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Abstract
Background Obese individuals are often underrepresented in clinical trials, leading to a lack of dosing guidance.
Objective This study aimed to investigate which physiological parameters and drug properties determine drug disposition 
changes in obese using our physiologically based pharmacokinetic (PBPK) framework, informed with obese population 
characteristics.
Methods Simulations were performed for ten drugs with clinical data in obese (i.e., midazolam, triazolam, caffeine, chlor-
zoxazone, acetaminophen, lorazepam, propranolol, amikacin, tobramycin, and glimepiride). PBPK drug models were devel-
oped and verified first against clinical data in non-obese (body mass index (BMI) ≤ 30 kg/m2) and subsequently in obese 
(BMI ≥ 30 kg/m2) without changing any drug parameters. Additionally, the PBPK model was used to study the effect of 
obesity on the pharmacokinetic parameters by simulating drug disposition across BMI, starting from 20 up to 60 kg/m2.
Results Predicted pharmacokinetic parameters were within 1.25-fold (71.5%), 1.5-fold (21.5%) and twofold (7%) of clini-
cal data. On average, clearance increased by 1.6% per BMI unit up to 64% for a BMI of 60 kg/m2, which was explained by 
the increased hepatic and renal blood flows. Volume of distribution increased for all drugs up to threefold for a BMI of 60 
kg/m2; this change was driven by pKa for ionized drugs and logP for neutral and unionized drugs. Cmax decreased similarly 
across all drugs while tmax remained unchanged.
Conclusion Both physiological changes and drug properties impact drug pharmacokinetics in obese subjects. Clearance 
increases due to enhanced hepatic and renal blood flows. Volume of distribution is higher for all drugs, with differences 
among drugs depending on their pKa/logP.

Extended author information available on the last page of the article

Key Points 

Drug pharmacokinetics in obese subjects (BMI ≥ 
30 kg/m2) were accurately predicted by our physiologically 
based pharmacokinetic framework informed with our 
previously developed obese population repository (i.e., 
71.5% of predictions were within the 1.25-fold and none 
outside the twofold of clinical data).

The model predicted an average 1.6% increase in clear-
ance per BMI unit, which was explained by an increase 
in hepatic and renal blood flows. The volume of distribu-
tion increased on average up to threefold for a BMI of 
60 kg/m2; this change was driven by drug properties (pKa 
and logP).

Dosing in obese subjects needs to take into account both 
physiological parameters and drug properties.

1 Introduction

Obesity is a chronic and relapsing disease characterized by 
an abnormal or excessive fat accumulation. It is defined by 
the World Health Organization (WHO) by a body mass index 
(BMI) ≥ 30 kg/m2 [1]. Since 1980, obesity has more than 
double and is recognized by WHO as an epidemic [1–3]. 
Obesity is an established risk factor for all-cause mortality 
likely mediated through its association with a wide range of 
chronic diseases including type 2 diabetes, cardiovascular 
disease, and certain cancers [4, 5].

The association between obesity and comorbidities implies 
that obese individuals require medications; however, guidance 
on how to adjust drug dosing is often lacking in both label and 
literature due to the under-representation of obese subjects 
in clinical studies [6]. To date, empirical methods that rely 
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on body size descriptors (e.g., total body weight, lean body 
weight, ideal body weight, and body surface area) together 
with or without a scaling factor (e.g., 1 in case of linear rela-
tionship, 0.75 in case of an allometric relationship or differ-
ent one that is extrapolated from pharmacokinetic data) are 
used to scale the dose from non-obese to obese [7]. However, 
none of them can be effectively used across different medica-
tion classes simply because these methods do not account for 
the multiple factors that may impact drug pharmacokinetics. 
These factors include the physiological changes related to 
increasing BMI (i.e., increase in hepatic blood flow, adipose 
tissue, glomerular filtration rate, and modification of enzyme 
abundance), which impact both drug elimination and distri-
bution. The latter is also influenced by the physicochemical 
properties of the drug such as logP or partition coefficient. 
The logP represents the lipophilicity of the compound in the 
unionized form, the pKa or acid dissociation constant deter-
mines the ionisation state of the drug, and the logD or dis-
tribution coefficient is a parameter combining logP and pKa 
and expressing the lipophilicity of a compound at a given pH.

Physiologically based pharmacokinetic (PBPK) mod-
elling allows simulation of virtual clinical trials by using 
prior knowledge on human physiology and drug properties, 
thereby enabling exploration of drug disposition in virtual 
subjects with different degrees of obesity. The first aim of 
this study was to verify the capability of our PBPK frame-
work informed by our previously developed obese popula-
tion repository to predict drug pharmacokinetics in obese 
individuals [8]. The second aim was to determine the physi-
ological and drug physicochemical properties driving drug 
disposition changes in obese individuals.

2  Methods

2.1  Physiologically Based Pharmacokinetic Model

We used our in-house whole body PBPK framework devel-
oped in  Matlab® 2020a [9] to simulate the pharmacokinetics 
in obese subjects. Briefly, its structure consists of 18 com-
partments, each one representing an organ or a tissue con-
nected to each other by blood flow rates. Drug distribution 
in the compartments is assumed to be perfusion limited. The 
prediction of tissue:plasma distribution partition coefficients 
is based on the method of Rodgers and Rowland [10, 11]. 
The generation of the virtual population relies on parameter 
repositories [9]. The model already contained a healthy and 
elderly population [12]; however for this work the PBPK 
framework was implemented with our developed repository 
summarizing the anatomical, physiological, and biological 
parameters for individuals with a BMI ranging from 18.5 to 

60 kg/m2 together with the corresponding parameter vari-
ability [13].

2.2  Parameters of Simulated Drugs

We carried out a thorough literature search to identify drugs 
with available pharmacokinetic data in obese subjects in 
order to verify the PBPK drug models predictions against 
clinically observed data. We selected ten drugs character-
ized by different elimination pathways including midazolam, 
triazolam, caffeine, chlorzoxazone, acetaminophen, loraz-
epam, propranolol, amikacin, tobramycin, and glimepiride. 
Input drug parameters were obtained from verified published 
PBPK models [14–21]. However, for chlorzoxazone a PBPK 
model was not available, therefore it was developed from 
scratch combining in vitro data and clinical clearance data. 
The parameters of the ten simulated drugs are found in the 
Online Supplementary Material (OSM) Table S-1.

2.3  Model Development Workflow

We followed a specific workflow to develop the PBPK 
drug models. First, we compiled data on anthropometric 
parameters, study design, and pharmacokinetic results 
from the available clinical trials. When more than one 
published study was available, we calculated the weighted 
mean and standard deviation of the reported pharmacoki-
netic parameters values. Data published in different for-
mats (i.e., mean and standard error) were converted into 
arithmetic mean and standard deviation. We extracted 
available concentration-time profile plots using GetData 
Graph  Digitizer® and, when needed, used these data to cal-
culate missing pharmacokinetic parameters by using non-
compartmental analysis (NCA). Once all the observed data 
were collected, we developed and verified the PBPK model 
by predicting the pharmacokinetics in non-obese subjects 
first after intravenous administration (if available in the lit-
erature) then after single and multiple oral administration 
(more detailed workflow for midazolam is reported in the 
OSM). All simulations were run using the same proportion 
of female, age, and BMI as reported in the clinical trials. 
The observed clinical data were visually compared against 
the predicted concentration-time profiles. Furthermore, we 
calculated the ratio of the predicted:observed pharmacoki-
netic parameters. Simulations were considered successful 
when the ratio was within the twofold error margin of 
the observed data [22]. The verified drug model was then 
used to predict the pharmacokinetics in virtual obese indi-
viduals without changing any drug parameter. Comparison 
with the observed clinical data was also carried out for 
the simulations in obese both visually and numerically; 
the latter was retained successful if the pharmacokinetic 
parameters were predicted within a twofold error margin. 
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When simulating the results of some clinical studies (i.e., 
midazolam and triazolam intravenous and oral, caffeine 
oral, and acetaminophen and lorazepam intravenous), the 
numerical inspection was considered more important than 
the visual inspection because the clinically observed data 
did not represent the mean concentration-time profile but 
rather reflected the individual concentration-time profile. 
As an additional verification step to prove that the model 
was able to predict the pharmacokinetic changes in obese 
subjects, we compared the non-obese:obese predicted 
ratio against the non-obese:obese observed ratio and the 
model was deemed able to predict the drug disposition 
changes in obese when the ratio between these two values 
was lower than twofold. For lorazepam the simulations 
in non-obese subjects were well predicted; however, the 
clearance was underpredicted in obese subjects. Therefore, 
we performed retrograde calculation to derive the change 
in enzymatic abundance for the uridine 5'-diphospho-
glucuronosyltransferase enzyme (UGT), which resulted 
in an 18% increase in the obese group needed to match 
the observed clinical clearance value. To verify that the 
increase in enzyme abundance was valid across different 
substrates, we predicted the pharmacokinetics of other 
three UGT substrates, acetaminophen, dolutegravir, and 
raltegravir in both non-obese and obese individuals assum-
ing that the impact of obesity on different UGT families 
is similar [23].

2.4  Analysis of the Main Pharmacokinetic 
Parameters Across Obesity

We used the ten developed drug models together with the 
previously published continuous functions describing the 
physiology of the obese population [13] to analyse the 
changes of the pharmacokinetic parameters across BMI, 
starting from 20 up to 60 kg/m2, with BMI intervals of 2.5 
kg/m2. A total of 16 simulations per drug were run, each of 
them had 500 individuals (proportion of female: 0.5) split 
into ten different trials, and the dose used was the same as 
the one reported in Table 1. We calculated the mean peak 
concentration (Cmax), time to Cmax (tmax), apparent volume 
of distribution (Vd/F), apparent volume of distribution nor-
malized by the total body weight (Vd/F/kg), area under the 
curve to the last time point (AUC t), area under the curve to 
infinity (AUC inf), apparent clearance (CL/F), and elimina-
tion half-life (t1/2) for each simulation and normalized to 
the mean value of the lowest BMI group (20–22.5 kg/m2). 
We investigated the association between BMI and pharma-
cokinetic parameters and examined when the latter changed 
more than the 1.25-fold interval (bioequivalence criterion 
and range within which changes in pharmacokinetic param-
eters are not considered clinically significant by the US 

Food and Drug Administration (FDA) and other regulatory 
bodies) [24, 25]. Furthermore, we investigated the corre-
lation between hepatic blood flow and clearance of drugs 
hepatically metabolised and between the renal blood flow 
and clearance of renally eliminated drugs to evaluate how 
changes in these two physiological parameters impact clear-
ance in obese subjects.

2.5  Sensitivity Analysis

We conducted a sensitivity analysis to further investigate 
the impact of the drug physicochemical properties on the 
volume of distribution. A drug file was created and it was 
populated with the mean physicochemical properties of the 
ten evaluated drugs. Simulations were run exploring six dif-
ferent types of drugs (neutral, weak acid pKa = 9, moderate 
acid pKa = 5, weak base pKa = 5, intermediate base pKa = 
7.4, and moderate base pKa = 9), BMI from 20 to 60 kg/m2, 
and logP from 5 to − 2, for a total of 816 simulations.

3  Results

3.1  Physiologically Based Pharmacokinetic 
Model Simulation Results in Obese Subjects

PBPK models for the ten selected drugs were developed 
and parametrized to predict both the observed concentration-
time profiles and pharmacokinetic parameters in non-obese 
subjects. Then, the pharmacokinetics in obese subjects were 
simulated without changing the model parameters. Table 1 
presents the clinical studies used for the model qualification 
in non-obese and obese subjects. Table 2 summarizes the 
observed and predicted pharmacokinetic parameters.

3.1.1  Midazolam

The benzodiazepine midazolam is mainly metabolized 
by cytochrome P450 (CYP) 3A (95.2%) and to a lesser 
extent by UGT1A1 (4.7%), while 0.1% is excreted in the 
urine [14]. Both intravenous and oral administration were 
simulated in non-obese and obese individuals. The clini-
cally observed data for both groups and both administration 
routes were captured by the PBPK model; however, they 
did not fall exactly on the mean predicted profile because 
they represent single individual datapoints and therefore 
may not represent the clinical study mean (Fig. 1). The 
predicted:observed ratios for t1/2 and AUC inf were over-
predicted in non-obese subjects (1.49 and 1.56) but were 
well captured in obese subjects (0.98 and 1.16). For oral 
administration, simulations for Cmax, t1/2, and AUC inf were 
predicted for both non-obese and obese individuals within 
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the 1.5-fold margin and the ratios predicted:observed fold 
change between obese and non-obese were 0.94, 1.05, and 
1.02, respectively (Table 2).

3.1.2  Triazolam

The benzodiazepine triazolam is metabolised exclusively 
via CYP3A4/5, and only a small part is excreted via glo-
merular filtration [15]. The 0.5 mg single intravenous 
infusion dose in both non-obese and obese subjects was 
well predicted by the model (Fig. 2a, b); the clinically 
observed data were in good agreement with the simulated 
concentration-time profiles, and the predicted:observed 
ratios for both t1/2 and AUC inf were within 1.25-fold. Oral 
triazolam predictions were all predicted within twofold 
(Fig. 2c, d); however by visual inspection it is clear that 
the model predictions are not in good agreement with the 
observed data, which may be explained by the fact that 
the observed data belong to a single non-obese individual 
(34-year-old male weighting 65 kg) and a single obese 
individual (34-year-old male weighting 159 kg). The pre-
dicted pharmacokinetic parameters in the virtual obese 
individuals were in agreement to observed data for t1/2 
(predicted:observed ratio: 1.14) but underpredicted for 
Cmax and AUC inf (0.6 and 0.57, respectively) (Table 2), 
probably due to some variability in the clinical study since 
the usual trend observed for all clinical data is a reduction 
in Cmax and AUC inf.

3.1.3  Caffeine

Caffeine is metabolised by CYP1A2 with only 1% elimi-
nated unchanged in the urine [26]. The PBPK model simula-
tions captured the observed clinical data in both non-obese 
and obese individuals well, with all concentration-time 
data falling within the 90% normal range (area within the 
5th and 95th percentiles) of the simulated data (Fig. 3a, b). 
Predicted:observed ratios for Cmax, t1/2, and AUC inf were all 
within 1.25-fold for both groups and the predicted pharma-
cokinetic changes were all in close agreement with the val-
ues obtained from the literature (Table 1).

3.1.4  Chlorzoxazone

Chlorzoxazone is metabolized by CYP2E1 [27]; its pharma-
cokinetics were studied after a single oral dose of 500 mg in 
both groups (Fig. 3c, d). The mean prediction was in agree-
ment with the mean observed data; however, the observed 
pharmacokinetic variability was not completely captured by 
the model. The predicted:observed ratios in non-obese sub-
jects were in good agreement for AUC inf (0.92) but showed 
a slight underprediction for Cmax and overprediction of t1/2 

(0.65 and 1.29, respectively), while for obese all three ratios 
were within 1.25-fold.

3.1.5  Acetaminophen

Acetaminophen is metabolised mainly by glucuronidation 
(~ 55%), sulphation (~ 30%), CYP2E1 (5–10%), and glo-
merular filtration (2–5%) [28]. The PBPK model was able 
to reproduce the pharmacokinetics of acetaminophen after 
intravenous and oral administration (Fig. 4). The observed 
fold change induced by obesity on the acetaminophen half-
life was different between the intravenous and oral route of 
administration (0.89 and 1.7, respectively) (Table 2). On the 
other hand, the model predictions were consistent across 
the two routes, predicting a fold change of 1.51 and 1.69, 
respectively. Thus, the fold change for intravenous adminis-
tration was overpredicted by the model (predicted:observed 
ratio = 1.77). All other pharmacokinetic parameter predic-
tions in obese were in accordance with the observed data 
(all ratios were close to 1). For intravenous administration, 
the observed data in obese  shown in Fig. 4b was based on 
a male subject with a BMI of 49 kg/m2 and therefore may 
not be representative of the whole simulation and observed 
pharmacokinetic parameters (Table 2), which have a lower 
mean BMI (42 kg/m2).

3.1.6  Lorazepam

Lorazepam is a benzodiazepine undergoing glucuronidation 
by UGT2B4, 2B7 and 2B15 [29]. Clinical data for both non-
obese and obese subjects were available only for the intra-
venous route of administration. The PBPK model captured 
the disposition of lorazepam in both non-obese and obese 
subjects well (Fig. 5a, b). The ratio predicted:observed for 
t1/2 and AUC inf and the fold change in obese were well cap-
tured, with all ratios within 1.25-fold.

3.1.7  Propranolol

The beta-blocker propranolol is mainly metabolized by 
CYP2D6 (59%), CYP1A2 (21%), UGTs (17%) [20]. Clini-
cally observed data were in good agreement with the simula-
tions and all within the 90% prediction interval (Fig. 5c–f). 
All the pharmacokinetic parameters and the ratio of the 
predicted pharmacokinetic change in obese subjects were 
within 1.5-fold (Table 2).

3.1.8  Amikacin and Tobramycin

Amikacin and tobramycin are two aminoglycosides elimi-
nated via glomerular filtration [30, 31]. The predicted and 
observed mean concentration-time profiles were in good 
agreement (Fig. 6a, b, c, d). Additionally, t1/2 and AUC inf for 



282 M. Berton et al.

Ta
bl

e 
2 

 O
bs

er
ve

d 
an

d 
pr

ed
ic

te
d 

ph
ar

m
ac

ok
in

et
ic

 p
ar

am
et

er
s i

n 
no

n-
ob

es
e 

an
d 

ob
es

e 
in

di
vi

du
al

s

N
on

-o
be

se
 in

di
vi

du
al

s
O

be
se

 in
di

vi
du

al
s

R
at

io
 p

re
di

ct
ed

/
ob

se
rv

ed
R

at
io

 o
be

se
/n

on
 o

be
se

R
at

io
 o

f (
pr

ed
ic

te
d 

ra
tio

 o
be

se
/n

on
-

ob
es

e)
/(o

bs
er

ve
d 

ra
tio

 o
be

se
/n

on
-

ob
es

e)
O

bs
er

ve
d

Pr
ed

ic
te

d
O

bs
er

ve
d

Pr
ed

ic
te

d
N

on
-

ob
es

e
O

be
se

O
bs

er
ve

d
Pr

ed
ic

te
d

M
ea

n
SD

M
ea

n
SD

M
ea

n
SD

M
ea

n
SD

M
id

az
ol

am
B

M
I

19
–2

3
19

–2
3

27
–4

9
27

–4
9

5 
m

g
C

m
ax

ng
/m

L
IV

F,
 S

.D
.

t 1/
2

h
2.

5
1.

2
3.

8
1

8.
4

3.
8

8.
2

2.
1

1.
49

0.
98

3.
31

2.
18

0.
66

C
Y

P3
A

A
U

C
 inf

ng
*h

/m
L

15
5.

4
42

.1
24

2.
5

49
.4

17
6.

6
63

.6
20

5
43

.5
1.

56
1.

16
1.

14
0.

85
0.

75
M

id
az

ol
am

B
M

I
20

–2
7

20
–2

7
27

–4
9

27
–4

9
10

 m
g

C
m

ax
ng

/m
L

71
.2

32
.9

50
.2

15
.4

64
35

.7
42

.7
14

.4
0.

71
0.

67
0.

9
0.

85
0.

94
PO

, S
.D

.
t 1/

2
h

3.
8

4.
8

4.
8

1.
4

5.
9

3.
8

7.
9

1.
6

1.
26

1.
33

1.
58

1.
66

1.
05

C
Y

P3
A

A
U

C
 inf

ng
*h

/m
L

16
6

10
3.

2
15

5
53

.3
14

1.
2

63
.6

13
4.

9
45

.7
0.

93
0.

95
0.

85
0.

87
1.

02
Tr

ia
zo

la
m

B
M

I
21

–2
9

21
–2

9
31

–4
4

31
–4

4
0.

5 
m

g
C

m
ax

ng
/m

L
IV

F,
 S

.D
.

t 1/
2

h
3.

9
1.

1
3.

8
1

4.
7

1.
5

5.
1

1.
3

0.
98

1.
09

1.
2

1.
32

1.
1

C
Y

P3
A

A
U

C
 inf

ng
*h

/m
L

43
.9

8.
5

53
.3

17
.5

45
12

.3
46

.1
14

.6
1.

21
1.

02
1.

02
0.

86
0.

84
Tr

ia
zo

la
m

B
M

I
20

–2
5

20
–2

5
25

–5
7

25
–5

7
0.

5 
m

g
C

m
ax

ng
/m

L
3.

7
1.

8
3.

3
0.

7
4.

6
1.

2
2.

5
0.

6
0.

89
0.

53
1.

24
0.

75
0.

6
PO

, S
.D

.
t 1/

2
h

2.
6

0.
7

3.
9

1.
6

4.
1

1.
7

7.
2

3.
5

1.
53

1.
74

1.
61

1.
83

1.
14

C
Y

P3
A

A
U

C
 inf

ng
*h

/m
L

16
.4

4.
8

21
.2

12
27

.7
9.

6
20

.2
14

.6
1.

29
0.

73
1.

69
0.

96
0.

57
C

aff
ei

ne
B

M
I

19
–2

5
19

–2
5

28
–5

0
28

–5
0

16
2 

m
g

C
m

ax
ng

/m
L

46
13

12
64

46
30

10
39

27
02

34
88

98
6

1
1.

29
0.

59
0.

75
1.

27
PO

, S
.D

.
t 1/

2
h

5.
6

2.
8

5.
7

1
7

4.
3

7.
6

1.
3

1.
01

1.
09

1.
26

1.
35

1.
07

C
Y

P1
A

2
A

U
C

 inf
ng

*h
/m

L
26

51
2

50
03

9
30

57
8

56
51

20
00

0
82

96
24

23
3

46
88

1.
15

1.
21

0.
75

0.
79

1.
05

C
hl

or
zo

xa
zo

ne
B

M
I

22
–2

9
22

–2
9

31
–4

4
31

–4
4

50
0 

m
g

C
m

ax
ng

/m
L

12
37

3
52

97
84

70
14

43
52

00
22

00
51

00
93

0
0.

68
0.

98
0.

42
0.

6
1.

43
PO

, S
.D

.
t 1/

2
h

1
0.

5
1.

3
0.

1
1.

4
0.

9
1.

4
0.

1
1.

29
0.

99
1.

4
1.

07
0.

76
C

Y
PC

2E
1

A
U

C
 inf

ng
*h

/m
L

36
75

0
20

85
1

33
97

4
75

06
15

70
0

11
30

0
19

44
3

39
68

0.
92

1.
24

0.
43

0.
57

1.
33

A
ce

ta
m

in
op

he
n

B
M

I
19

–2
5

19
–2

5
25

–6
0

25
–6

0
65

0 
m

g
C

m
ax

ng
/m

L
IV

F,
 S

.D
.

t 1/
2

h
2.

7
0.

3
2.

9
0.

6
2.

4
0.

4
4.

2
1

1.
06

1.
77

0.
89

1.
51

1.
7

U
G

T/
SU

LT
A

U
C

 inf
ng

*h
/m

L
40

96
9

11
35

1
53

37
7

11
66

5
30

60
9

83
32

41
44

1
11

77
8

1.
30

1.
35

0.
75

0.
8

1.
07

A
ce

ta
m

in
op

he
n

B
M

I
19

–2
5

19
–2

5
35

–6
0

35
–6

0
1,

00
0 

m
g

C
m

ax
ng

/m
L

15
77

4
65

41
16

17
2

36
31

12
33

3
48

00
11

43
2

28
53

1.
03

0.
93

0.
78

0.
71

0.
91

PO
, S

.D
.

t 1/
2

h
2.

7
0.

5
2.

7
0.

7
4.

6
0.

8
4.

5
0.

9
1

0.
99

1.
7

1.
69

0.
99

U
G

T/
SU

LT
A

U
C

 inf
ng

*h
/m

L
42

85
3

92
87

56
50

3
20

96
7

35
33

3
10

13
3

43
32

7
14

11
1

1.
32

1.
23

0.
82

0.
77

0.
94



283PBPK Modelling to Identify Physiological and Drug Parameters Driving PK in Obese Individuals

Ta
bl

e 
2 

 (c
on

tin
ue

d)

N
on

-o
be

se
 in

di
vi

du
al

s
O

be
se

 in
di

vi
du

al
s

R
at

io
 p

re
di

ct
ed

/
ob

se
rv

ed
R

at
io

 o
be

se
/n

on
 o

be
se

R
at

io
 o

f (
pr

ed
ic

te
d 

ra
tio

 o
be

se
/n

on
-

ob
es

e)
/(o

bs
er

ve
d 

ra
tio

 o
be

se
/n

on
-

ob
es

e)
O

bs
er

ve
d

Pr
ed

ic
te

d
O

bs
er

ve
d

Pr
ed

ic
te

d
N

on
-

ob
es

e
O

be
se

O
bs

er
ve

d
Pr

ed
ic

te
d

M
ea

n
SD

M
ea

n
SD

M
ea

n
SD

M
ea

n
SD

Lo
ra

ze
pa

m
B

M
I

19
–2

6
19

–2
6

26
–6

0
26

–6
0

2 
m

g
C

m
ax

ng
/m

L
IV

B
, S

.D
.

t 1/
2

h
14

.8
4.

3
15

.4
11

.8
16

.5
6.

7
19

.5
9.

8
1.

04
1.

18
1.

11
1.

26
1.

14
U

G
T2

B
7/

2B
4/

2B
15

A
U

C
 inf

ng
*h

/m
L

50
3.

4
18

4.
8

55
9.

7
40

2.
3

32
6.

8
12

2.
3

31
2.

2
18

0.
8

1.
11

0.
96

0.
65

0.
56

0.
86

Pr
op

ra
no

lo
l

B
M

I
21

–2
4

21
–2

4
42

–5
0

42
–5

0
10

 m
g

C
m

ax
ng

/m
L

IV
F,

 S
.D

.
t 1/

2
h

3.
3

0.
6

3.
8

0.
6

5
0.

7
6.

2
0.

7
1.

17
1.

25
1.

52
1.

62
1.

07
C

Y
P2

D
6/

2C
19

/1
A

2
A

U
C

 inf
ng

*h
/m

L
20

9.
7

31
.4

28
8.

9
47

.5
21

3.
68

13
.4

2
23

7.
17

39
.0

6
1.

38
1.

11
1.

02
0.

82
0.

8
Pr

op
ra

no
lo

l
B

M
I

21
–2

4
21

–2
4

42
–5

0
42

–5
0

40
 m

g
C

m
ax

ng
/m

L
36

.1
8.

9
40

.7
9.

7
31

.0
4.

9
29

.5
7.

3
1.

13
0.

95
0.

86
0.

72
0.

84
PO

, S
.D

.
t 1/

2
h

3.
2

0.
5

3.
9

0.
5

4.
9

1.
2

6.
1

0.
7

1.
19

1.
24

1.
51

1.
57

1.
04

C
Y

P2
D

6/
2C

19
/1

A
2

A
U

C
 inf

ng
*h

/m
L

22
5

56
27

7.
9

70
.7

26
0

61
23

3.
6

58
.9

1.
23

0.
9

1.
15

0.
84

0.
73

A
m

ik
ac

in
B

M
I

19
–2

7
19

–2
7

43
–6

0
43

–6
0

50
0 

m
g

C
m

ax
ng

/m
L

IV
B

, S
.D

.
t 1/

2
h

1.
9

0.
4

2
0.

2
2.

2
0.

6
2.

5
0.

3
1.

06
1.

13
1.

17
1.

25
1.

07
G

FR
A

U
C

 inf
ng

*h
/m

L
82

19
4

18
90

5
89

08
0

12
94

8
55

50
9

15
54

2
63

15
2

82
30

1.
08

1.
14

0.
68

0.
71

1.
04

To
br

am
yc

in
B

M
I

19
–2

5
19

–2
5

36
–5

3
36

–5
3

33
1.

5 
m

g
C

m
ax

ng
/m

L
IV

F,
 S

.D
.

t 1/
2

h
2.

3
0.

6
2.

5
0.

2
3.

3
1.

0
3.

2
0.

4
1.

09
0.

96
1.

44
1.

27
0.

88
G

FR
A

U
C

 inf
ng

*h
/m

L
70

00
0

12
00

0
71

38
8

84
33

51
02

1
14

82
4

53
85

0
77

05
1.

02
1.

06
0.

73
0.

75
1.

03
G

lim
ep

iri
de

B
M

I
19

–3
1

19
–3

1
39

–5
7

39
–5

7
8 

m
g

C
m

ax
ng

/m
L

54
7

21
8

48
5

10
1

41
0

12
4

29
6

53
0.

89
0.

72
0.

75
0.

61
0.

81
PO

, S
.D

.
t 1/

2
h

3.
4

1.
1

3.
2

2.
1

4.
4

1.
9

4.
3

2.
1

0.
93

0.
98

1.
28

1.
35

1.
05

C
Y

P2
C

9
A

U
C

 inf
ng

*h
/m

L
32

05
10

33
32

84
17

75
28

18
11

12
24

03
95

2
1.

02
0.

85
0.

88
0.

73
0.

83

AU
C

 inf
 a

re
a 

un
de

r t
he

 c
ur

ve
 to

 in
fin

ity
, C

YP
 c

yt
oc

hr
om

e 
P4

50
 e

nz
ym

e,
 C

m
ax

 p
ea

k 
co

nc
en

tra
tio

n,
 G

FR
 g

lo
m

er
ul

ar
 fi

ltr
at

io
n 

ra
te

, I
VB

 in
tra

ve
no

us
 b

ol
us

 a
dm

in
ist

ra
tio

n,
 IV

F 
in

tra
ve

no
us

 in
fu

si
on

 
ad

m
in

ist
ra

tio
n,

 P
O

 o
ra

l a
dm

in
ist

ra
tio

n,
 S

D
 st

an
da

rd
 d

ev
ia

tio
n,

 S
.D

. s
in

gl
e 

do
se

, t
1/

2 e
lim

in
at

io
n 

ha
lf-

lif
e,

 U
G

T  
U

rid
in

e 
5'

-d
ip

ho
sp

ho
-g

lu
cu

ro
no

sy
ltr

an
sf

er
as

e 
en

zy
m

e



284 M. Berton et al.

both drugs and both groups were predicted within the 1.25-
fold margin.

3.1.9  Glimepiride

The antidiabetic drug glimepiride is metabolized entirely by 
CYP2C9 [32]. The clinically observed data for both non-obese 
and obese subjects were within the 90% normal range of the 
predicted data (Fig. 6e, f). The predicted:observed ratios for 
Cmax, t1/2, and AUC inf were all within the 1.25-fold margin 
apart from the Cmax in obese, which was slightly underpre-
dicted but nonetheless within the 1.5-fold margin. The fold 

change in the pharmacokinetic parameters in obese were in 
agreement with the observed ratios and all within the 1.25-
fold margin.

3.1.10  Summary

Overall, the predicted pharmacokinetic parameters were 
within 1.25-fold (71.5%), 1.5-fold (21.5%) and twofold (7%) 
of clinical data, while none were outside the twofold error 
margin. These results clearly demonstrate the ability of the 
PBPK framework [9], informed with our developed obese 

Fig. 1  Simulations for mida-
zolam intravenous infusion 
in non-obese (a) and obese 
(b) individuals and for oral 
midazolam in non-obese (c) 
and obese (d) individuals. The 
red markers depict the observed 
clinical data, while the solid 
lines, bold solid line, and 
shaded area represent the mean 
of each virtual trial, the mean 
of all trials, and the 90% normal 
range, respectively, of all virtual 
individuals
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population [13], to reliably predict drug disposition in this 
special population.

3.2  Pharmacokinetic Parameters Driving Drug 
Exposure Changes in Obese Subjects

3.2.1  Pharmacokinetic Parameter Changes from BMI 20 
to 60 kg/m2

After verifying the capability of the model to predict the 
pharmacokinetics in obese subjects, we used the model to 

investigate the continuous effect of obesity on the phar-
macokinetic parameters of the ten studied drugs. Figure 7 
illustrates the results of the analysis, each colour and marker 
represents a drug. Compounds are organized based on the 
logP value with midazolam (yellow ochre colour) having 
the highest and amikacin (green) the lowest value. Cmax was 
found to decrease similarly across all drugs by 1.5% per BMI 
unit regardless of the drug type and logP (Fig. 7a). Tmax on 
the other hand was not hugely impacted by obesity and the 
fold change in tmax was still within the bioavailability ranges 
(Fig. 7b). The volume of distribution (Fig. 7g) markedly 

Fig. 2  Simulations for triazolam 
intravenous infusion in non-
obese (a) and obese (b) indi-
viduals and for oral triazolam 
in non-obese (c) and obese (d) 
individuals. The red markers 
depict the observed clinical 
data, while the solid lines, bold 
solid line, and shaded area rep-
resent the mean of each virtual 
trial, the mean of all trials, and 
the 90% normal range, respec-
tively, of all virtual individuals
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increased for all medications, going outside the bioavail-
ability range at a BMI of 25 kg/m2 and reaching on average 
threefold higher values in individuals with a BMI of 60 kg/
m2. However, the increase in volume of distribution was very 
variable, being the lowest for drugs such as amikacin and 
tobramycin with a 3% increase per BMI unit and the highest 
for midazolam with a 9% increase per BMI unit. The volume 
of distribution normalized by the total body weight (TBW) 
(Fig. 7h) showed better the differences in distribution across 
drugs. Midazolam and lorazepam had the steepest increase, 

meaning that the volume of distribution increases more than 
TBW, while for acetaminophen and caffeine it was constant, 
indicating a parallel increase between the two. Conversely, it 
decreased for tobramycin and amikacin, suggesting that the 
volume of distribution does not increase as much as TBW. 
Clearance was shown to increase by 1.6% for each BMI unit, 
reaching 64% increase in individuals with a BMI of 60 kg/m2 
(Fig. 7f). Lorazepam was the compound with the highest 
clearance in obese subjects with an increase of 2.8% per 
BMI unit, while triazolam had the least steep increase, 0.6% 

Fig. 3  Simulations for oral caf-
feine in non-obese (a) and obese 
(b) individuals and for oral 
chlorzoxazone in non-obese (c) 
and obese (d) individuals. The 
red markers depict the observed 
clinical data (mean ± SD), 
while the solid lines, bold solid 
line, and shaded area represent 
the mean of each virtual trial, 
the mean of all trials, and the 
90% normal range, respectively, 
of all virtual individuals
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per BMI value. The trendline for clearance showed that the 
bioequivalence range was surpassed at a BMI of 35 kg/m2. 
Since AUC inf is correlated to clearance, it was shown to 
decrease across BMI values at a similar percentage to that 
of clearance (Fig. 7e). Larger differences among drugs were 
observed when considering AUC inf (Fig. 7e) compared to 
AUC t (Fig. 7d). Half-life is a secondary parameter derived 
from the ratio between the volume of distribution and clear-
ance. Even if both primary parameters were found to increase 

with increasing BMI, the rate of increase for the volume of 
distribution was higher compared to clearance, leading to a 
rise in t1/2 of about 2.4% per BMI unit (Fig. 7c). For drugs 
with a higher volume of distribution,  t1/2 was even higher 
(i.e., midazolam and triazolam). However, in the case of 
lorazepam there was a better balance between volume of dis-
tribution and clearance, thereby mitigating the increase in  t1/2.

To further investigate the impact of the liver and renal 
blood flows on the clearance of the studied drugs, two 

Fig. 4  Simulations for aceta-
minophen intravenous infusion 
in non-obese (a) and obese 
(b) individuals and for oral 
acetaminophen in non-obese (c) 
and obese (d) individuals. The 
red markers depict the observed 
clinical data (mean ± SD), 
while the solid lines, bold solid 
line, and shaded area represent 
the mean of each virtual trial, 
the mean of all trials, and the 
90% normal range, respectively, 
of all virtual individuals
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correlation plots were generated (Fig.  8). The trend-
lines for both liver blood flow and clearance and renal 
blood flow and clearance were very close to the identity 
line, suggesting that the increase in clearance is mostly 
explained by the increase in liver and renal blood flow. 

For the drugs metabolized by the liver, different trends 
were observed for lorazepam and triazolam, both trends 
relating to the altered enzyme abundance (i.e., higher 
for UGT resulting in elevated clearance for lorazepam 

Fig. 5  Simulations for lorazepam intravenous bolus in non-obese 
(a) and obese (b) individuals, for propranolol intravenous infusion 
in non-obese (c) and obese (d) individuals, and for oral propranolol 
in non-obese (e) and obese (f) individuals. The red markers depict 
the observed clinical data (mean ± SD), while the solid lines, bold 
solid line, and shaded area represent the mean of each virtual trial, 
the mean of all trials, and the 90% normal range, respectively, of all 
virtual individuals

Fig. 6  Simulations for amikacin intravenous bolus in non-obese (a) 
and obese (b) individuals, for tobramycin intravenous infusion in 
non-obese (c) and obese (d) individuals, and for oral glimepiride in 
non-obese (e) and obese (f) individuals. The red markers depict the 
observed clinical data (mean ± SD), while the solid lines, bold solid 
line, and shaded area represent the mean of each virtual trial, the 
mean of all trials, and the 90% normal range, respectively, of all vir-
tual individuals
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and lower for CYP3A resulting in reduced clearance for 
triazolam).

3.2.2  Sensitivity Analysis to Investigate the Effect of Drug 
Characteristics on the Volume of Distribution

The plots correlating volume of distribution and BMI 
(Fig. 7g, h) indicate that lipophilicity is not the only phys-
icochemical parameter influencing the distribution of a drug. 
This is supported by the fact that the volume of distribution 
of the lipophilic drug glimepiride does not increase as much 
as other drugs with similar logP values (i.e., midazolam). 
Therefore, we investigated the interplay between logP and 
pKa on the volume of distribution. As depicted in the three-
dimensional (3D) plots (Fig. 9), the increase in volume of 
distribution with increasing BMI is driven by logP for a neu-
tral compound. For instance, for a logP of − 2, Vd/F changes 
by 2.5-fold when considering a BMI of 60 kg/m2 compared 
to 20 kg/m2; however, the change goes up to 3.7-fold for a 
drug with a logP of 5. The same behaviour is observed for 
drugs with a weak acid (pKa = 9) or basic (pKa = 5) group 
(Fig. 9b, d) since the unionized form is the dominant one. 
However, for a moderate acid (pKa = 5) or base (pKa = 9), 
the behaviour changes; Vd/F does still increase with higher 
BMI values, however logP is not the driving parameter given 
that the drug is present in the ionized form. Lastly, for a 
basic compound whose pKa is equal to the physiological 
pH (in which case the drug is half ionized and unionized), 
the drug behaves similarly to a neutral drug but logP has a 
lower impact. In summary, pKa is the driving factor for the 
increase in volume of distribution for ionized compounds 
whereas logP plays a more important role for neutral and 
unionized compounds.

4  Discussion

Despite the high prevalence of obese individuals worldwide, 
there is a paucity of data on how to adjust the dosage of 
medications, the main reason being the under-representa-
tion of this special population from clinical trials [6]. In this 
study, the pharmacokinetics of ten drugs eliminated through 
different pathways were successfully predicted a priori in 
obese subjects using our PBPK framework informed with 
our obese population repository [13], thereby demonstrating 
the predictive power of this approach to predict drug disposi-
tion in special populations.

The general trend for the ten evaluated drugs was a 
decrease in Cmax and AUC, an increase in volume of dis-
tribution, clearance, and half-life, and an unchanged tmax. 

However, the effect of obesity on the pharmacokinetics 
was different across drugs. The volume of distribution 
was generally greater for drugs with a high logP such as 
midazolam, lorazepam, and triazolam. Drugs with a logP 
around 0 such as acetaminophen and caffeine showed an 
intermediate behaviour, while renally eliminated hydro-
philic drugs such as tobramycin and amikacin distributed 
the least in the adipose tissue [33]. However, not all drugs 
followed this trend. Although propranolol, glimepiride, 
and chlorzoxazone have a logP of 3.48, 3.12, and 1.94, 
respectively, their volume of distribution did not increase 
as much as other compounds with a similar logP such as 
midazolam or triazolam. We could demonstrate in the sen-
sitivity analysis that this difference relates to pKa. Glime-
piride, a mono acid with a pKa of 4.32, behaves similarly 
to Fig. 9c, while the basic compounds propranolol and 
chlozoxazone with pKa values of 9.5 and 9.39, respec-
tively, behave similarly to Fig. 9e. We demonstrated that 
for compounds mostly ionized at physiological pH, logP is 
not representative of the drug behaviour in obese subjects. 
LogP expresses the lipophilicity of a compound in the 
unionized state. However, in a physiological system with a 
pH of about 7.4, a compound can ionize, therefore logD7.4 
(logD at pH 7.4) becomes a better indicator of the drug 
lipophilicity. Thus, logD7.4 can characterize better changes 
in the volume of distribution in obese subjects, indeed the 
logD7.4 for propranolol, glimepiride and chlorzoxazone are 
1.20, 1.33 and 1.19, respectively [34, 35]. Indeed, logD 
(but not logP) better predicts the permeability of com-
pounds across membranes [36].

Another critical parameter that we investigated was 
clearance, which increased for all drugs albeit to various 
extents. Drugs that followed similar patterns were those 
undergoing metabolism by enzymes unaltered by obesity. 
Conversely, drugs metabolized by enzymes whose abun-
dance is changed in obese subjects (i.e., UGT and CYP3A) 
had a different pattern [13, 37, 38]. Of interest, midazolam 
clearance did not change as much as that of triazolam. 
This observation may be explained by the higher hepatic 
extraction rate of midazolam compared to triazolam so 
that midazolam is more sensitive to changes in hepatic 
blood flow rather than enzyme abundance. We could also 
demonstrate that the main physiological drivers for the 
elevated metabolic and renal clearance are the increased 
hepatic and renal blood flows in obese individuals. These 
two physiological parameters were also identified in our 
previous work as being the key drivers for the decreased 
clearance in elderly [39]. Since metabolism is increased 
in obese subjects, the AUCs of drugs tend to decrease, and 
due to the higher elimination half-life, AUC inf was shown 
to better describe differences in drug exposure. Finally, we 
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showed that Cmax decreased across all drugs; however, the 
difference among drugs was minimal.

The current study presents some limitations. The clini-
cal data and the virtual obese population used in this study 
represent people affected by obesity but otherwise healthy. 
Therefore, our results might not be transposable to obese 
individuals with an additional disease condition (i.e., renal 
or hepatic impairment [40, 41]) that might alter the physi-
ology and consequently drug pharmacokinetics. Addition-
ally, the virtual obese population has a validity age range 
between 20 to 50 years, so we could not use it to simulate 
and investigate pharmacokinetics in elderly obese subjects. 
The PBPK model in some cases (i.e., chlorzoxazone) was 
not able to fully capture the observed variability, possi-
bly due to formulations or absorption differences between 
studies, which the model was not able to capture due to 
the basic absorption module. Furthermore, in our sensi-
tivity analysis, we looked at two main physicochemical 
properties – logP and pKa; however, other important drug 
parameters might influence the volume of distribution, 
such as the polar surface area, molecular weight, hydrogen 
bond donor, hydrogen bond acceptor, and the fraction of 
unbound in plasma.

5  Conclusions

The current study further confirms the ability of PBPK 
modelling to predict drug pharmacokinetics in special 
populations such as the obese [39, 42, 43]. It also pro-
vides additional proof that our previously published 
repository containing continuous functions describing 
anatomical, physiological, and biological parameters 
generates virtual obese populations that can be reli-
ably used to reproduce the drug disposition in obese. 
Drug exposure changes in obese subjects are due to 
increases in clearance and volume of distribution. 
The increase in clearance was driven by an increase in 
hepatic and renal blood flows, and differences across 
drugs could be explained by the altered enzymatic 
abundance. The volume of distribution was higher in 
obese subjects for all drugs; however, different trends 
could not be explained by the logP, instead logD7.4 was 
a better descriptor of lipophilicity in a physiological 
system since it considers the ionization of the com-
pound. The study also highlights that the physiologi-
cal changes and physicochemical parameters of the 
drug both play a role in the drug disposition in obese 
subjects, therefore making it difficult to have a fixed 
rule for scaling doses from non-obese to obese. PBPK 
modelling takes into consideration both the physiol-
ogy and physicochemical properties, and can be used 
to simulate virtual clinical trials for those drugs for 
which clinical data are still not available in the obese, 
thereby filling the pharmacokinetic knowledge gap 
still present in the literature.

Fig. 7  Pharmacokinetic parameters fold change across body mass 
index (BMI) range 20–60 kg/m2 for the ten studied drugs. The 
pharmacokinetic values are normalized to smallest BMI value. The 
regression line describing the parameter trend is represented in black, 
while the interindividual variability range defined as the 1.25-fold 
interval (bioequivalence criterion) is delimited by the two grey dot-
ted lines. Cmax peak concentration, tmax time to Cmax, Vd/F apparent 
volume of distribution, AUC inf area under the curve to infinity, CL/F 
clearance, t1/2 elimination half-life

◂

Fig. 8  Correlation plots 
between clearance and hepatic 
blood flow (a), and clearance 
and renal blood flow (b). The 
clearance and blood flow values 
are normalized to the smallest 
body mass index (BMI) value. 
The regression line describing 
the parameter trend is repre-
sented in black while the red 
dashed line is the line of unity. 
CL/F clearance, Qh hepatic 
blood flow, Qr renal blood flow
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