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Abstract

Background Amikacin is an aminoglycoside commonly
used in intensive care units for the treatment of patients
with life-threatening Gram-negative infections. Although
aminoglycosides are extensively used, the accurate deter-
mination of their optimal dosage is complicated by marked
intra- and interindividual variability in intensive care unit
patients. Amikacin pharmacokinetics have been described
in numerous studies over the past 25 years.

Objective This review presents a synthesis of the popula-
tion pharmacokinetic models for amikacin described in
critically ill patients. The objective was to determine
whether there was a consensus on a structural model and
which covariates had been identified.

Methods A literature search was conducted from the
PubMed database, from its inception up until December
2015, using the following terms: ‘amikacin’, ‘pharmacoki-
netic(s)’, ‘population’, ‘model(ling)’ and ‘nonlinear mixed
effect’. Articles were excluded if they were not pertinent.
The reference lists of all selected articles were also evaluated.
Results Ten articles were included in this review: phar-
macokinetics of amikacin were described by a one-com-
partment or a two-compartment model. Various covariates
were tested, but only two (creatinine clearance and total
body weight) were included in almost all of the described
models. After inclusion of these covariates, the interindi-
vidual variability (range) in clearance and the volume of
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distribution were 44.4 % (28.2-69.4 %) and 31.3 %
(8.1-44.7 %), respectively. The residual variability (range)
was around 21.0 % (9.0-31.0 %), using a proportional
model, and for a combined model (proportional/additive),
the median (range) values were 0.615 mg/L (0.2-1.03 mg/
L) and 29.2 % (26.8-31.6 %).

Conclusion This review highlights the different population
pharmacokinetic models for amikacin developed in criti-
cally ill patients over the past decades and proposes rele-
vant information for clinicians and researchers. To
optimize amikacin dosage, this review points out the rel-
evant covariates according to the target population. In a
population of critically ill patients, dose optimization
mainly depends on creatinine clearance and total body
weight. New pharmacokinetic population studies could be
considered, with new covariates of interest to be tested in
model building and to further explain variability. Another
future perspective could be external evaluation of previ-
ously published models.

Key Points

Amikacin has recently regained importance in the
care of critically ill patients.

There is wide intra- and interindividual variability
influenced by pathophysiological conditions in
critically ill patients.

What are the factors that influence the variability of
amikacin pharmacokinetic parameters in critically ill
patients?
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1 Introduction

Aminoglycosides are commonly used in intensive care
units (ICUs) for the treatment of patients with life-threat-
ening Gram-negative infections. Despite widespread bac-
terial resistance to several groups of antimicrobial agents,
amikacin remains one of the more frequently prescribed
aminoglycosides in this population. Combination therapy
with beta-lactam/amikacin has been recommended fol-
lowing recent guidelines and expert opinion on the treat-
ment of sepsis, especially in patients with septic shock or
suspected Pseudomonas aeruginosa infection [1, 2]. Ami-
kacin optimal dosing is highly variable and depends on the
site and severity of the infection, as well as on the sus-
ceptibility of the organism [3]. This drug exhibits a bac-
tericidal effect related to its concentration (concentration-
dependent killing). Once-daily administration to maximize
its concentration-dependent effect and post-antibiotic
effect is widely accepted as the standard regimen in general
ward patients, as well as in ICU patients. Previous clinical
studies have shown that a ratio of 10 or more between the
concentration achieved 1 h (Cyy) after the beginning of a
30-min infusion and the minimal inhibitory concentration
(MIC) for the bacteria responsible for the infection is
predictive of therapeutic success [4].

Although aminoglycosides are extensively used, accu-
rate determination of their optimal dosage is complicated
by marked intra- and interindividual pharmacokinetic
variability. In addition, the pharmacokinetic behaviour of a
drug is known to be influenced by pathophysiological
conditions [5]. In critically ill patients (with sepsis, trauma,
etc.), amikacin disposition is altered by decreased protein
binding, administration of multiple drugs and organ failure
[6-11]. Unfortunately, antibiotic dosing regimens used in
ICU rarely take into account pharmacokinetic modifica-
tions induced by pathophysiological changes, and an
empirical dosing strategy of amikacin is inadequate in this
population. It is therefore of interest to explore all of the
approaches used to predict and control the pharmacokinetic
variability of this drug in this patient population and pro-
pose individualized dosing regimens.

A narrow therapeutic index, potential adverse events
and important variability have reinforced the role of ther-
apeutic drug monitoring (TDM) of this drug. A definite
benefit of TDM has been demonstrated for aminoglyco-
sides, and therapy should be initiated as soon as possible
[12]. Indeed, early achievement of an optimal C,,/MIC
ratio may have an impact on clinical and microbiological
responses. TDM in critically ill patients allows optimized
dosing in the presence of severely deranged pharmacoki-
netics [13]. Indeed, doses administered to critically ill
patients are associated with decreased rates of achievement
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of peak concentration and area under the concentration—
time curve targets. Although minimizing the likelihood of
toxicity using TDM is important in critically ill patients,
dose adaptation to avoid under-dosing and to maximize
efficacy is also valuable [14].

This has made it necessary to more carefully examine the
factors that influence the variability in amikacin pharma-
cokinetics. There have been many pharmacokinetic studies
in critically ill patient populations to address this issue. In
particular, nonlinear mixed-effects modelling, a commonly
used population-based modelling approach, has been used
to identify covariates that could influence the dose—con-
centration relationship. A population pharmacokinetic
approach allows Bayesian dose estimation and adaptation
according to population pharmacokinetic parameters and
the estimated variability in a specific population. Population
pharmacokinetic modelling was first introduced in 1972 by
Sheiner et al. Thirty years after its introduction, population
pharmacokinetic approaches have become a reference
method for drug evaluation and dose adaptation [15].

This review presents a synthesis of the population
pharmacokinetic analyses carried out for amikacin in crit-
ically ill patients. The objective was to determine whether
there was a consensus on a structural model, which
covariates have been identified and which covariates
remain to be investigated.

2 Methods
2.1 Adherence to PRISMA Principles

We followed the principles of the PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-analy-
ses) statement to guide the quality assessment of this
review. The PRISMA statement helps to improve the
reporting of systematic reviews with a checklist [16].

2.2 Inclusion Criteria

We included all described pharmacokinetic population
models for amikacin. The articles were accepted if they
met the following inclusion criteria:

e Studied populations: critically ill adult patients.

e Treatment: amikacin (intravenous).

e Pharmacokinetic analysis: modelling by a population
approach.

2.3 Exclusion Criteria

Articles were excluded if they were reviews or methodol-
ogy articles, if the analysis did not use population
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pharmacokinetic modelling or if they were population
studies without mixed-effects model analysis.

2.4 Search Strategy

A literature search was conducted in the PubMed database,
from its inception up until December 2015, using the fol-
lowing terms: (‘amikacin’ AND ‘pharmacokinetics’ AND
‘critically ill patients’) OR (‘amikacin’ AND ‘pharma-
cokinetics’ AND ‘population” AND ‘critically ill patients’)
OR (‘amikacin’ AND ‘pharmacokinetics’ AND ‘model(-
ling)” AND “critically ill patients’) OR (‘amikacin’ AND
‘pharmacokinetics’ AND ‘nonlinear mixed effect model’
AND C“critically ill patients’). Moreover, additional studies
were identified from the reference lists of the selected
papers. The search was additionally limited to ‘English
language’ and ‘clinical data’.

2.5 Data Extraction

The results of these investigations were closely evaluated,
and articles were retained if they met the inclusion criteria.
Pertinent articles were assessed, and the following data
were extracted: year of publication, pathology, number of
patients, number of samples, structural model, value and
expression of pharmacokinetic parameters, included
covariates, intra- and interindividual variability, and vali-
dation method.

Following Brendel et al. [17] and Tod et al. [18], the
evaluation methods were divided into three categories
according to increasing order of quality: basic internal

methods (goodness-of-fit plots), advanced internal methods
(bootstrap, cross-validation, Monte Carlo simulations, etc.)
and external model evaluation.

3 Results
3.1 Trial Flow

A total of 36 studies were identified through PubMed
database searching, with three additional articles identified
via the reference lists of the selected articles. Thirty-nine
articles were screened, and a total of 33 articles were first
selected to have their full-text versions assessed for eligi-
bility. Among these, 23 were excluded with reference to
the inclusion and exclusion criteria. A total of ten articles
were finally retained after three additional trials were added
from reference scanning [19-28] (Fig. 1).

3.2 Study Characteristics

The ten studies described pharmacokinetic population
models of amikacin and were published between 1995 and
2015. The studied populations consisted of critically ill
patients with suspected Gram-negative infection, mainly
septicaemia, pneumonia or severe trauma. Amikacin was
administered as intermittent infusions according to differ-
ent dosing regimens: once-daily dosing, twice-daily dosing
or a dose interval adjusted according to a pharmacokinetic
dosing method [19-28]. The doses administered ranged
between 7.5 and 30 mg/kg/day (Table 1). The collected

Fig. 1 Flow chart for inclusion
of studies in this review 36 records identified through
database searching (Pubmed)

3 additional records identified
through the reference list of
selected papers

39 records screened

3 records excluded
(exclusion criteria)

N
33 full-text articles assessed for 23 full-text articles excluded
eligibility (exclusion criteria)
J/
N\
10 studies included in this review
J
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Table 1 continued

Amikacin therapeutic drug monitoring

Biological and clinical data

Population

References

Mean trough
amikacin

Mean peak
amikacin

Studied period

(h) + SD
(range)

Amikacin

CLcg (mL/

Serum

Pa0,/FiO,

SOFA

(range)

SAPSII + SD APACHE II + SD

(range)

Patient

Body weight
(kg) + SD
(range)

Age

n (male/
female)

dosage + SD
(range)

min) + SD

(range)

creatinine

(mmHg) + SD

(range)

(range)

characteristics

(n)

(years) = SD

(range)

concentration
(mg/L) + SD

(range)

concentration

(umol/L) £ SD

(range)

(mg/L) £ SD

(range)

500 mg/day

76.3 + 334

Korean patients with

58.4 £ 11.9

197 61.0 £ 17.5

[27]

(125-1000
mg/day)

(19.

(18-91) (26.7-115) liver

(113/

84)

4-166.1)

=
2
=
5

with

23/

ion (28),

infect

12)

cholecystitis (11),

diabe

ICU

€S

mellitus (28) or

tension (40)

=1

7.5-30 mg/kg/day

48.3 +2.03

150.3 + 61.9

21.8 +3.0

Patients with (27) or

60.0 + 12.0 65.9 + 12.8

73

[28]

without

without

without

without (46)

cirrhosis,

cirrhosis,

cirrhosis,

cirrhosis,

38.3 +21.0

with

194.5 £ 79.6
with cirrhosis

27.0 &+ 2.7 with

cirrhosis

diagnosed with

62.1 + 8.8

with

sepsis and septic

shock

with

cirrhosis

cirrhosis

cirrhosis

APACHE Acute Physiology and Chronic Health Evaluation, CLcx creatinine clearance, /CU intensive care unit, PaO,/FiO, ratio between the partial pressure of arterial oxygen and the fraction of inspired oxygen, SAPS Simplified Acute Physiology Score, SD standard

deviation, SOFA Sequential Organ Failure Assessment

data resulted in therapeutic drug monitoring. Blood sam-
ples were collected after completion of the drug infusion
(peak amikacin concentrations) and immediately before the
start of amikacin administration (trough amikacin con-
centrations) [n = 5], or pharmacokinetic studies were done
with full profiles of blood samples [n = 5] (Table 2).

3.3 Data Synthesis

Among the ten published models, amikacin population
pharmacokinetics were described with either a one-com-
partment model [# = 5] or a two-compartment model
[n = 5] (Table 2).

In all of the publications, several covariates were tes-
ted, and these are summarized in Table 3. The first cri-
terion followed to retain a covariate in a model was a
decrease in the objective function value (OFV) greater
than 3.84 or 6.64 (p < 0.05 and p < 0.01, respectively)
during the incorporation of covariates into the model (one
by one). A second criterion was that the 95 % confidence
interval of the estimated parameters did not include the
parameter’s zero value. Differences in OFV between the
basic model and the final model were specified in four
studies (Table 3). The following covariates were selected
as interindividual variability factors for clearance (CL)
and volume of distribution (V): creatinine clearance
(CLcr) [n = 9], total body weight [n = 5], positive end-
expiratory pressure (PEEP), the ratio between the partial
pressure of arterial oxygen and the fraction of inspired
oxygen (PaO,/FiO,), oxygen extraction ratio, albumin
concentration, use of catecholamines, ward, cirrhosis,
cholecystitis category, trauma and sepsis. Table 4 sum-
marizes the mean values of the pharmacokinetic param-
eters for the one- and two-compartment models described
in critically ill patients. The median (range) estimate of
total clearance was 4.0 L/h (0.77-5.5 L/h) [n = 6]. The
median (range) estimate of the central volume of distri-
bution was 18.6 L (10.7-41.5 L) [n = 10]. The median
(range) estimate of intercompartmental clearance was 5.2
L/h (4.4-12.1 L/h) [n = 3]. The median (range) estimate
of the peripheral volume of distribution was 21.4 L
(9.4-552 L) [n = 3]. Interindividual variability was
modelled using a proportional model. The median (range)
values for interindividual variability in total and inter-
compartmental clearance were 33 % (28-69 %) [n = 6]
and 27 % (17-104 %) [n = 3], respectively. The median
(range) values for interindividual variability in the central
and peripheral volumes of distribution were 26 % (8-39
%) [n = 8] and 47 % (44-64 %) [n = 3], respectively.
Interoccasion variability was not included or estimated in
these selected studies. The median (range) of residual
variability using a proportional model was 21 % (9-31 %)
[n = 4], and for a combined model, the median (range)
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Table 3 List of tested and retained covariates

Reference Covariates tested

Demographic  Biological and clinical data

Coadministration

Selection
of
covariate
model

(p value)

AOFV Retained covariates in final model

CL

V(or V)

[19] Age, TBW,

Sex

CLcR, shock, oedema score, SOFA,
SAPS 11, PEEP, PaO,/FiO,, serum
albumin, total bilirubin

[20] Age, TBW,  CLcg

sex, height
Age, TBW,
sex

[21] CLcg, creatinine, urea, albumin,
total protein, total bilirubin,
aspartate aminotransferase, alanine
aminotransferase, gamma-
glutamyl transpeptidase, alkaline
phosphatase, prothrombin time,
activated partial thromboplastin
time, APACHE II, SOFA, septic
shock, mechanical ventilation,
PEEP, C-reactive protein,
crystalloid solution, colloid

solution
[22] Age, TBW,

SexX

CLcg, day of amikacin therapy,
clinical diagnosis, parenteral
nutrition, hospital of origin

CLcr

CLcR, serum urea nitrogen
concentration, total protein
concentration

CLcr, APACHE II, albumin, total
bilirubin, alanine
aminotransferase, urea, PaO,/
FiO,, cardiac index, oxygen
consumption, oxygen extraction
ratio, mechanical ventilation,
PEEP

CLcR, ward (ICU versus general
ward), disease categories (liver
cirrhosis, pneumonia, sepsis,
urinary tract infection,
cholecystitis, diabetes mellitus,
hypertension)

[23] -

[24] Age, TBW,
height

[25]

[26] Age, TBW

[27] Age, TBW,

SexX

[28] Age, TBW,

sex, height

Serum creatinine, dosage history,
sepsis, cirrhosis

Piperacillin,
ceftazidime,
cefepime,
meropenem,
catecholamines

Catecholamines,
dopamine
(15 mg/kg/
min)

0.05

0.001

0.01

0.01

NA
0.01

NA
0.05

0.05

0.05

34.5

385.6

92.1

98.3

CLcr

CLcr (Ken)

CLcr

CLcR, diagnosis
of trauma

CLcRr
CLcg, height

CLcR, PEEP,
catecholamines

CLcR, ward

Cirrhosis

TBW, PaO./
FiO,

TBW,
diagnosis of
sepsis

TBW

TBW, oxygen
extraction
ratio, serum
albumin
concentration

TBW,
cholecystitis

Cirrhosis

APACHE Acute Physiology and Chronic Health Evaluation, CL total clearance, CLcx creatinine clearance, /CU intensive care unit, K,; elim-
ination rate constant, NA not available, OFV objective function value, PaO,/FiO, ratio between the partial pressure of arterial oxygen and the
fraction of inspired oxygen, PEEP positive end-expiratory pressure, Q intercompartmental clearance, SAPS Simplified Acute Physiology Score,

SOFA Sequential Organ Failure Assessment, TBW total body weight, V or V; or V, volume of distribution

* No covariate on Q or V,
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of ten models described in this population contained fewer
than 35 patients, which could limit the identification of a
significant covariate [23, 24, 26]. Nevertheless, the models
described in this population were able to identify some
covariates with an effect on interindividual variability.
Indeed, pharmacokinetic modifications and wide variability
were described in this population.

Several pathophysiological changes occurring in ICU
patients with sepsis can affect drug pharmacokinetic beha-
viour [30]. The cardiovascular, renal, pulmonary and hepatic
systems can be affected by critical illness. Many dysfunc-
tions of the cardiovascular system could be the origin of
pharmacokinetic modifications, especially ‘third spacing’
(i.e. a significantly increased interstitial volume due to the
administration of large volumes of resuscitation fluids in
response to the resulting hypotension) [31]. An increased
volume of distribution may reduce the peak concentrations
of drugs, which may be problematic for antibiotics such as
amikacin, which exhibit concentration-dependent effects.
Concerning the renal system, many of the commonly used
antibiotics in critically ill patients are subject to renal
clearance; therefore, alterations in renal function affect
concentrations of those antibiotics. With regard to the pul-
monary system, pneumonia is the most common infection in
critically ill patients and is an important cause of morbidity
and mortality in ICU patients [32]. The antibiotic concen-
tration in epithelial lining fluid may determine therapeutic
success [33]. For hydrophilic antibiotics, such as amikacin,
some authors suggest that higher doses should be used in
patients with severe nosocomial pneumonia to optimize
epithelial lining fluid concentrations [34, 35]. Finally, hep-
atic dysfunction can also affect critically ill patients; this
dysfunction may cause a decrease in drug metabolism and
clearance, but few data are available for this population.
These pathophysiological changes leading to pharmacoki-
netic modifications could be included in the final model as
covariates. A significant decrease in OFV and/or a significant
decrease in the interindividual variability in clearance were
obtained with creatinine clearance [19-27]. The effect of
creatinine clearance on amikacin clearance was present in
nine models. Indeed, amikacin, which has low level of pro-
tein binding (<20 %) and a molecular weight of 582.6, is
mainly eliminated via the renal route [36]. Highly water-
soluble antibiotics, such as amikacin, distribute primarily
into the extracellular fluid compartment and are eliminated
almost entirely by the kidneys via glomerular filtration; thus,
modifications in renal function should directly affect the
drug’s clearance [37, 38]. The relationship between total
body weight and the volume of distribution was described in
five studies, and administered amikacin doses are commonly
adjusted to total body weight [19, 22, 24, 26, 27]. Increased
cardiac and interstitial fluid shifts in sepsis result in a larger
volume of distribution, which may reduce plasma antibiotic
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levels [39]. Specifically, the increase in the volume of dis-
tribution in septic patients has been attributed to hypoalbu-
minaemia and the resultant decrease in oncotic pressure,
which may progress with a shift in body water from the
intervascular to the extravascular space [40]. One model
included serum albumin concentrations as an expression of
the volume of distribution [26]. As stated previously, the
cardiovascular system can be affected in critically ill
patients. Some authors included other covariates that con-
cerned cardiac outcomes. Indeed, PEEP, PaO,/FiO, and the
oxygen extraction ratio were included in different models
and significantly reduced variability [19, 26]. Indeed,
mechanical ventilation with PEEP is a well-documented
cause of reductions in the cardiac index, hepatic and renal
flow, the glomerular filtration rate and urine flow [41, 42]. In
another model, disease severity was also included and use of
catecholamines was added to the amikacin clearance esti-
mation [26]. Finally, different comorbidities were also added
in a few models (trauma, sepsis, cirrhosis, cholecystitis)
[22, 27, 28]. Thus, trauma increased amikacin clearance,
whereas sepsis increased the volume of distribution. Both
observations had been found previously in studies on another
aminoglycoside in specific ICU populations [43—45].
Regarding concomitant therapy, only three studies spec-
ified co-treatments and only two studies mentioned the
names of other administered drugs [19, 21, 27]. In these two
studies, amikacin was combined with a broad-spectrum beta-
lactam (imipenem, meropenem, piperacillin, ceftazidime or
cefepime) [19, 21]. Only one study tested concomitant
therapy as a covariate, but it was not retained in the final
model [19]. Critically ill patients receive multiple medica-
tions, and it is difficult to consider them as covariates.
Nevertheless, analysis of frequent treatments (as part of
clinical protocols) could be considered, especially when
concomitant therapy could affect the pharmacokinetics of
amikacin. Despite the number of models presented, some
unexplained interindividual and residual variabilities
remain. According to the different presented studies, the
main covariates were tested, although a more accurate
assessment of concomitant treatment would be useful. Fur-
thermore, the day of drug administration and patient evolu-
tion are important data in this population, and they could help
decrease variability. Indeed, significant intrasubject fluctu-
ations in the volume of distribution of amikacin throughout
treatment were observed in these different studies, and var-
ious physiological changes in critically ill patients were
widely described [37]. Interoccasion variability was not
included in the presented models. This variability could be
included in new models to decrease the estimated
interindividual pharmacokinetic and/or pharmacodynamic
variances. However, pharmacokinetic/pharmacodynamic
parameters in critically ill patients can be modified for each
administration, so interoccasion variability is often difficult
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to estimate in this specific population. In spite of important
unexplained variability in the different presented models,
their results improve the knowledge of amikacin pharma-
cokinetics in critically ill patients and are helpful for
designing simulations in order to optimize dosing. In many
studies, simulations were carried out only in order to evaluate
their model (bias and precision). Dosing adaptation was
proposed in only three studies [19, 22, 27]. The proposed
dosing regimens showed wide heterogeneity and could not
be compared, because of different concentration targets
[19, 22, 27].

Given the relatively small number of studies on
population pharmacokinetic modelling of amikacin in
critically ill patients, together with the small number of
dose recommendations, new pharmacokinetic population
studies could be considered. New covariates of interest
could be tested in model building and may allow more
of the variability to be explained. Antibiotic coadminis-
tration and systematic co-treatments in critically ill
patients (sedation, gastric protection, etc.) could be tes-
ted. Furthermore, the pharmacogenetics of drug trans-
porters could be an approach for future studies. Another
perspective could be external evaluation of previously
published models. It would also be interesting to con-
tinue research on the pharmacokinetics of amikacin to
improve future models and further reduce variability, as
well as to upgrade the care of critically ill patients
treated with amikacin.

5 Conclusion

After many years of dosing antibiotics in critically ill
patients, using a ‘one dose fits all’ strategy, there is a strong
rationale to move to an individualized dosing approach.
The population approach allows pharmacokinetic charac-
terization of drugs in a target population, evaluation of the
associated interpatient and residual variabilities, and iden-
tification of covariates affecting such variability.

Understanding the variability associated with the phar-
macokinetics and identifying subpopulations with special
features can provide clinicians with relevant information
regarding dose individualization.

From a clinical perspective, this review advances rele-
vant information for clinicians and researchers concerning
the pharmacokinetics of amikacin. To optimize amikacin
dosage, this review points out the relevant covariates
according to the target population.
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