patient with AIDS and MAI infection: some new conflicting data. AIDS Res Ther. 2015;12(1):1.

  34. Taburet A-M, Sauvageon H, Grinsztejn B, Assuied A, Veloso V, Pilotto JH, et al. Pharmacokinetics of raltegravir in HIV-infected patients on rifampicin-based antitubercular therapy. Clin Infect Dis. 2015;61:1328–35.

    Article  CAS  PubMed  Google Scholar 

  35. Weiner M, Egelund EF, Engle M, Kiser M, Prihoda TJ, Gelfond JAL, et al. Pharmacokinetic interaction of rifapentine and raltegravir in healthy volunteers. J Antimicrob Chemother. 2014;69:1079–85.

    Article  CAS  PubMed  Google Scholar 

  36. Wenning LA, Friedman EJ, Kost JT, Breidinger SA, Stek JE, Lasseter KC, et al. Lack of a significant drug interaction between raltegravir and tenofovir. Antimicrob Agents Chemother. 2008;52:3253–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Abel S, Russell D, Taylor-Worth RJ, Ridgway CE, Muirhead GJ. Effects of CYP3A4 inhibitors on the pharmacokinetics of maraviroc in healthy volunteers. Br J Clin Pharmacol. 2008;65:27–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Castellino S, Moss L, Wagner D, Borland J, Song I, Chen S, et al. Metabolism, excretion, and mass balance of the HIV-1 integrase inhibitor dolutegravir in humans. Antimicrob Agents Chemother. 2013;57:3536–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Merli M, Galli L, Marinaro L, Ariaudo A, Messina E, Uberti-Foppa C, et al. Pharmacokinetics of dolutegravir and rilpivirine in combination with simeprevir and sofosbuvir in HIV/hepatitis C virus-coinfected patients with liver cirrhosis. J Antimicrob Chemother. 2017;72:812–5.

    CAS  PubMed  Google Scholar 

  40. Greener BN, Patterson KB, Prince HMA, Sykes CS, Adams JL, Dumond JB, et al. Dolutegravir pharmacokinetics in the genital tract and colorectum of HIV-negative men after single and multiple dosing. J Acquir Immune Defic Syndr. 2013;64:39–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Singh RP, Adkison K, Wolstenholme A, Hopking J, Wynne B. Pharmacokinetics, safety, and tolerability of a single oral dose of abacavir/dolutegravir/lamivudine combination tablets in healthy Japanese study participants. Clin Pharmacol Drug Dev. 2021;10:985–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Courlet P, Stader F, Guidi M, Alves Saldanha S, Stoeckle M, Cavassini M, et al. Pharmacokinetic profiles of boosted darunavir, dolutegravir and lamivudine in aging people living with HIV. AIDS. 2019;34:103–8.

    Article  Google Scholar 

  43. Blackman AL, Heil EL, Devanathan AS, Pandit NS. The effect of veno-arterial extracorporeal oxygenation and nasogastric tube administration on the pharmacokinetic profile of abacavir, lamivudine and dolutegravir: a case report. Antivir Ther. 2020;25:115–9.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Brooks KM, Garrett KL, Kuriakose SS, George JM, Balba G, Bailey B, et al. Decreased absorption of dolutegravir and tenofovir disoproxil fumarate, but not emtricitabine, in an HIV-infected patient following oral and jejunostomy-tube administration. Pharmacotherapy. 2017;37:e82–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gallant JE, Thompson M, DeJesus E, Voskuhl GW, Wei X, Zhang H, et al. Antiviral activity, safety, and pharmacokinetics of bictegravir as 10-day monotherapy in HIV-1-infected adults. J Acquired Immune Defic Syndr. 2017;75:61–6.

    Article  CAS  Google Scholar 

  46. Stader F, Courlet P, Decosterd LA, Battegay M, Marzolini C. Physiologically based pharmacokinetic modelling combined with Swiss HIV Cohort Study data supports no dose adjustment of bictegravir in elderly individuals living with HIV. Clin Pharmacol Ther. 2021;109(4):1025–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tempestilli M, D’Avolio A, De Nicolò A, Agrati C, Antinori A, Cicalini S. Pharmacokinetics of bictegravir, emtricitabine and tenofovir alafenamide in a gastrectomized patient with HIV. J Antimicrob Chemother. 2021;76(12):3320–2.

    Article  CAS  PubMed  Google Scholar 

  48. Salama E, Hill L, Patel N, Best BM, Momper JD. Brief report: pharmacokinetics of bictegravir and tenofovir in combination with darunavir/cobicistat in treatment-experienced persons with HIV. J Acquir Immune Defic Syndr. 2021;88:389–92.

    Article  CAS  PubMed  Google Scholar 

  49. Hocqueloux L, Lefeuvre S, Bois J, Valentin C, Brucato S, Alix A, et al. Bioavailability of solid vs. dissolved vs. crushed single-tablet of bictegravir/emtricitabine/tenofovir alafenamide in HIV negative volunteers: the SOLUBIC study. HIV Med. 2021;22:132–3.

  50. Agarwal K, Fung SK, Nguyen TT, Cheng W, Sicard E, Ryder SD, et al. Twenty-eight day safety, antiviral activity, and pharmacokinetics of tenofovir alafenamide for treatment of chronic hepatitis B infection. J Hepatol. 2015;62:533–40.

    Article  CAS  PubMed  Google Scholar 

  51. Custodio JM, Fordyce M, Garner W, Vimal M, Ling KHJ, Kearney BP, et al. Pharmacokinetics and safety of tenofovir alafenamide in HIV-uninfected subjects with severe renal impairment. Antimicrob Agents Chemother. 2016;60:5135–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Begley R, Das M, Zhong L, Ling J, Kearney BP, Custodio JM. Pharmacokinetics of tenofovir alafenamide when coadministered with other hiv antiretrovirals. J Acquired Immune Defic Syndr. 2018;78:465–72.

    Article  CAS  Google Scholar 

  53. Di Perri G, Green B, Morrish G, Hill A, Faetkenheuer G, Bickel M, et al. Pharmacokinetics and pharmacodynamics of etravirine 400 mg once daily in treatment-naïve patients. HIV Clin Trials. 2013;14:92–8.

    Article  PubMed  Google Scholar 

  54. Kakuda T, Sekar V, Vis P, Coate B, Ryan R, Anderson D, et al. Pharmacokinetics and pharmacodynamics of darunavir and etravirine in HIV-1-infected, treatment-experienced patients in the gender, race, and clinical experience (GRACE) trial. AIDS Res Treat. 2012;2012: 186987.

    PubMed  PubMed Central  Google Scholar 

  55. Calcagno A, Trentalange A, Simiele M, Marinaro L, Patti F, Tettoni MC, et al. Rilpivirine pharmacokinetics in 3 HIV-positive patients with liver cirrhosis concomitantly receiving pantoprazole. Ther Drug Monit. 2015;37:695–6.

    Article  PubMed  Google Scholar 

  56. Lamorde M, Walimbwa S, Byakika-Kibwika P, Katwere M, Mukisa L, Sempa JB, et al. Steady-state pharmacokinetics of rilpivirine under different meal conditions in HIV-1-infected Ugandan adults. J Antimicrob Chemother. 2014;70:1482–6.

    Article  Google Scholar 

  57. Custodio JM, Chuck SK, Chu H, Cao H, Ma G, Flaherty J, et al. Lack of clinically important PK interaction between coformulated ledipasvir/sofosbuvir and rilpivirine/emtricitabine/tenofovir alafenamide. Pharmacol Res Perspect. 2017;5(5): e00353.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Dickinson L, Yapa HM, Jackson A, Moyle G, Else L, Amara A, et al. Plasma tenofovir, emtricitabine, and rilpivirine and intracellular tenofovir diphosphate and emtricitabine triphosphate pharmacokinetics following drug intake cessation. Antimicrob Agents Chemother. 2015;59:6080–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mathias A, Menning M, Wiser L, Wei X, Dave A, Chuck S, et al. Bioequivalence of the emtricitabine/rilpivirine/tenofovir disoproxil fumarate single tablet regimen. J Bioequivalence Bioavailab. 2012;4:100–5.

    CAS  Google Scholar 

  60. Ankrom W, Yee KL, Sanchez RI, Adedoyin A, Fan L, Marbury T, et al. Severe renal impairment has minimal impact on doravirine pharmacokinetics. Antimicrob Agents Chemother. 2018;62(8):e00326-e418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Behm MO, Yee KL, Fan L, Fackler P. Effect of gender and age on the relative bioavailability of doravirine: results of a Phase I trial in healthy subjects. Antiviral Ther. 2017;22:337–44.

    Article  CAS  Google Scholar 

  62. Anderson MS, Gilmartin J, Cilissen C, De Lepeleire I, Van Bortel L, Dockendorf MF, et al. Safety, tolerability and pharmacokinetics of doravirine, a novel HIV non-nucleoside reverse transcriptase inhibitor, after single and multiple doses in healthy subjects. Antiviral Ther. 2015;20:397–405.

    Article  CAS  Google Scholar 

  63. Calza L, Colangeli V, Magistrelli E, Bussini L, Conti M, Ramazzotti E, et al. Plasma trough concentrations of darunavir/ritonavir and raltegravir in older patients with HIV-1 infection. HIV Med. 2017;18:474–81.

    Article  CAS  PubMed  Google Scholar 

  64. Kakuda TN, Leopold L, Timmers M, Van De Casteele T, Hillewaert V, Tomaka FL, et al. Bioavailability and bioequivalence of a darunavir 800-mg tablet formulation compared with the 400-mg tablet formulation. Int J Clin Pharmacol Ther. 2014;52:805–16.

    Article  CAS  PubMed  Google Scholar 

  65. Cojutti PG, Londero A, Della Siega P, Givone F, Fabris M, Biasizzo J, et al. Comparative population pharmacokinetics of darunavir in SARS-CoV-2 patients vs. HIV patients: the role of interleukin-6. Clin Pharmacokinet. 2020;59:1251–60.

  66. Dufty NE, Gilleran G, Hawkins D, Else LJ, Taylor S. Pharmacokinetic interaction of maraviroc with tacrolimus in a patient coinfected with HIV and hepatitis B virus following hepatic transplant due to hepatocellular carcinoma. J Antimicrob Chemother. 2013;68:972–4.

    Article  CAS  PubMed  Google Scholar 

  67. Vourvahis M, Fang J, Checchio T, Milton A, Weatherley B, McFadyen L, et al. Pharmacokinetics, safety, and tolerability of maraviroc in HIV-negative subjects with impaired renal function. HIV Clin Trials. 2013;14:99–109.

    Article  CAS  PubMed  Google Scholar 

  68. World Health Organization (WHO). WHO recommends dolutegravir as preferred HIV treatment option in all populations. 2019. https://www.who.int/news/item/22-07-2019-who-recommends-dolutegravir-as-preferred-hiv-treatment-option-in-all-populations#:~:text=Based%20on%20new%20evidence%20assessing,and%20those%20of%20childbearing%20potential. Accessed 4 Nov 2022.

  69. Elliot ER, Wang X, Singh S, Simmons B, Vera JH, Miller RF, et al. Increased dolutegravir peak concentrations in people living with human immunodeficiency virus aged 60 and over, and analysis of sleep quality and cognition. Clin Infect Dis. 2019;68:87–95.

    Article  CAS  PubMed  Google Scholar 

  70. Zhang J, Hayes S, Sadler BM, Minto I, Brandt J, Piscitelli S, et al. Population pharmacokinetics of dolutegravir in HIV-infected treatment-naive patients. Br J Clin Pharmacol. 2015;80:502–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Calcagno A, Trunfio M, D’Avolio A, Di Perri G, Bonora S. The impact of age on antiretroviral drug pharmacokinetics in the treatment of adults living with HIV. Expert Opin Drug Metab Toxicol. 2021;17:665–76.

    Article  CAS  PubMed  Google Scholar 

  72. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. Department of Health and Human Services. https://clinicalinfo.hiv.gov/en/guidelines/hiv-clinical-guidelines-adult-and-adolescent-arv/what-start-initial-combination-regimens?view=full.

  73. Crawford KW, Spritzler J, Kalayjian RC, Parsons T, Landay A, Pollard R, et al. Age-related changes in plasma concentrations of the HIV protease inhibitor lopinavir. AIDS Res Hum Retroviruses. 2010;26:635–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Stader F, Courlet P, Kinvig H, Battegay M, Decosterd LA, Penny MA, et al. Effect of ageing on antiretroviral drug pharmacokinetics using clinical data combined with modelling and simulation. Br J Clin Pharmacol. 2020;87(2):458–70.

    Article  PubMed  Google Scholar 

  75. Anderson MS, Kakuda TN, Hanley W, Miller J, Kost JT, Stoltz R, et al. Minimal pharmacokinetic interaction between the human immunodeficiency virus nonnucleoside reverse transcriptase inhibitor etravirine and the integrase inhibitor raltegravir in healthy subjects. Antimicrob Agents Chemother. 2008;52:4228–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Moltó J, Valle M, Back D, Cedeño S, Watson V, Liptrott N, et al. Plasma and intracellular (peripheral blood mononuclear cells) pharmacokinetics of once-daily raltegravir (800 milligrams) in HIV-infected patients. Antimicrob Agents Chemother. 2011;55:72–5.

    Article  PubMed  Google Scholar 

  77. Yu CY, Campbell SE, Sponseller CA, Small DS, Medlock MM, Morgan RE. Steady-state pharmacokinetics of darunavir/ritonavir and pitavastatin when co-administered to healthy adult volunteers. Clin Drug Invest. 2014;34:475–82.

    Article  CAS  Google Scholar 

  78. Wassner C, Bradley N, Lee Y. A review and clinical understanding of tenofovir: tenofovir disoproxil fumarate versus tenofovir alafenamide. J Int Assoc Provid AIDS Care. 2020;19:2325958220919231.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Vinarov Z, Abdallah M, Agundez JAG, Allegaert K, Basit AW, Braeckmans M, et al. Impact of gastrointestinal tract variability on oral drug absorption and pharmacokinetics: an UNGAP review. Eur J Pharm Sci. 2021;162: 105812.

    Article  CAS  PubMed  Google Scholar 

  80. Stillhart C, Vučićević K, Augustijns P, Basit AW, Batchelor H, Flanagan TR, et al. Impact of gastrointestinal physiology on drug absorption in special populations––an UNGAP review. Eur J Pharm Sci. 2020;147: 105280.

    Article  CAS  PubMed  Google Scholar 

  81. US FDA. BIKTARVY: Highlights of prescribing information. 2018. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/210251s000lbl.pdf. Accessed 26 Jan 2021.

  82. Cimino C, Binkley A, Swisher R, Short WR. Antiretroviral considerations in HIV-infected patients undergoing bariatric surgery. J Clin Pharm Ther. 2018;43:757–67.

    Article  PubMed  Google Scholar 

  83. Deeks ED. Bictegravir/emtricitabine/tenofovir alafenamide: a review in HIV-1 infection. Drugs. 2018;78:1817–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kanmogne G, Woollard S. Maraviroc: a review of its use in HIV infection and beyond. Drug Des Dev Ther. 2015;2:5447.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Estrela.

Ethics declarations

Funding

This work was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-CAPES-Finance Code 001, and by the Carlos Chagas Filho Foundation for Research Support in the State of Rio de Janeiro (FAPERJ) [E-26/010.101.009/2018]. BG and TST were funded by the National Council of Technological and Scientific Development (CNPq) and FAPERJ.

Conflicts of interest

Thainá Toledo, Thales Castro, Vanessa G. Oliveira, Valdilea Gonçalves Veloso, Beatriz Grinsztejn, Sandra Wagner Cardoso, Thiago S. Torres, and Rita Estrela declare no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Author contributions

RE and TST conceived the study. The literature search and data analysis were performed by TT, RE, TST, TC, and VGO. TT drafted the manuscript and RE, TST, TC, VGO, SWC, VGV and BG critically revised the work.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 188 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toledo, T., Castro, T., Oliveira, V.G. et al. Pharmacokinetics of Antiretroviral Drugs in Older People Living with HIV: A Systematic Review. Clin Pharmacokinet 62, 1219–1230 (2023). https://doi.org/10.1007/s40262-023-01291-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-023-01291-x

Navigation