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Abstract Since its clinical introduction in 1998, the

topoisomerase I inhibitor irinotecan has been widely used

in the treatment of solid tumors, including colorectal,

pancreatic, and lung cancer. Irinotecan therapy is charac-

terized by several dose-limiting toxicities and large

interindividual pharmacokinetic variability. Irinotecan has

a highly complex metabolism, including hydrolyzation by

carboxylesterases to its active metabolite SN-38, which is

100- to 1000-fold more active compared with irinotecan

itself. Several phase I and II enzymes, including cyto-

chrome P450 (CYP) 3A4 and uridine diphosphate glu-

curonosyltransferase (UGT) 1A, are involved in the

formation of inactive metabolites, making its metabolism

prone to environmental and genetic influences. Genetic

variants in the DNA of these enzymes and transporters

could predict a part of the drug-related toxicity and efficacy

of treatment, which has been shown in retrospective and

prospective trials and meta-analyses. Patient characteris-

tics, lifestyle and comedication also influence irinotecan

pharmacokinetics. Other factors, including dietary restric-

tion, are currently being studied. Meanwhile, a more tai-

lored approach to prevent excessive toxicity and optimize

efficacy is warranted. This review provides an updated

overview on today’s literature on irinotecan pharmacoki-

netics, pharmacodynamics, and pharmacogenetics.

Key Points

Irinotecan metabolism is complex due to the

involvement of many enzymes and transporters, and

is therefore prone to drug–drug interactions. Prior to

starting with irinotecan chemotherapy, patients

should be evaluated for possible interactions with

comedication.

Single nucleotide polymorphisms in several drug

metabolizing enzymes (e.g. uridine diphosphate

glucuronosyltransferase [UGT] 1A1, UGT1A7,

UGT1A9) and drug transporters (e.g. ATP-binding

cassette [ABC] B1, ABCC1) have been reported to

be significantly associated with irinotecan toxicity.

Caucasian patients should be screened for

UGT1A1*28 and Asian patients for UGT1A1*6 in

advance of irinotecan treatment as these

polymorphisms are common in those populations

and dosing can be personalized if UGT1A1

functioning is constitutionally altered.

Despite existing genotype-based dosing guidelines,

upfront UGT1A1 genotyping is not yet routinely

performed in patients starting with irinotecan

chemotherapy.
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1 Introduction

Irinotecan (CPT-11) is a camptothecin derivative that

demonstrates anticancer activity in many solid tumors.

Currently, it is widely used in the treatment of colorectal,

pancreatic, and lung cancer. Irinotecan is the prodrug for

SN-38, which inhibits topoisomerase-I, an enzyme

involved in DNA replication [1, 2]. SN-38 is 100- to

1000-fold more cytotoxic than irinotecan, and its exposure

is highly variable [3]. SN-38 is inactivated by further

enzymatic conversion into SN-38 glucuronide (SN-38G).

2 Pharmacokinetics

2.1 Distribution

Irinotecan is a hydrophilic compound with a large volume

of distribution estimated at almost 400 L/m2 at steady state

[4]. At physiological pH, the lactone-ring of irinotecan and

SN-38 can be hydrolyzed to a carboxylate isoform (Fig. 1).

Consequently, a pH-dependent equilibrium between these

forms exists [5]. As only the lactone form has antitumor

activity, a small change in pH could alter the pharma-

cokinetics and efficacy of irinotecan [6]. However in

plasma the carboxylate form of irinotecan and the lactone

form of SN-38 dominate [7, 8]. This could be explained by

a higher tissue distribution of irinotecan lactone and the

preferential binding of SN-38 lactone to plasma proteins

[4, 9]. Conversion of irinotecan lactone to carboxylate

within the circulation is rapid, with an initial half-life of

between 9 and 14 min, which results in a 50% reduction in

irinotecan lactone concentration after 2.5 h, compared with

end of infusion (66 vs. 35%) [4, 7, 8].

After the end of drug infusion, a rapid decrease in

irinotecan plasma concentrations is seen. Peak concentra-

tions of SN-38 are reached within 2 h after infusion [8].

Irinotecan is assumed to exhibit linear pharmacokinetics

because of the correlation between dose and systemic

exposure, which is highly variable between patients [8]. In

plasma, the majority of irinotecan and SN-38 is bound to

albumin, which has a stronger binding capacity for the

more hydrophobic active metabolite, and albumin also

stabilizes the lactone forms of irinotecan and SN-38 [10].

In blood, SN-38 is almost completely bound, with two-

thirds located in platelets and, predominantly, red blood

cells [11]. The binding constant of SN-38 with erythrocytes

is almost 15-fold higher than that of irinotecan [11].

Thus far, several population pharmacokinetic models of

irinotecan have been developed. All models confirmed the

large interindividual variability in pharmacokinetic

parameters of approximately 30%. In general, a three-

compartmental model for irinotecan and a two-compart-

mental model for SN-38 is assumed [4, 12–16]. A mean

SN-38 distribution half-life was estimated to be very short

(approximately 8 min) [13]. Several models showed a

second peak in the SN-38 plasma area under the curve

(AUC), which was explained by an enterohepatic re-

Fig. 1 pH-dependent equilibrium of irinotecan and SN-38 isoforms
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circulation of SN-38. SN-38 is reabsorbed after intestinal

deconjugation of SN-38G by (bacterial) b-glucuronidases
[15]. Alternatively, release of SN-38 from erythrocytes has

also been proposed to cause this second plasma peak [17].

2.2 Metabolism

2.2.1 Metabolism by Carboxylesterases

and Butyrylcholinesterase

The prodrug irinotecan is hydrolyzed into the active

metabolite SN-38 by two isoforms of carboxylesterases

(CES1 and 2) and butyrylcholinesterase in the human body

(Fig. 2) [18, 19]. CES1 and CES2 are localized in liver,

colon, kidney, and blood cells, while butyrylcholinesterase

is mainly found in plasma [20]. Conversion by these

esterases mainly occurs intrahepatically and is a relatively

slow and inefficient process as only 2–5% of irinotecan is

converted into SN-38 [12, 18]. CES2 has a 12.5-fold higher

affinity for irinotecan than CES1 and is therefore the pre-

dominant enzyme in this conversion [21–23]. In addition,

this process also occurs in blood, where butyryl-

cholinesterase has a sixfold higher activity than CES [20].

After conversion, SN-38 is actively transported into the

liver by the organic anion transporting polypeptide (OATP)

1B1 transporter (Fig. 2) [24].

Many studies have investigated intratumoral CES

activity, by which irinotecan can be activated at the site of

action. Indeed, the amount of CES activity could be related

to irinotecan efficacy, although preclinical work showed

conflicting results [25–30]. Many preclinical studies have

been performed to selectively increase the intratumoral

CES activity with a virus or engineered stem cells, thereby

aiming to increase irinotecan efficacy [31–38]. Although a

few studies could indeed reverse irinotecan resistance

in vitro and in mice, this mechanism has not yet been

investigated in a clinical setting.

To our knowledge, no clinically relevant drug–drug

interactions (DDIs) involving CES have been reported for

irinotecan, although both inhibitors and inducers of CES

have been described, which could potentially influence the

rate of irinotecan conversion to SN-38 [39].

2.2.2 Metabolism by Uridine Diphosphate

Glucuronosyltransferases

SN-38 is inactivated via glucuronidation to SN-38G by

uridine diphosphate glucuronosyltransferase (UGT) and

excreted into the bile [40, 41]. Several UGT subtypes are

involved in the hepatic (UGT1A1, UGT1A9) and extra-

hepatic (UGT1A1, UGT1A7, UGT1A10) conversion of

SN-38, of which UGT1A1, UGT1A7 and UGT1A9 are the

major isoenzymes [42–46]. SN-38G is formed almost

directly after SN-38 formation, explaining the short half-

life of SN-38 [47]. Plasma concentrations of SN-38G are

the highest among all irinotecan metabolites, suggesting a

Fig. 2 Irinotecan metabolism and excretion. The main excretion

routes of all metabolites are depicted. * Active metabolite. CES

carboxylesterase, BES butyrylcholinesterase, CYP cytochrome P450

enzymes, UGT uridine diphosphate glucuronosyltransferase, b-gluc
b-glucuronidase
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highly efficient glucuronidation rate of SN-38 into SN-38G

[4]. UGT1A1 also conjugates bilirubin, and a significant

correlation between SN-38 and bilirubin glucuronidation

has been observed [42]. In addition, patients genetically

predisposed with decreased UGT1 activity, e.g. in Gilbert’s

syndrome, are at higher risk for severe toxicity when

treated with irinotecan [48]. In addition, many other UGT

polymorphisms have been described and their influence on

irinotecan pharmacokinetics and pharmacodynamics is

summarized in Sect. 4.

2.2.3 Metabolism by Cytochrome P450 Enzymes

Irinotecan is also metabolized by intrahepatic cytochrome

P450 (CYP) enzymes, i.e. CYP3A4 and CYP3A5, into

inactive metabolites—APC and NPC [49]. In contrast to

APC, NPC can be converted to SN-38 by CES1 and CES2

in the liver, but to a lesser amount than irinotecan [50]. The

importance of CYP3A4 and CYP3A5 in irinotecan meta-

bolism is underlined by the strong correlation between

irinotecan and midazolam clearance [51]. Midazolam is an

important CYP3A probe drug, and we previously con-

ducted a randomized clinical trial aiming to individualize

irinotecan dosing by use of a CYP3A4 phenotype-based

algorithm. By dosing on this algorithm, the interindividual

variability in irinotecan and SN-38 exposure dramatically

reduced compared with conventional dosing [52]. In

addition, smoking, some herbal supplements, and comed-

ication are known to induce or inhibit CYP3A enzymes,

resulting in interactions with irinotecan, which are sum-

marized in more detail in Sect. 2.5.

2.2.4 Metabolism by b-Glucuronidases

As previously mentioned, SN-38G can be deconjugated

into SN-38 by b-glucuronidases produced by intestinal

bacteria, which could result in an enterohepatic circulation

of SN-38 [15, 53–55]. In addition, b-glucuronidase activity
has been correlated to intestinal damage and diarrhea in

rats/mice, which could (potentially) be reduced by

inhibiting b-glucuronidase with antibiotics (penicillin and

streptomycin) or amopaxine [56, 57]. Nonetheless,

attempts to reduce b-glucuronidase activity by neomycin

did not significantly alter the irinotecan pharmacokinetic

profile in patients [58].

2.3 Elimination

The clearance of irinotecan is mainly biliary (66%) and

independent of dose, estimated at 12–21 L/h/m2 [59, 60].

Irinotecan is transported into the bile by several ATP-

binding cassette (ABC) transporters (i.e. ABCB1, ABCC2,

and ABCG2) [see Fig. 2] [61–63]. In addition, active efflux

by ABCB1 has been shown to lead to low intracerebral

irinotecan concentrations in mice [64]. All metabolites,

except SN-38G, are predominately excreted in feces,

although they are also detectable in urine [4, 59]. Terminal

elimination half-lives (t�) between 5 and 18 h for irinote-

can, and between 6 and 32 h for SN-38, were reported

[4, 12–14, 59, 65–71]. However, it was later shown that the

t� was initially underestimated as SN-38 concentrations

can be detected up to 500 h after infusion [72, 73].

The wide interindividual variability in irinotecan clear-

ance is still not completely understood. Primarily, a

decreased clearance in patients with altered hepatic func-

tion has been described [12, 13]. Additionally, increasing

age may negatively influence irinotecan clearance,

although this could not be confirmed in another analysis

[13, 74]. Conflicting effects of gender on irinotecan phar-

macokinetics have also been proposed. Several studies

reported higher irinotecan exposure in women, which, in

part, could be explained by decreased SN-38 (metabolic)

clearance [13, 59, 75], while others found no gender effect

[4, 74, 76]. Several factors such as dose, timing of

administration, enzyme activity, and hematocrit levels

might be responsible for these differences. In addition, firm

conclusions cannot be drawn for weight [13, 77]. Worse

clinical performance has been demonstrated to decrease

irinotecan clearance [13]. However, interindividual vari-

ability does not seem to be related to body size measures

such as body surface area (BSA). Although irinotecan dose

is generally based on BSA, it has been shown that BSA and

other body size measures do not predict irinotecan phar-

macokinetics, and that flat-fixed dosing could be a safe

alternative [74, 78].

2.4 Other Formulations and Administrations

2.4.1 Other Formulations

Furthermore, several other irinotecan formulations have

been evaluated. First, oral administration of several dif-

ferent formulations has been investigated and deemed

feasible in phase I trials [79–81], but its poor and highly

variable bioavailability have limited its current clinical

usability [82].

Second, irinotecan drug-eluting beads (DEBIRI) have

been developed to control drug release and are mostly used

as regional administration. DEBIRI administered into the

hepatic artery resulted in higher and prolonged intratu-

moral irinotecan and SN-38 exposure in liver metastases,

whereas systemic exposure was lower than after intra-

venous administration [83–85]. Hepatic arterial infusion of

DEBIRI has been demonstrated to be an effective treatment

for unresectable liver metastases [86].
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Third, liposomal irinotecan has been developed and is

clinically used. Encapsulated into liposomes, irinotecan is

stable for a longer period of time, resulting in increased

accumulation in tumor tissue and thereby increasing its

effect, as described further in Sect. 3.2 [87].

2.4.2 Other Variations in Administration

Irinotecan administration based on circadian timing

improved clinical outcome in several clinical trials

[88–90], probably due to the circadian rhythm of enzymes

and transporters involved in irinotecan pharmacokinetics

and pharmacodynamics [91–93]. However, pharmacoki-

netic consequences have only been investigated in a small

randomized study in which an increased metabolic ratio

(SN-38/irinotecan AUC) and smaller interindividual vari-

ability were found after circadian-timed dosing [94].

Trials on two different—more regional infusion meth-

ods—have been conducted. First, locoregional therapy with

irinotecan infusion into the hepatic artery has been evalu-

ated for the treatment of unresectable liver metastases;

different irinotecan formulations have been demonstrated

to be safe and effective [95, 96]. This approach resulted in

lower systemic exposure to irinotecan and an increased

conversion of irinotecan into SN-38 compared with intra-

venously administered irinotecan [97]. Second, the use of

irinotecan as hyperthermic intraperitoneal chemotherapy

(HIPEC) has been investigated as a treatment option for

colorectal peritoneal metastases [98–103]. A small fraction

of irinotecan is rapidly converted intraperitoneally into SN-

38; systemic maximum concentration (Cmax) of SN-38 has

been observed 30 min after intraperitoneal administration

[98, 100].

Although these different administration methods have

been investigated for several years, there is still insufficient

evidence that implementing these strategies in daily care

could be beneficial.

2.5 Drug–Drug Interactions (DDIs)

2.5.1 DDIs with Anticancer Drugs

Many anticancer agents have been investigated in combi-

nation with irinotecan, of which no significant pharma-

cokinetic interactions with irinotecan have been reported

for oxaliplatin, 5-fluorouracil/leucovorin, capecitabine, and

monoclonal antibodies [66, 70, 104–123]. In contrast,

paclitaxel combined with irinotecan in a 3-weekly regimen

caused a significant increase in irinotecan, SN-38, and SN-

38G exposure, which was assumed to be caused by com-

petitive inhibition of ABCB1 (Table 1) [124]. Sequencing

the administration of paclitaxel after irinotecan seems to

improve their synergistic anticancer effects [125], but

irinotecan pharmacokinetics are not significantly altered in

either sequence [125, 126]. Systemic SN-38 exposure was

found to be reduced in patients concomitantly treated with

tegafur (S-1) or carboplatin [127–129], of which the latter

also reduced irinotecan exposure. Patients seemed to tol-

erate irinotecan better when thalidomide was coadminis-

tered in two phase II studies in which SN-38G exposure

was increased at the expense of SN-38 exposure [130].

However, the pharmacokinetic differences could not be

replicated [131, 132] and might be caused by confounding

as half of the patients also used antiepileptic drugs (AEDs)

[130].

Tyrosine kinase inhibitors (TKIs) have become very

popular in cancer treatment but are also known for their

modulating effects on drug-metabolizing enzymes [133].

Several TKIs, i.e. imatinib, pazopanib, sunitinib, lapatinib

and gefitinib, have been investigated in combination with

irinotecan-containing regimens [134–141]. With the

exception of pazopanib and lapatinib, all of these combi-

nations led to excessive toxicity and have therefore not

been evaluated further for clinical use. Increased exposure

to irinotecan or SN-38 due to the inhibition of CYP3A4,

ABCB1, or ABCG2 has been suggested as a cause of the

intolerance of irinotecan combined with TKIs, but a

pharmacodynamic interaction cannot be ruled out.

2.5.2 DDIs with Non-Anticancer Drugs

Concomitant treatment with non-anticancer drugs such as

AEDs, certain antidepressants, antiretroviral drugs, and

nonsteroidal anti-inflammatory drugs (NSAIDs) have been

shown to affect irinotecan pharmacokinetics or pharma-

codynamics. The combination with the potent CYP3A4

inhibitor ketoconazole was one of the first significant DDIs

described for irinotecan (Table 1) [142]. Anecdotally,

severe rhabdomyolysis syndrome has been described in a

patient using irinotecan and citalopram [143]. Although

pharmacokinetic data were not available, competitive

metabolism by CYP3A4 was suspected as the underlying

mechanism. Hypothetically, other strong CYP3A4-in-

hibiting antidepressants such as nefazodone could be sus-

pected for an interaction with irinotecan [144].

AEDs are also known for inducing CYP3A, UGTs and

CES [145]. The influence of phenytoin, phenobarbital, and

carbamazepine on irinotecan pharmacokinetics was eval-

uated in a population pharmacokinetic model, which sug-

gested that patients using these AEDs should receive a 1.7-

fold higher irinotecan dose to reach the same exposure as in

patients without AEDs [75]. Individual patients may

require an even higher dose, as indicated by a fourfold

higher irinotecan clearance and tenfold lower systemic SN-

38 exposure in a patient receiving phenytoin [146].

Therefore, the combination of phenytoin and irinotecan

Irinotecan Pharmacokinetics, Pharmacodynamics, and Pharmacogenetics 1233



Table 1 Drug–drug interactions with irinotecan

Drug/OTC/lifestyle N Enzyme/transporter Irinotecan dose PK alterations References

Anticancer drugs

Paclitaxel

135–200 mg/m2

D8

31 ABCB1 40–60 mg/m2

D1? 8, Q3W

Irinotecan

SN-38

SN-38G

AUC24.5 32.7% :

AUC24.5 40.4% :

AUC24.5 46.2% :

[124]

Thalidomide 400 mg od (for 14D) 16 350 mg/m2,Q3W SN-38

SN-38G

AUC48 74% ;

AUC48 28% :

[130]a

S-1 (tegafur)

100/120 mg/m2, 4–7D

4 ABCG2 100–200 mg/m2

Q2 W

SN-38: AUC24 50% ; [128]

Imatinib 300–600 mg od

Cisplatin 30 mg/m2

D1? 8

6 CYP3A4, CYP3A5

CYP2C9

65 mg/m2

D1? 8, Q3W

Irinotecan AUC8 67% :, CL
36% ;

[134]

Lapatinib 1250 mg/day

Leucovorin 200 mg/m2

5-FU 600 mg/m2

12 CYP3A4

OATP1B1

ABCB1

ABCG2

108 mg/m2

Q2W

SN-38 AUC24 41%:,
Cmax 32%:

[137]

Non-anticancer drugs

Ketoconazole 200 mg od for 2D 7 CYP3A4 100 mg/m2 (with

ketoconazole)

350 mg/m2 (alone)

Q3W

SN-38

APC

AUC500 109% :

AUC500 87% ;

[142]

Lopinavir 400 mg/ritonavir 100 mg

combination drug (Kaletra) bid

8 CYP3A4

UGT1A1

ABCB1

150 mg/m2

D1? 10, Q3W

Irinotecan

SN-38

SN-38G

APC

AUCinf 89% :,
CL 47% ;

AUCinf 204% :

AUCinf 94% :

AUCinf 81% ;

[148]

Cyclosporine 5–10 mg/kg 43 ABCB1

ABCC2

25–75 mg/m2 Q1W Irinotecan

SN-38

CL 39–64% ;

AUC24

23–630% :

[147]

Cyclosporine ?

Phenobarbital 90 mg for 14D

39 ABCB1

ABCC2

UGT1A1

72–144 mg/m2 Q1W Irinotecan

SN-38

SN-38G

AUC24 27% ;,
CL 43% :

AUC24 75% ;

AUC24 50% ;

Celecoxib 400 mg bid 11 50–60 mg/m2

D1? 8, Q3W

Irinotecan

SN-38

CL 18% :

AUC12.5 21.8% ;

[151]a

Methimazole 14 UGT1A 660 mg

Q3W

SN-38

SN-38G

AUC56 14%:

AUC56 67% :

[150]

Herbal and dietary supplements, and lifestyle

Cigarette smoking 190 CYP3A

UGT1A1

350 mg/m2 or

600 mg fixed dose

Q3W

Irinotecan

SN-38

AUC100 15% ;,
CL 18% :

AUC100 38% ;

[162]

St. John’s wort 300 mg tid 5 CYP3A4 350 mg/m2

Q3W

SN-38 AUC24 42% ; [158]

All PK alterations mentioned are significant at p\0.05

N sample size, D day, od once daily, bid twice daily, tid three times daily, AUC area under the curve, inf infinity, CL clearance, Q1W every week,

Q2W every 2 weeks, Q3W every 3 weeks, PK pharmacokinetics, CYP cytochrome P450, Cmax maximum concentration, 5-FU 5-fluorouracil
aFor thalidomide and celecoxib, conflicting data have been published between pharmacokinetic drug interactions with irinotecan. Studies that did

not show a significant drug–drug interaction [131, 132, 152, 153] are illustrated in more detail in the text
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must be avoided (if possible), or dosing must be guided on

irinotecan pharmacokinetics to ensure a sufficient expo-

sure. In addition, Innocenti et al. found a decreased expo-

sure to SN-38 when irinotecan was combined with

cyclosporine and the AED phenobarbital (Table 1) [147].

In addition, an important DDI between irinotecan and

the combination treatment with ritonavir and lopinavir,

caused by CYP3A4, UGT1A1, and ABC transporter inhi-

bition resulted in a more than twofold increase in SN-38

AUC and a 36% decrease in the SN-38G/SN-38 AUC ratio

(Table 1) [148]. A similar effect could be expected of

atazanavir, which is also a strong inhibitor of CYP3A4 and

UGT1A1 [149]. In contrast, by UGT1A induction by

methimazole, an increase in SN-38 and SN-38G concen-

trations, as well as an almost 50% increased ratio of SN-

38G/SN-38, was found by within-patient comparison

(Table 1) [150].

With regard to frequently used drugs such as NSAIDs

and proton pump inhibitors, only a possible DDI with

celecoxib and omeprazole has been evaluated to date. One

of three studies investigating the coadministration of

irinotecan and celecoxib described an increased clearance

of irinotecan and a decreased AUC of SN-38, although the

mechanism is not clear (Table 1) [151–153]. Although

omeprazole influences UGT, CYP3A, ABCB1, and

ABCG2, a clinically relevant pharmacokinetic interaction

with irinotecan was ruled out in a small crossover study

[154].

2.5.3 DDIs with Herbal and Dietary Supplements,

and Lifestyle

In general, herbal and dietary supplements are frequently

used by cancer patients [155, 156]. Unfortunately, the

potential for herb–drug interactions in oncology is not

frequently investigated in clinical studies [157]. To date,

the effects of St. John’s wort (SJW), milk thistle, cigarette

smoking, and cannabis tea on irinotecan pharmacokinetics

have been investigated. Concomitant use of SJW resulted

in a 42% reduction of SN-38 AUC, primarily caused by

CYP3A4 induction (Table 1) [158]. Flavonoids are com-

ponents of many herbs, such as milk thistle (Silybum

marianum), and are able to inhibit CYP3A4, UGT1A1 and

ABC transporters [159–161], but an interaction has not yet

been demonstrated in clinical trials [161].

Cigarette smoking resulted in a decrease in irinotecan

and SN-38 exposure, possibly caused by CYP3A induction

(Table 1) [162]. In addition, (medicinal) cannabis can

induce CYP3A4 and inhibit ABCB1, and its use is

becoming more popular in cancer patients. Although no

interaction was demonstrated between irinotecan and

medicinal cannabis tea [163], other cannabis formulations

contain different concentrations of the enzyme-modulating

compounds (e.g. cannabidiol and delta-9-tetrahydro-

cannabinol [THC]). Therefore, it remains unclear if

cannabinoid oils, the most popular formulation nowadays,

are safe in combination with irinotecan.

3 Pharmacodynamics

3.1 Toxicity

Irinotecan is known for its dose-limiting adverse events,

primarily diarrhea, neutropenia, and asthenia. Of patients

with irinotecan monotherapy, 16–31% experience severe

diarrhea, and a comparable percentage of patients suffer

from severe neutropenia and severe asthenia, classified as

Common Terminology Criteria for Adverse Events

(CTCAE) grade 3 or worse [164–168]. Patients treated

with a 5-fluorouracil, leucovorin and irinotecan (FOLFIRI)

regimen experience severe diarrhea (9–44%) and severe

neutropenia (18–54%) to the same extent [168–173]. In

addition, neutropenia appears to occur more frequently in

females [174]. Although irinotecan dose is lower in this

regimen, 5-fluorouracil could also cause these adverse

events.

Two types of diarrhea caused by irinotecan can be dis-

tinguished: early- and late-onset diarrhea. Early-onset

diarrhea starts during, or immediately after, drug infusion

and is caused by increased cholinergic activity, which

stimulates intestinal contractility and reduces the absorp-

tive capacity of the mucosa [175]. In addition, early-onset

diarrhea is often part of an acute cholinergic syndrome with

diaphoresis and abdominal pain. The overall incidence of

this syndrome is approximately 70% without premedica-

tion, and is reduced to 9% by administration of anti-

cholinergic agents (i.e. atropine or hyoscyamine) before

irinotecan infusion [176, 177]. Late-onset diarrhea occurs

approximately 8–10 days after irinotecan infusion and is

characterized by a more severe course, which is probably

caused by damage of the intestinal mucosa due to increased

oxidative stress by biliary-secreted or intestinally decon-

jugated SN-38 [76, 178–180]. Several guidelines recom-

mend treating late-onset diarrhea with loperamide or,

alternatively, octreotide [181, 182]. Antibiotics have also

been used in clinical practice despite sufficient evidence

supporting this strategy [182]; however, these interventions

are not always sufficient, which could lead to dose reduc-

tions, treatment interruptions and hospitalization.

Conflicting results have been reported regarding the

relationship between irinotecan and SN-38 exposure and

toxicity (Table 2) [60]. An initial study suggested the bil-

iary index (i.e. the ratio of SN-38 to SN-38G AUCs mul-

tiplied by the AUC of irinotecan) as a better predictor for

gastrointestinal toxicity [178]. Studies on this subject have
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been contradictory; a higher biliary index was significantly

correlated with a higher incidence of severe diarrhea in

several studies [76, 178, 183], whereas no significant

association was found in other studies (see Table 2)

[16, 66, 68, 184]. The duration of neutropenia has been

found to be significantly correlated to prolonged systemic

SN-38 exposure [73].

Several interventions to prevent diarrhea have been

investigated, such as reducing the intestinal exposure of

SN-38. First, in a phase I study, SN-38 excretion in the bile

was inhibited by combining irinotecan with cyclosporine

(due to ABCC2 and ABCB1 inhibition). Subsequently,

phenobarbital (as a UGT1A1 inductor) was added, and the

combination of cyclosporine/phenobarbital/irinotecan

resulted in a 75% reduction of SN-38 AUC [147]. How-

ever, when studied in a large, randomized, phase III trial,

the combination of cyclosporine, irinotecan and panitu-

mumab did not significantly reduce the incidence of severe

Table 2 Irinotecan toxicity in relation to pharmacokinetics and biliary index

Study, year N Irinotecan dose Irinotecan SN-38 SN-38G Biliary index

Diarrhea

Ohe et al., 1992 [185] 36 5–40 mg/m2

5D, continuously

Yesa No ND ND

de Forni et al., 1994 [186] 59 50–145 mg/m2 Q1W Yesa Yesa ND ND

Rowinsky et al., 1994 [65] 32 100–345 mg/m2 Q3W No No ND ND

Gupta et al., 1994 [178] 21 100–175 mg/m2 Q1W No No No Yesb

Abigerges et al., 1995 [187] 64 100–750 mg/m2 Q3W Yesc Yesc ND ND

Catimel et al., 1995 [67] 46 33–115 mg/m2

D1–D3, Q3W

Yesa No ND ND

Gupta et al., 1997 [76] 40 145 mg/m2 Q1W No No No Yesb

Canal et al., 1996 [68] 47 350 mg/m2 Q3W No No No No

Mick et al., 1996 [183] 36 145 mg/m2 Q1W ND ND ND Yesa

Rothenberg et al., 1996 [188] 48 125–150 mg/m2 Q1W No Yesa ND ND

Herben et al., 1999 [184] 29 10–12.5 mg/m2 D14–21, continuously No No No No

de Jong et al., 2000 [66] 52 175–300 mg/m2 Q3W No No ND No

Xie et al., 2002 [16] 109 100–350 mg/m2 Q3W Yes1 No Yesa No

Neutropenia

Ohe et al., 1992 [185] 36 5–40 mg/m2

5D, continuously

No Yesd ND ND

de Forni et al., 1994 [186] 59 50–145 mg/m2 Q1W Yese Yese ND ND

Rowinsky et al., 1994 [65] 32 100–345 mg/m2 Q3W No Yese ND ND

Abigerges et al., 1995 [187] 64 100–750 mg/m2 Q3W Yesd Yesd ND ND

Catimel et al., 1995 [67] 46 33–115 mg/m2

D1–D3, Q3W

No No ND ND

Canal et al., 1996 [68] 47 350 mg/m2 Q3W Yese Yese No No

Rothenberg et al., 1996 [188] 48 125–150 mg/m2 Q1W No No ND ND

Herben et al., 1999 [184] 29 10–12.5 mg/m2 D14–21, continuously No No No No

de Jong et al., 2000 [66] 52 175–300 mg/m2 Q3W No No ND ND

Mathijssen et al., 2002 [73] 26 350 mg/m2 Q3W ND Yesf ND ND

All assumed relationships mentioned are significant at p\0.05

N sample size, ND not determined, D day, Q1W every week, Q3W every 3 weeks
aDiarrhea frequency, all grades
bDiarrhea gradeC 3
cDiarrheaC 2
dAbsolute decrease in neutrophil count, all grades
ePercentage decrease in neutrophil count, all grades
fEntire time course of absolute neutrophil count decrease
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diarrhea [189]. In another randomized trial, prophylactic

use of racecadotril, an antisecretory drug, also failed to

reduce this adverse event [190]. Alternatively, SN-38 can

be bound to activated charcoal or calcium aluminosilicate

clay in the intestine. Until now, only the activated charcoal

has been found to reduce the incidence of diarrhea

[191, 192]; however, evidence from a phase III study and

additional pharmacokinetic analysis is warranted to

understand the real effect of activated charcoal, which also

exhibits a general antidiarrhoeic effect, and therefore the

use of charcoal is not common practice.

Another attempt to reduce toxicity was by inhibition of

b-glucuronidase production by antibiotics (i.e. strepto-

mycin, penicillin, and neomycin), amopaxine, and herbal

medicines, all without a relevant reduction in diarrhea

incidence [56–58, 193]. However, when combined with

cholestyramine to reduce reabsorption, b-glucuronidase
inhibition by levofloxacin was found to reduce irinotecan-

induced diarrhea [194]. In addition, a randomized double-

blind, placebo-controlled trial showed a 20% reduction in

diarrhea incidence when irinotecan was combined with

probiotics. Unfortunately, this did not result in a significant

difference between groups, probably due to a lack of sta-

tistical power [195]. Lastly, altering the intestinal envi-

ronment by alkalinization or reduction of inflammation (by

the use of budesonide) did also not reduce intestinal toxi-

city [196–201].

Currently, fasting before chemotherapy is investigated

to reduce toxicity, which has been shown to be effective in

mice without affecting the anticancer effects. Systemic and

hepatic exposure to SN-38 was reduced in these mice, but

intratumoral concentrations were unaltered [202, 203]. A

prospective trial is currently ongoing in order to assess the

effects of fasting in irinotecan-treated patients and to elu-

cidate the underlying biological mechanisms (http://www.

trialregister.nl/; trial ID: NTR5731).

3.2 Efficacy

Irinotecan is effective in a wide range of malignancies. In

metastatic colorectal cancer (mCRC), irinotecan has its

most prominent role as monotherapy or within combination

therapy. As first-line mCRC treatment, the FOLFIRI regi-

men proved to be superior to 5-fluorouracil with leucovorin

and to irinotecan monotherapy; a response rate (RR) of

39% and median overall survival (OS) of

14.8–17.4 months has been reported [168, 169]; however,

the addition of oxaliplatin to this regimen (i.e. FOLFOX-

IRI) substantially increased treatment efficacy, as shown by

an RR of 60% and median OS of approximately 23 months

[204, 205]. As second-line treatment after 5-fluorouracil-

containing regimens, irinotecan leads to a significantly

longer OS than 5-fluorouracil with leucovorin or best

supportive care (BSC) [166, 167]. For patients with a

KRAS wild-type tumor, efficacy of palliative treatment

could be increased by combining irinotecan monotherapy,

FOLFIRI, or FOLFOXIRI with monoclonal antibodies

(e.g. bevacizumab, cetuximab, panitumumab, ramu-

cirumab) [165, 170–172, 206, 207]. In the adjuvant setting,

the addition of irinotecan to 5-fluorouracil and leucovorin

did not result in a survival benefit [208, 209]. Patients with

tumors characterized by high microsatellite instability

(MSI) have been suggested to respond better to irinotecan-

based chemotherapy, [210, 211] but a recent meta-analysis

failed to show any predictive value of MSI status in rela-

tion to treatment response [212].

For advanced esophageal or junction tumors, irinotecan

has proven to be effective as monotherapy and when

combined with cisplatin, mitomycin, capecitabine and

oxaliplatin, 5-fluorouracil and leucovorin and docetaxel

[213–219]; however, of these regimens, only irinotecan

combined with 5-fluorouracil was evaluated in a phase III

trial in which this combination was inferior to cisplatin/5-

fluorouracil [220]. In advanced human epidermal growth

factor receptor 2 (HER2)-negative gastric cancer, the

addition of irinotecan to different combination therapies

gave an OS benefit in a pooled analysis of ten studies—

median OS was 11.3 months and RR was approximately

38% [221].

Irinotecan is also used in the treatment of small cell lung

cancer (SCLC) and non-SCLC (NSCLC). For advanced

NSCLC, irinotecan combined with taxanes, platinum,

ifosfamide, or gemcitabine demonstrated efficacy as first-

line treatment in several trials [222]. For advanced SCLC,

irinotecan combined with cisplatin or carboplatin had

similar RR and median OS as platinum compounds with

etoposide (RR 39–84% and median OS 9–13 months) and

is therefore used as first-line treatment in Japan, whereas

the etoposide-containing regimen is preferred elsewhere

[223]. Furthermore, irinotecan has demonstrated anticancer

activity in phase II trials in a wide range of other solid

tumors (i.e. mesothelioma, glioblastoma, gynecological

cancers, and head and neck cancer), although no phase III

data are available [224–231].

Finally, in pancreatic cancer, the combination of 5-flu-

orouracil, leucovorin, irinotecan and oxaliplatin (FOL-

FIRINOX) is used for both first-line adjuvant and palliative

treatment in which it was shown to be superior to gemc-

itabine monotherapy (median OS 11.1 months, RR 31.6%)

[232]. Liposomal irinotecan has recently been approved as

second-line treatment for metastatic pancreatic cancer for

patients with progression on gemcitabine-based therapies

[87]. Efficacy of this liposomal formulation needs to be

explored further in other tumor types.
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4 Pharmacogenetics

Expression and functionality of enzymes and drug trans-

porters involved in the metabolism and elimination of

irinotecan can be affected by genetic polymorphisms that

could influence both irinotecan pharmacokinetics and

pharmacodynamics. This section provides an overview of

clinical correlations between polymorphisms and irinote-

can pharmacokinetics and pharmacodynamics.

4.1 Associations between UGT1A1 Polymorphisms

and Irinotecan Pharmacodynamics

With more than 100 reported genetic variants [233],

UGT1A1 is a highly polymorphic enzyme. The most fre-

quently studied UGT1A1 polymorphisms in relation to

irinotecan pharmacokinetics and pharmacodynamics are

UGT1A1*6 and UGT1A1*28. The majority of the genetic

association studies have focused on neutropenia and diar-

rhea as clinical endpoints [169].

Wild-type UGT1A1 is characterized by six thymine

adenine (TA) repeats in the promotor region, whereas

UGT1A1*28 (rs8175347) carriers have an extra TA repeat

that impairs UGT1A1 transcription and thereby reduces

expression by approximately 70% [234]. The incidence of

this genetic variant is relatively high among Caucasians

(minor allele frequency [MAF] 26–39%) and Africans/

African Americans (MAF 30–56%) [235, 236]. Among the

Asian population, UGT1A1*28 is far less common, as

indicated by an MAF of 9–20% [235, 236]. With a reported

MAF of up to 47%, another polymorphism—UGT1A1*6

(rs4148323, 211G[A)—is more common in Asian popu-

lations and may therefore be a better predictor for

irinotecan-related toxicities in that area of the world [237].

UGT1A1*6 also results in an approximately 70% reduction

of UGT1A1 activity in individuals carrying the

UGT1A1*6/*6 genotype [238].

Both UGT1A1*6 and *28 polymorphisms result in an

increased systemic exposure to irinotecan and SN-38 in

patients homozygous for these variants, thereby increasing

the risk of irinotecan-associated adverse events [239, 240].

This is also accompanied by increased financial costs of

toxicity management [241]. Due to the high number of

genetic association studies on the clinical effects of

UGT1A1*6 and *28 on irinotecan pharmacokinetics/phar-

macodynamics and large differences between studies in

terms of tumor type, dosing regimen, and genetic models,

this review will mainly focus on meta-analyses for

UGT1A1*28 and *6 to extract the most relevant informa-

tion with the highest level of evidence (Table 3).

Initially, significant associations between UGT1A1*28

and hematologic toxicities were only reported for

irinotecan doses higher than 180 mg/m2 [242]. However,

more recent meta-analyses did not show a dose-dependent

effect of UGT1A1*28. In addition, *28 carriers receiving

lower irinotecan doses were at risk of neutropenia

[243, 244]. These meta-analyses were carried out in a

predominantly Caucasian population, thus regardless of

scheduled starting dose, genotyping for UGT1A1*28 and

dose reductions in all Caucasian patients homozygous for

UGT1A1*28 may be considered to reduce the risk of severe

neutropenia.

Presumably due to the lower incidence of UGT1A1*28

in the Asian population, the effects of UGT1A1*28 on

toxicity endpoints are less straightforward in this popula-

tion. Several meta-analyses in Asian patients with different

tumor types and treatment schedules did not show any

significant association between UGT1A1*28 and irinote-

can-induced neutropenia [245, 246]. In contrast,

UGT1A1*6 seems to be a more accurate predictor of

irinotecan-induced toxicity; Asian patients with gastroin-

testinal tumors or NSCLC were more likely to suffer from

neutropenia if they were carrying at least one UGT1A1*6

allele (Table 3) [245, 247]. This association does not seem

to be dose-dependent [248].

Both Caucasian and Asian patients homozygous or

heterozygous for UGT1A1*28 have a greater risk of suf-

fering from severe diarrhea compared with wild-type

patients after receiving irinotecan doses [125 mg/m2

[249]. In another meta-analysis among Caucasian *28/*28

carriers, this dose-dependent effect was also observed

[244]. In Asian patients, UGT1A1*6 not only correlates

well with the risk for irinotecan-induced neutropenia but is

also significantly associated with severe diarrhea

[245, 248]. Whether this association is dose-dependent is

currently unknown since no dose subgroup analysis has

been carried out [250].

It seems that response or survival endpoints are not

significantly affected by UGT1A1*6 or *28. Both

UGT1A1*6 and UGT1A1*28 genotypes did not have any

significant association with tumor response in Asian

NSCLC or SCLC patients receiving irinotecan as first- or

second-line chemotherapy [245]. Furthermore, the pres-

ence of one or more UGT1A1*28 alleles in Caucasian

patients with colorectal cancer did not significantly affect

overall and progression-free survival (PFS) [251].

Besides UGT1A1*6 and UGT1A1*28, other common

UGT1A1 polymorphisms could theoretically also affect

irinotecan-related toxicity (Table 3). For instance,

UGT1A1*60 (rs4124874; 3279T[G) is in linkage with

UGT1A1*28 and is associated with a decrease in tran-

scriptional activity [238]. This genetic variant is common

among Caucasians (MAF 47%) and African Americans

(MAF 85%) [252]. Two clinical studies did not report any

significant associations between UGT1A1*60 status and
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Table 3 Overview of pharmacogenetic studies on irinotecan toxicity and survival

Polymorphism Ethnicity Endpoint Dose range

(mg/m2)

Main findings No. of

patients

No. of

studies

References

Meta-analyses

UGT1A1*28/*28

(rs8175347) vs.

*1/*28 or *1/*1

Not reported Hematologic

toxicities

80–125 OR 1.80, 95% CI

0.37–8.84, p = 0.41

229 3 [242]

180 OR 3.22, 95% CI
1.52–6.81, p = 0.008

410 4

200–350 OR 27.8, 95% CI 4.0–195,
p = 0.005

184 3

*28/*28 vs. *1/*1 Mainly Caucasian Neutropenia \150 OR 2.43, 95% CI
1.34–4.39, p = 0.003

300 4 [243]

150–250 OR 2.00, 95% CI
1.62–2.47, p < 0.001

1481 9

C 250 OR 7.22, 95% CI
3.10–16.78, p < 0.001

217 3

*28/*28 vs. *1/*28

or *1/*1

Caucasian Neutropenia 80–350 OR 3.44, 95% CI
2.45–4.82, p < 0.00001

2015 14 [244]

*28/*28 vs. *1/*28

or *1/*1

Diarrhea [150 OR 2.04, 95% CI
1.23–3.38, p = 0.006

1317 8

\150 OR 1.41, 95% CI

0.82–2.43, p = 0.21

663 6

*1/*28 or *28/*28

vs. *1/*1

Asian Neutropenia 50–100 OR 1.47, 95% CI

0.90–2.42, p = 0.13

515 8 [245]

*6/*6 (rs4148323)

vs. *1/*6 or *1/

*1

Diarrhea OR 4.90, 95% CI
2.02–11.88, p = 0.0004

225 4

*6/*6 vs. *1/*6 or

*1/*1

Tumor

response

OR 1.51, 95% CI

0.78–2.92, p = 0.22

225 4

*28/*28 or *1/*28

vs. *1/*1

OR 1.03, 95% CI

0.59–1.82, p = 0.91

390 7

*28/*28 vs. Asian Neutropenia 60–200 OR 1.67, 95% CI 0.94–2.97 658 6 [246]

*6/*28 30–350 OR 2.55, 95% CI
1.82–3.58

886 13

*6/*6 or *28/*28

or *6/*28 vs. *1/

*6 or *1/*28 or

*1/*1

Asian Neutropenia 60–350 OR 3.275, 95% CI
2.152–4.983, p = 0.000

923 11 [247]

*1/*6 or *6/*6 vs.

*1/*1

OR 1.542, 95% CI
1.180–2.041, p = 0.001

994 9

*6/*6 vs. *1/*1 Asian Neutropenia 30–375 OR 4.44, 95% CI
2.42–8.14, p < 0.001

833 7 [248]

*28/*28 or *1/*28

vs. *1/*1

Asian Diarrhea [125 OR 3.02, 95% CI
1.42–6.44, p = 0.004

309 4 [249]

*28/*28 or *1/*28

vs. *1/*1

Caucasian OR 1.93, 95% CI
1.38–2.70, p < 0.001

1096 11

*28/*28 vs. *1/*1

*1/*28 vs. *1/*1

Caucasian OS and PFS 60–350 All comparisons not

significant for both OS

and PFS (p[0.05)

1524 (OS)

1494 (PFS)

10 [251]

Clinical studies
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Table 3 continued

Polymorphism Ethnicity Endpoint Dose range

(mg/m2)

Main findings No. of

patients

No. of

studies

References

UGT1A1*60 Asian PK, tumor

response,

grade 4

neutropenia,

grade 3

diarrhea,

delivered

dose

80 p[0.05 for all endpoints 81 1 [253]

UGT1A1*60 Not specified

(probably

Korean)

Neutropenia,

anorexia,

vomiting,

diarrhea,

abdominal

pain

150 p[0.05 for all endpoints 42 1 [254]

UGT1A1*28, *60,

*93

(rs10929302)

Caucasian (50 pts),

Black (10 pts),

Hispanic (4 pts),

Pacific Islander

(1 pt), Asian (1

pt)

Neutropenia 350 UGT1A1 haplotype (*28/
*60/*93) associated with
grade 4 neutropenia,

p < 0.001

66 1 [255]

UGT1A1*28, *93,

ABCB1

(rs1045642)

Not specified,

presumably

Caucasian

(France)

Hematologic

toxicities

180 UGT1A1*28/*28 and *93/
*93: increased risk of
hematologic toxicity
(p = 0.01)

184 1 [258]

UGT1A1*93,

ABCB1

(rs12720066),

ABCC1

(rs6498588,

rs17501331)

Caucasian (67 pts),

African

American (11

pts)

ANC nadir,

SN-38 AUC

300 or 350 Increased SN-38 AUC:
UGT1A1*93, ABCC1
(rs6498588)

Decreased SN-38 AUC:
ABCB1 (rs12720066)

Increased ANC nadir:
ABCB1 (rs12720066)

Decreased ANC nadir:
UGT1A1*93, ABCC1
(rs17501331)

78 1 [256]

UGT1A1*28 and

*93

Caucasian (94 pts),

Asian (2 pts)

Diarrhea 40–80, 180,

350

UGT1A1*28/*28 and *93/
*93 associated with
grade 3/4 diarrhea
(p < 0.05)

96 1 [260]

Neutropenia No significant effect on

neutropenia

UGT1A1:*28,*93

UGT1A6:

rs2070959

UGT1A9: *22

(rs45625337), -

688A/C variant

UGT1A7*3

30UTR:
440C[G variant

Not specified,

presumably

Caucasian

(Canada)

Neutropenia 180 UGT1A1*93 associated
with neutropenia.

Haplotype (UGT1A1*28,
*60, *93, UGT1A7*3,
UGT1A9*1) associated
with grade 3–4
neutropenia: OR 2.43,
95% CI 1.35–4.39,
p = 0.004

Haplotypes ‘II’ and ‘III’
(variants in UGT1A9,
1A7, 1A6, and 30UTR
wild-type) associated
with grade 3–4
neutropenia: OR 2.15
and 5.28, respectively

167 1 [259]
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Table 3 continued

Polymorphism Ethnicity Endpoint Dose range

(mg/m2)

Main findings No. of

patients

No. of

studies

References

Among other

genes:

UGT1A1*28,

*93

Caucasian (450

pts), African

American (36

pts), Hispanic (16

pts), Asian (9

pts), other (9 pts)

(Febrile)

neutropenia,

vomiting

125 or 200 UGT1A1*93 associated
with grade 3 febrile
neutropenia, grade 4
neutropenia (p < 0.001),
and grade 3 vomiting
(p = 0.004)

520 1 [261]

UGT1A1:*6, *28

UGT1A7*3

UGT1A9*1

Asian Adverse

events,

therapeutic

intervention

60, 70, 100

or 180

UGT1A1*6/*28,
UGT1A7*3/*3 or
UGT1A9*1/*1: greater
risk of adverse events
and therapeutic
intervention: OR 11.00,
95% CI 1.633–74.083,
p = 0.014

45 1 [263]

UGT1A1*28,

UGT1A1*60,

UGT1A1*93,

UGT1A7*3, and

UGT1A9*22

Caucasian Hematologic

toxicity,

response rate

180 Haplotype II (all variants
except UGT1A1*22)
associated with
increased response rate:
OR 8.61, 95% CI
1.75–42.38, p = 0.01

250 1 [262]

Among other

genes:

SLCO1B1

(rs4149056)

UGT1A1*6

UGT1A9*22

ABCC2

(rs3740066)

ABCG2

(rs2231137)

Asian Neutropenia 65 or 80 SLCO1B1 and
UGT1A1*6: increased
risk for grade 4
neutropenia

107 1 [264]

Diarrhea UGT1A9*1/*1,
ABCC2(rs3740066),
ABCG2 (rs2231137):
increased risk for grade
3 diarrhea

Among other

genes:

UGT1A1*93,

ABCC1

(rs3765129),

SLCO1B1*1b

(rs2306283)

African American

(11 pts),

Caucasian (67

pts), other (7 pts)

ANC nadir 300, 350 UGT1A1*93, ABCC1
(rs3765129): decreased
ANC nadir

SLCO1B1*1b (rs2306283):
increased ANC nadir
(p < 0.05)

85 1 [174]

Among other

genes: ABCB1

(rs1045642,

rs1128503,

rs2032582),

Caucasian Toxicity 180 ABCB1 (rs1045642)
associated with early
toxicity: OR 3.79 95%
CI 1.09–13.2

140 1 [268]

Response rate ABCB1 haplotype
(rs1045642, rs1128503,
rs2032582): shorter OS,
OR 1.56, 95% CI
1.01–2.45

ABCC2:

rs1885301,

rs2804402,

rs717620,

rs2273697,

rs17216177,

rs3740066

Caucasian Diarrhea 260–875 mg Decreased incidence of
diarrhea for ABCC2*2
haplotype (rs1885301,
rs2804402, rs717620,
rs2273697, rs17216177,
rs3740066) without
UGT1A1*28 allele: OR
0.15, 95% CI 0.04–0.61),
p = 0.005

167 1 [271]

Irinotecan Pharmacokinetics, Pharmacodynamics, and Pharmacogenetics 1241



irinotecan-related toxicities [253, 254], irinotecan phar-

macokinetics, or tumor response [253]. The only significant

association including UGT1A1*60 was found in a haplo-

type analysis in which a haplotype consisting of

UGT1A1*28, *93 and *60 variant alleles was significantly

associated with grade 4 neutropenia [255].

Similar to UGT1A1*60, UGT1A1*93 (rs10929302;

- 3156G[A) is also in linkage disequilibrium with

UGT1A1*28 [252]. UGT1A1*93 results in reduced

UGT1A1 expression and is associated with elevated

bilirubin concentrations in patients homozygous for

UGT1A1*93 [255]. With an MAF of approximately 30%,

this genetic variant is commonly detected in Caucasians

and African Americans [252]. Clinically, UGT1A1*93 is

associated with increased SN-38 AUC [256], lower neu-

trophil count [257], increased incidence of hematologic

toxicities (including neutropenia) [258, 259], diarrhea

[260], and grade 3 vomiting [261]. Moreover, UGT1A1*93

was also part of a haplotype including variant alleles of

UGT1A1*28, *60, *93, and UGT1A7*3, which was asso-

ciated with increased RR [262]. A prospective trial on

genotype-guided irinotecan dosing based on UGT1A1*28

and UGT1A1*93 genotype status is currently ongoing (trial

ID: NTR6612).

4.2 Associations between Other UGT1A

Polymorphisms and Irinotecan

Pharmacodynamics: UGT1A7 and UGT1A9

Compared with patients with UGT1A9*1/*1, individuals

carrying the UGT1A9*22 genotype (T9[T10; MAF 45%)

show higher enzyme expression and higher SN-38 glu-

curonidation and are therefore more at risk for diarrhea

[263, 264]. Other UGT1A9 variants, UGT1A9*3 (98T[C;

MAF 3%) and UGT1A9*5 (766G[A; MAF 1%), are rare

in Caucasians and are therefore not likely to significantly

affect irinotecan pharmacokinetics and pharmacodynamics

in this population [265]. Lower enzyme activity and SN-38

Table 3 continued

Polymorphism Ethnicity Endpoint Dose range

(mg/m2)

Main findings No. of

patients

No. of

studies

References

Among other

genes: ABCC5

(rs10937158,

rs3749438,

rs2292997)

ABCG1 (rs225440)

Caucasian Diarrhea 180 Reduced risk of diarrhea
for ABCC5 haplotype
(rs10937158 and
rs3749438):

OR 0.39, 95% CI
0.23–0.67, p = 0.0006

167 1 [272]

Neutropenia Increased risk of
neutropenia for co-
occurrence of ABCG1
and ABCC5
(rs2292997): OR 5.93
95% CI 2.25–15.59,
p = 0.0002

SLCO1B1*1b Caucasian Neutropenia 300, 350,

380–600

(mg)

SLCO1B1*1b: increased
ANC nadir (p < 0.05)

67 (discovery

cohort), 108

(replication

cohort)

1 [273]

Among other

genes:

SLCO1B1*1b,

SLCO1B1*5

(rs4149056)

Caucasian SN-38 PK,

toxicity, PFS

180 SLCO1B1*1b: increased
PFS (p < 0.05).

SLCO1B1*5: increased
SN-38 plasma
concentration and
increased risk of
neutropenia (combined
with UGT1A1*28)
(p < 0.05)

127 1 [274]

Significant findings are shown in bold

CI confidence interval, ANC absolute neutrophil count, AUC area under the plasma concentration–time curve, OR odds ratio, OS overall survival,

PFS progression-free survival, PK pharmacokinetics, pt(s) patient(s)

1242 F. M. de Man et al.



conjugation is observed in UGT1A7*3 [263] and

UGT1A7*4 polymorphisms [266]. In line with these find-

ings, UGT1A7*3/*3 carriers are at greater risk of adverse

events while receiving irinotecan chemotherapy [262, 263].

A haplotype consisting of UGT1A7*3, UGT1A9*1,

UGT1A1*28, UGT1A1*60, and UGT1A1*93 alleles was

associated with severe neutropenia in a cohort of 167

colorectal cancer patients treated with FOLFIRI [259]. In

the same cohort, UGT1A7*3 was also part of two other

haplotypes, including UGT1A9, UGT1A7, and UGT1A6

variants, associated with an increased risk of grade 3–4

neutropenia (Table 3).

4.3 Associations between Drug Transporter

Polymorphisms and Irinotecan

Pharmacokinetics and Pharmacodynamics

Since both irinotecan and SN-38 are substrates of ABC

transporters (Fig. 2), ABC polymorphisms may also affect

irinotecan pharmacokinetics [267], as well as irinotecan-

related toxicities [174]. In a multivariate analysis including

UGT1A1*93, and ABCC1 single nucleotide polymorphisms

(SNPs) rs6498588 and rs17501331, these variants were

associated with increased SN-38 plasma concentrations

and/or decreased absolute neutrophil counts [256]. The

opposite effects were reported for the ABCB1 variant

rs12720066, which was associated with decreased SN-38

exposure and increased neutrophils. Carriers of another

ABCB1 SNP (rs1045642) had an increased risk for early

toxicity and lower treatment response [268]. In patients

with liver metastases treated with hepatic artery infusion of

irinotecan, oxaliplatin and 5-fluorouracil and intravenous

cetuximab, this SNP was also associated with toxicity

(grade 3–4 neutropenia), increased systemic concentrations

of oxaliplatin and cetuximab, and prolonged PFS [269].

Furthermore, carriers of the ABCB1 haplotype (including

rs1045642, rs1128503, rs2032582) responded less fre-

quently and had shorter survival [268]. In addition to

ABCB1 and ABCC1, polymorphisms of ABCC2

(rs3740066) and ABCG2 (rs2231137) were reported to be

independently predictive for toxicity (i.e. grade 3 diarrhea)

[264]. In contrast, the ABCG2 42 1C[A A NP seems to

have a limited impact on irinotecan exposure [270]. Poly-

morphisms in the gene for the hepatic efflux transporter

ABCC2 may have a protective effect on diarrhea, which is

presumably caused by decreased hepatobiliary transport of

irinotecan and therefore reduced irinotecan exposure to the

gut [271]. This protective effect was observed in Caucasian

patients with the ABCC2*2 haplotype (including six

ABCC2 variants without any UGT1A1*28 alleles).

Although their role in irinotecan efflux has not yet been

established, ABCC5 and ABCG1 could also be involved in

this process since several SNPs in these transporters are

correlated with severe diarrhea [272].

OATP1B1, encoded by the SLCO1B1 gene, is involved

in the hepatic uptake of SN-38 (Fig. 2). In Caucasian

patients carrying at least one SLCO1B1*1b variant allele

(rs2306283; MAF 38%), median neutrophil count

increased approximately twofold compared with wild-types

[273], presumably by increased hepatic uptake of SN-38,

thereby reducing SN-38 plasma concentrations (Table 3).

This result confirms an earlier genetic association study on

the effects of drug transporters on irinotecan neutropenia

and pharmacokinetics [174]. In addition, SLCO1B1*1b was

also associated with increased PFS in patients with col-

orectal and pancreatic cancer [274]. Thus, SLCO1B1*1b

could potentially be a protective biomarker for neutropenia

and may improve efficacy. In contrast, SLCO1B1*5

(rs4149056) leads to reduced transporter activity and was

associated with increased SN-38 plasma concentrations and

an increased risk of neutropenia (in combination with

UGT1A1*28 variant alleles) [274].

4.4 Implementation of Genotype-Adjusted

Irinotecan Dosing Guidelines

Both the US FDA and Health Canada/Santé Canada

(HCSC) recommend a reduction of the irinotecan starting

dose in patients who are homozygous for UGT1A1*28

[275, 276] without specifying the extent of reduction

(Table 4). In contrast, the Evaluation of Genomic Appli-

cations in Practice and Prevention (EGAPP) Working

Group did not find sufficient evidence that UGT1A1

genotyping should be used [277]. However, subsequent

guidelines underline the importance of UGT1A1 genotyp-

ing, especially for UGT1A1*28 variant alleles in Western

countries. For example, in France and The Netherlands, a

reduction of the starting dose of 25–30% is recommended

in patients homozygous for UGT1A1*28 receiving higher

doses of irinotecan (C 180 mg/m2) [278, 279]. Regarding

liposomal irinotecan, the European Medicines Agency

(EMA) recommends an initial dose reduction from 80 to

60 mg/m2 in patients homozygous for UGT1A1*28 [280].

In line with the significant associations between

UGT1A1*6 genotype and irinotecan-induced toxicities in

Asian populations, the Japanese Pharmaceuticals and

Medical Devices Agency (PMDA) recommends screening

patients for UGT1A1*6 and *28 polymorphisms [281].

Despite the establishment of these guidelines, UGT1A1

genotyping is currently not routinely performed [282],

which could be explained by the fact that prospective

studies evaluating the clinical effects of genotype-directed

dosing are scarce. Most likely, reduction of the irinotecan

dose to prevent toxicity in carriers of UGT1A1*1/*28 and

UGT1A1*28/*28 is indeed useful since the maximum
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tolerated dose of irinotecan was lower in these patients

relative to wild-type patients [283]. Whether a dose

reduction of irinotecan affects tumor response in

UGT1A1*28 carriers is yet unknown. On the other hand,

patients with the UGT1A1*1/*1 or UGT1A1*1/*28 geno-

type may tolerate higher irinotecan doses than the currently

recommended doses and are therefore at risk of suboptimal

treatment. Indeed, a phase I dose-finding study convinc-

ingly showed that, compared with the recommended

irinotecan dose of 180 mg/m2 in the FOLFIRI regimen,

substantial higher doses of irinotecan (up to 420 mg/m2)

were tolerated in patients wild-type or heterozygous for

UGT1A1*28 [284]. More recently, similar findings were

observed in patients receiving FOLFIRI in combination

with bevacizumab [282], implying that the therapeutic

window of irinotecan may be increased for the UGT1A1*1/

*1 and UGT1A1*1/*28 genotypes.

In summary, particularly for Caucasians, UGT1A1*28

seems to be a good predictor for neutropenia (all irinotecan

doses) and diarrhea (doses[ 125 mg/m2). UGT1A1*28 is

also significantly associated with an increased risk for

diarrhea in Asian patients at irinotecan doses [ 125 mg/

m2. However, in Asian populations the UGT1A1*6 variant

is more common and appears to be a more accurate pre-

dictor for neutropenia (all irinotecan doses) and diarrhea. In

addition to UGT1A1*6 and UGT1A1*28, UGT1A1*93 is

also significantly associated with irinotecan-induced toxi-

city. Less extensively studied polymorphisms such as

UGT1A7*3 and UGT1A9*1, and drug transporter poly-

morphisms (ABCB1, ABCC5, ABCC2, ABCG1, SLCO1B1),

may also be useful predictors for toxicity. Interestingly,

CYP3A4*22 has not been studied thus far, while this SNP

has shown relevance for many other CYP3A substrates

[285–287]. In order to determine the true value of geno-

type-driven dosing of irinotecan, the efficacy of this dosing

strategy should be evaluated prospectively. The inclusion

of additional predictive genetic variants (e.g. UGT1A1*6,

*93) in genotype-directed dosing schedules may improve

their predictive value.

5 Conclusions and Future Perspectives

Irinotecan is a crucial anticancer drug in treatment regi-

mens for several solid tumors. Many factors that con-

tributed to the large interindividual pharmacokinetic

variability have been elucidated. In the last decade, much

progress has been made in unraveling the pharmacogenetic

influence on systemic exposure, toxicity, and survival,

however this knowledge has not yet been sufficiently

translated into general clinical practice.

Table 4 Overview of guidelines on pharmacogenetic testing for irinotecan

Organization Country Year

of last

update

Genotype

recommended

for testing

Dose reduction

explicitly

recommended?

Recommendation References

US FDA USA 2014 UGT1A1*28 Yes UGT1A1*28/*28: starting dose

reduction by at least one dose

level

[275]

Health Canada/Santé Canada

(HCSC)

Canada 2014 UGT1A1*28 Yes UGT1A1*28/*28: reduced starting

dose

[276]

National Pharmacogenetics

Network (RNPGx) and the

Group of Clinical Onco-

pharmacology (GPCO-

Unicancer)

France 2015 UGT1A1*28 Yes UGT1A1*28/*28 and dose

180–230 mg/m2: 25–30%

reduction of starting dose

UGT1A1*28/*28 and

doseC 240 mg/m2: irinotecan

contraindicated

[278]

Royal Dutch Association for the

Advancement of Pharmacy

(KNMP)

The

Netherlands

2011 UGT1A1*28 Yes UGT1A1*28/*28 and

dose[250 mg/m2:

30% reduction of starting dose

[279]

European Medicines Agency

(EMA)

Europe 2017 UGT1A1*28 Yes UGT1A1*28/*28: reduce starting

dose of liposomal irinotecan from

80 to 60 mg/m2

[280]

Pharmaceuticals and Medical

Devices Agency (PMDA)

Japan 2014 UGT1A1*6

and *28

No Use irinotecan with caution in

patients with the following

genotypes: UGT1A1*6/*6,

UGT1A1*28/*28 and

UGT1A1*6/*28

[281]
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Based on the pharmacokinetic and pharmacogenetic

data discussed in this review, we recommend dosing

adjustments in the following situations:

• Concomitant use of potent CYP3A4 inducers (e.g.

rifampicin, phenytoin, phenobarbital, carbamazepine,

SJW): avoid combination.

• Concomitant use of potent CYP3A4 inhibitors (e.g.

ketoconazole, itraconazole): avoid combination.

• Caucasians: perform genotyping for UGT1A1*28.

Consider at least a 25% reduction of starting dose in

patients homozygous for UGT1A1*28.

• Asians: perform genotyping for UGT1A1*6. Consider

dose reduction of the starting dose in patients homozy-

gous for UGT1A1*6. Exact dosing adjustments are as

yet unknown.

Future research should prospectively investigate the

added value of individualized irinotecan treatment based

on patient characteristics, pharmacogenetics, and comedi-

cation. Furthermore, novel drug formulations such as

liposomal forms of irinotecan could help to pharmacolog-

ically optimize irinotecan treatment.
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