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Abstract
Duchenne muscular dystrophy is a devastating disease that leads to progressive muscle loss and premature death. While 
medical management focuses mostly on symptomatic treatment, decades of research have resulted in first therapeutics able 
to restore the affected reading frame of dystrophin transcripts or induce synthesis of a truncated dystrophin protein from 
a vector, with other strategies based on gene therapy and cell signaling in preclinical or clinical development. Neverthe-
less, recent reports show that potentially therapeutic dystrophins can be immunogenic in patients. This raises the question 
of whether a dystrophin paralog, utrophin, could be a more suitable therapeutic protein. Here, we compare dystrophin and 
utrophin amino acid sequences and structures, combining published data with our extended in silico analyses. We then 
discuss these results in the context of therapeutic approaches for Duchenne muscular dystrophy. Specifically, we focus on 
strategies based on delivery of micro-dystrophin and micro-utrophin genes with recombinant adeno-associated viral vec-
tors, exon skipping of the mutated dystrophin pre-mRNAs, reading through termination codons with small molecules that 
mask premature stop codons, dystrophin gene repair by clustered regularly interspaced short palindromic repeats (CRISPR)/
CRISPR-associated protein 9 (CRISPR/Cas9)-mediated genetic engineering, and increasing utrophin levels. Our analyses 
highlight the importance of various dystrophin and utrophin domains in Duchenne muscular dystrophy treatment, provid-
ing insights into designing novel therapeutic compounds with improved efficacy and decreased immunoreactivity. While 
the necessary actin and β-dystroglycan binding sites are present in both proteins, important functional distinctions can be 
identified in these domains and some other parts of truncated dystrophins might need redesigning due to their potentially 
immunogenic qualities. Alternatively, therapies based on utrophins might provide a safer and more effective approach.

1 Introduction

The dystrophin gene [DMD, Online Mendelian Inheritance 
in Man (OMIM) #300377], covering 2,241,933 bp and 
approximately 1.5% of the X chromosome, is the long-
est gene in the human genome [1]. Several mature tran-
scripts are generated from seven biologically significant 
DMD promoters in a tissue and time-dependent manner. 
These transcripts encode isoforms ranging in molecular 
mass from 40 kDa to the full-length 427 kDa dystrophin 
(Dp40–Dp427; Fig. 1A) [2]. Depending on the mutation 
site, genomic alterations within the DMD gene may affect 
translation of only the longest isoform or also other dystro-
phins. This correlates with the severity of Duchenne mus-
cular dystrophy (DMD, OMIM #310200) and pathology 
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Key Points 

Drugs based on restoration of the reading frame of 
dystrophin via readthrough of nonsense codons and 
antisense oligonucleotide-driven exon skipping, as well 
as recombinant adeno-associated viral vector-mediated 
delivery of micro-dystrophin are now available in some 
countries to boys affected with Duchenne muscular 
dystrophy (DMD).

Beyond immune response against the viral vector, the 
potentially therapeutic exogenous dystrophins can also 
be immunogenic in DMD patients, highlighting a limita-
tion of dystrophin gene therapy. Utrophin, an autosomal 
functional paralog of dystrophin naturally expressed in 
dystrophic muscles, may therefore represent a viable 
option, and utrophin-based gene approach offers a poten-
tial safer therapeutic solution.

Comparison of amino acid sequences and protein struc-
tures of dystrophin and utrophin highlights the impor-
tance of distinct regions and domains in the therapeutic 
outcome.

The H1 and H3 regions that have been commonly used 
in potentially therapeutic micro-dystrophins have no 
sequence homology with the corresponding regions of 
utrophin and therefore could theoretically more easily 
induce an immune response in boys with DMD.

Either micro-dystrophin or micro-utrophin sequences 
could be optimized to enhance their therapeutic potential 
in DMD patients.

in tissues, in which specific dystrophins are normally 
present. The disease affects mainly boys (1/5000) and is 
manifested by progressive muscle failure and neuropsy-
chiatric symptoms [3]. The first disease indications usu-
ally become apparent between the ages of 2–5 years as 
motor developmental delay and abnormal gait, weakened 
proximal muscles, and calf muscle pseudohypertrophy are 
observed. Progressive muscle degradation leads to loss of 
ambulation at the age of 8–12 years and premature death 
at around 30 years due to respiratory and cardiac compli-
cations [4]. Genomic alterations that do not change the 
reading frame of the DMD gene often result in shorter 
but partially functional proteins. Correspondingly, these 
patients show a more benign form of the disease, Becker 
muscular dystrophy (BMD, OMIM #300376).

Most dystrophins assemble the dystrophin–glycoprotein 
complex (DGC; Fig. 1B) on the plasmalemma of various cell 
types, including muscle fibers, satellite cells, cardiomyo-
cytes, and neurons, playing mechanical as well as signal-
ing functions [1, 5–7]. These functions include transmitting 

forces during contraction by connecting the internal 
cytoskeleton with the extracellular matrix (muscle cells), 
establishing cell polarity (satellite cells), maturation of neu-
rotransmitter receptor complexes and their release regulation 
at the neuro-muscular junctions (NMJs) and central synapses 
(nervous system), and binding several regulatory proteins 
important in signal transduction inside the cell and between 
different cell types. Some dystrophins were also found in 
non-subplasmalemmal localizations, including the nucleus, 
mitochondria, and cytoplasm [8, 9].

Currently, management of DMD is based on symptomatic 
treatment that entails physiotherapy and the use of corticos-
teroids, including the Food and Drug Administration (FDA)-
approved pro-drug Emflaza (deflazacort) [10]. Importantly, 
decades of research have resulted in first therapeutics aimed 
to restore the affected reading frame of DMD transcripts or 
induce synthesis of a micro-dystrophin (μDys) protein from 
a recombinant adeno-associated viral (rAAV) vector, with 
others, based on gene therapy and cell signaling, in preclini-
cal or clinical development [11]. The latter include delivery 
of rAAV vectors carrying truncated coding sequences  of a 
dystrophin paralog, utrophin (μUtr). μDys and μUtr pro-
teins can assemble the DGC and the utrophin–glycoprotein 
complex (UGC), respectively, and restore the connection 
between the actin-based cytoskeleton and the extracellular 
matrix [12, 13]. Other therapeutics in development include 
pharmaceuticals stimulating expression of the utrophin gene 
(UTRN) or activating muscle regeneration via induction of 
specific signaling pathways and/or epigenomic modifica-
tions [6, 14]. Bearing in mind that most of the prospective 
approaches for DMD rely on the use of only partially func-
tional truncated dystrophins or utrophins, we compare here 
the sequence and structure of these proteins, highlighting 
importance of distinct regions and domains in the therapeu-
tic context.

2  Dystrophin Functions

DMD has been classically related to loss of the full-length 
dystrophin in the striated muscle tissue, where it provides 
strength, flexibility, and stability to myofibers and cardio-
myocytes by influencing focal adhesion tension [15] as well 
as by acting as a molecular shock absorber and providing 
protection to the plasmalemma from contraction-induced 
damage [16, 17]. Other Dp427-related roles include signal 
transmission in and outside the differentiated muscle cells 
[6, 14], as well as control of the division dynamics of acti-
vated skeletal muscle stem (satellite) cells [5]. Functions 
of other isoforms are less known, although, e.g., the Dp71 
isoform has been indicated to regulate cell proliferation [18].

Generally, dystrophin roles are considered in terms of 
complexes that they assemble. Most dystrophins can bind 
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β-dystroglycan and assemble the DGC (Fig. 1); however, 
this interaction and the complex stability may differ depend-
ent on the posttranslational modification and the dystrophin 
isoform. Specifically, phosphorylation of tyrosine in the 
dystrophin 15 most C-terminal amino acids was shown 
to disrupt the dystrophin interaction with β-dystroglycan 
in C2/C4 myoblasts mouse cell line [19]. In contrast, 3D 
modeling predicted enhanced dystrophin interaction with 
β-dystroglycan upon phosphorylation of S3059 at the WW 
domain [20]. It is plausible that dystrophin phosphorylation 
regulates the dystrophin interaction with β-dystroglycan, 
the β-dystroglycan phosphorylation state and stability 
of the DGC. Indeed, Miller et al. showed that preventing 
phosphorylation of β-dystroglycan led to restoration of the 

DGC components at the sarcolemma and amelioration of 
the dystrophic phenotype in a mouse model of DMD, the 
mdx mouse [21].

Shorter dystrophin isoforms lose the ability to con-
nect specific proteins and, in consequence, the assembled 
complexes might have different overall roles dependent 
on the dystrophin isoform. The most extreme example is 
the shortest dystrophin isoform, Dp40, devoid of the full 
β-dystroglycan binding site at the N-terminus and the 
C-terminal (CT) domain. Specifically, Dp40 was shown to 
localize in neurons to synaptic vesicles rather than to the 
membrane fraction and interact with a group of presyn-
aptic proteins, including syntaxin1A and SNAP25 [22]. 
Interestingly, not all β-dystroglycan in skeletal muscle is 

Fig. 1  Comparison of binding properties of dystrophin and utro-
phin. A Both the full length Dp427 dystrophin and Up395 utrophin 
have four main regions: the N-terminal domain (NT), the central rod 
domain composed of four hinges (H1–H4) and 24/22 spectrin repeats, 
the cysteine-rich domain (CR), and the C-terminal domain (CT). Red 
lines note that the binding properties of dystrophin are not retained 
in utrophin. B Dystrophin assembles the dystrophin glycoprotein 
complex that includes dystroglycans, sarcoglycans, sarcospan, syn-

trophins, and dystrobrevins, and associate with other proteins as indi-
cated in the figure. Utrophin also assembles the complex but loses the 
ability to interact with microtubules, actin through ABD2, and nNOS 
(marked red). ABD1/2 actin biding domain 1/2, DBBS α-dystrobrevin 
binding site, DGBS β-dystroglycan binding site, MK2BS Ser/Thr 
kinase MAP/Microtubule affinity-regulating kinase 2 (MARK2) 
binding site, nNOS/STBS nNOS/α-syntrophin binding site, MTBS1/2 
microtubules binding site 1/2, STBS α/β-syntrophins binding site
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bound to dystrophin, with the estimated β-dystroglycan to 
dystrophin molar ratio 40:1 [23]. Other binding partners of 
β-dystroglycan include cavin-1, calcium channels, or plectin 
[23, 24]. Additionally, alternative splicing of Dp140, Dp116, 
and Dp71 might influence binding of syntrophins and dys-
trobrevins to the complex [25–28].

3  Dystrophin Domains

Transcription of Dp427 starts from promoters active mainly 
in the brain (B), muscle (M), and Purkinje (P) cells [2]. All 
these mRNAs are estimated to take 10 hours to be gener-
ated [29] and give rise to almost identical Dp427 pro-
teins, which differ only in the first several amino acids [2] 

(Fig. 2A). Dp427 dystrophin consists of four major domains: 
an N-terminal (NT) domain that constitutes the first actin-
binding domain (ABD1; Dp427b, 1–238 aa; Dp427m, 1–246 
aa; Dp427p1, 1–242 aa; Dp427p2, 1–123 aa), a central rod 
(CenR) domain (Dp427m, 253–3112 aa), a cysteine-rich 
(CR) domain containing 14 cysteines (Dp427m, 3113–3360 
aa), and a C-terminal (CT) domain (Dp427m, 3361–3685 
aa) [30–32] (Fig. 1). ABD1 contains two calponin homol-
ogy domains that incorporate three actin binding sites 
(Dp427m: first, 18–27 aa; second, 88–116 aa; third, 131–147 
aa) [32], responsible for binding to F- and γ-actin and link-
ing the sarcolemma to the subsarcolemmal network [1, 33, 
34]. Additionally, ABD1 can interact with intermediate 
filament protein cytokeratins 8/19 that allow dystrophin to 
associate with the contractile apparatus [35]. In contrast to 

Fig. 2  Comparison of ABD1 of the full-length human dystrophin 
and utrophin variants. Amino acid alignments (A) and 3D struc-
tures of ABD1 (I-TASSER software) (B) were based on the follow-
ing fragments: Dp427m, 1–246 (NP_003997.2); Dp427p1, 1–242 
(NP_004000.1); Dp427p2, 1–123 (NP_004001.1); Dp427b (Dp427c), 
1–238 (NP_000100.3), Up395a, 1–261 (NP_009055.2); Up395b, 
1–266 (XP_005267184.1); Up395b’, 1–252 (XP_024302304), and 
Up395f, 1–252 (XP_005267190.1). The structures were compared 

with Dp427m with the TM-align software. Note, very high TM-
scores (above 0.95), except Dp427p2 (0.47891). Note also that tran-
scription of Dp427p1 and p2 begins from the same promoter but the 
coding sequence of p2 starts from the 124th amino acid (methionine) 
of Dp427m. The Up395b’ amino acid sequence is marked as putative 
[64]. Up395a and Up395a’ transcription starts from different promot-
ers but have the same coding sequence
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the globular shape of the ABD1, the CenR domain has a 
ruler-like α-helical structure, build from 24 tandem spec-
trin-like repeats (R1–R24) and four proline-rich regions 
(hinges, H1–H4) positioned before R1, between R3–R4 and 
R19–R20, and after R24 [31]. R11–R15 contain an anchored 
second actin-binding motif (ABD2) enriched in basic amino 
acids, indicative of the electrostatic interaction that underlies 
the ABD2 binding to the acidic actin filaments [36, 37]. 
The cooperation of ABD1 and ABD2 is responsible for the 
strong association of dystrophin with actin filaments [38].

R8–R9 of the CenR domain associate in activated satel-
lite cells with the Ser/Thr kinase MAP/microtubule affinity-
regulating kinase 2 (MARK2) also known as partitioning-
defective 1b (Par1b) [39], an important regulator of cell 
polarity, asymmetric divisions, and regenerative processes 
in skeletal muscle [5, 40]. R16–R17 contain the binding 
site for neuronal nitric oxide synthase (nNOS) [41, 42], a 
messenger molecule with multiple roles in modulating vari-
ous cell functions, including gene transcription and mRNA 
translation, generation of posttranscriptional modifications, 
and oxidative metabolism, as well as neurotransmission and 
vascular tone [43], important in skeletal muscle contraction 
and function [41, 44, 45]. Notably, recruitment of nNOS 
to the sarcolemma requires not only dystrophin but also 
α-syntrophin that either positions nNOS on dystrophin [46] 
or anchors nNOS to dystrophin through direct binding to 
R17 [47]. In fact, syntrophins were recently shown to have 
three putative binding sites in the dystrophin CenR domain 
and, apart from α-syntrophin interaction with R17, binding 
of R22 to β1/β2-syntrophins was confirmed by pull-down 
assays [47]. The CenR domain is also involved in interaction 
of dystrophin with microtubules through R4–R15 (micro-
tubule binding site 1, MTBS1) and R20–R23 (microtubule 
binding site 2, MTBS2), which are necessary for the proper 
organization of the microtubule network in skeletal mus-
cle cells [48, 49] (Fig. 1). Besides these functions, CenR 
domain also provides a flexible connection between the N- 
and C-terminus of dystrophin [49].

The fourth hinge (H4; Dp427m, 3041–3112 aa) of 
the CenR domain contains the WW domain (Dp427m, 
3055–3092 aa) involved in protein–protein interactions 
and along with the adjacent EF-hands (Dp427m, EF1, 
3130–3157 aa and EF2, 3178–3206 aa) motif in the CR 
domain, they form a primary binding site for the carboxyl 
terminus of β-dystroglycan (β-dystroglycan binding site, 
DGBS; Dp427, 3054–3271 aa) [50]. In addition to the 
EF-hands, the ZZ-type zinc finger (ZZ) site (Dp427m, 
3307–3354 aa) is also present in the CR domain and the 
EF–ZZ motif was shown to interact with a cytoskeletal 
linker protein, plectin [24]. Furthermore, amino acids in 
the ZZ domain are also required for optimal interaction 
of dystrophin and β-dystroglycan, with the full DGBS 
mapped to Dp427 amino acids 3054–3446. More recent 

results obtained by Hnia et al. indicate that amino acids 
3326–3332 within the ZZ domain are a crucial part of the 
contact region between dystrophin and β-dystroglycan [51]. 
Interestingly, the ZZ domain was also shown to be impor-
tant for the nuclear transport of Dp71 containing exon 78 in 
C2C12 cells [52]. β-Dystroglycan together with dystrophin 
have a high affinity to ankyrin proteins (ankB and ankG), 
which are required for sarcolemmal integrity during muscle 
contraction [53]. AnkB binds to the CR domain of dystro-
phin while ankG interacts with both the cytoplasmic area of 
β-dystroglycan and dystrophin, restricting their localization 
to costameres (Fig. 1B). Importantly, the research showed 
loss of sarcolemmal dystrophin and β-dystroglycan in adult 
ankB-depleted muscle, suggesting that ankB as well as ankG 
are essential for localization and functionality of the DGC in 
skeletal muscle [53, 54]. The CR domain was also shown to 
interact with intermediate filament protein synemin [55] and 
calmodulin in a calcium-dependent manner [56]. Together, 
these results underscore a crucial role of the CR domain 
in protein–protein interaction and stabilization of the DGC.

Dystrophin is terminated by the CT domain, containing two 
α-helices, resembling spectrin repeats present in the central 
domain. Its structure provides binding sites for α-dystrobrevins 
(dystrobrevin binding site, DBBS) and α/β-syntrophins (syn-
trophin binding site, STBS) (Fig. 1, Table 1), delimiting their 
location on the sarcolemma [47, 57]. The DGC-bound α/β-
syntrophin and α-dystrobrevins 1 and 2 can directly interact 
[57]. α-Dystrobrevin also binds to intermediate filament pro-
teins desmuslin and syncoilin [58, 59] and associates with 
dystrophin increasing its affinity to the DGC [60]. Further-
more, Dp71 containing both CR and CT domains was shown 
to directly interact with myospryn, a muscle-specific protein 
kinase A (PKA) anchoring protein [61]. It is important to note 
that the size of the CT domain varies in Dp140, Dp116, and 
Dp71, dependent on alternative splicing of exons 71–74 and 
78 [25–27], and even though this domain is not required for the 
assembly of the DGC, its length may regulate the syntrophin 
and dystrobrevin isoform composition [28].

The stability of the dystrophin interaction with the sarco-
lemma can be enhanced by its direct interaction with phospho-
lipids through several domains, including the CT domain, the 
CR domain, and H4, as well as spectrin-like repeats R1–R3 
and R10–R12 (Fig. 1B). In the latter case, the study by Zhao 
et al. showed that following rAAV-mediated gene transfer, the 
GFP–R10–R12 fusion protein was detectable in both the cyto-
plasm and the sarcolemma of mdx mice and dystrophic dog 
muscles, while only in the cytoplasm of cardiomyocytes from 
mdx mice [62]. In agreement, a single lipid-binding domain 
was recently identified within the ABD2 in the C-terminal end 
of dystrophin R12, indicating a potential F-actin/dystrophin/
membrane lipids ternary complex in skeletal muscle cells [36]. 
As these results were obtained using separate protein domains, 
it would be interesting to test whether ABD2 retains partial 
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sarcolemmal localization in vivo when bound to the remain-
ing dystrophin. This is particularly interesting in the context 
of a study showing that human dystrophin structurally changes 
upon binding to anionic membrane lipids, suggesting that the 
interaction properties of a small fragment can differ from the 
whole protein [63].

4  Utrophin and Its Sequential and Structural 
Comparison to Dystrophin

So far, five full-length utrophin (395 kDa) first exons have 
been identified in humans (A, A’, B, B’, and F) (Figs. 1A 
and 2A) [64]. Activation of their corresponding promoters 
results in mRNA transcripts that have different expres-
sion patterns [64]. While Up395a and Up395b have been 
studied for years, Up395f protein with a unique N-termi-
nus was detected in adult tissues more recently [64–66]. 
Ubiquitously expressed at the sarcolemma in embryonic 
muscle, Up395a is also present in adult muscle, notably at 
NMJs, myotendinous junctions (MTJs), and at the sarco-
lemma of regenerating myofibrils, as well as in other tis-
sues, including choroid plexus in the brain, pia mater, and 
renal glomerulus [66]. In contrast, Up395b localization 
is limited to endothelial cells and blood vessels, whereas 

immunofluorescence microscopy analyses revealed 
Up395f in regenerating fibers, perivasculature, and in 
the interstitial endomysium of mouse muscles [64, 66]. 
UTRN-A and -F also have higher expression in slower than 
in fast fibers, indicative of a specific mechanism dependent 
on a muscle fiber type that impacts their expression [64]. 
As in the case of dystrophin, utrophin is also transcribed 
from promoters that give rise to shorter isoforms (Up140, 
Up113, Up109, Up71) (Fig. 1A) [66, 67].

The full-length utrophin and dystrophin are involved in 
formation of protein complexes connecting the extracellular 
matrix with the cytoskeleton inside the cell and the UGC 
(Fig. 1B), similarly to the DGC, was shown to protect effi-
ciently the sarcolemma against the contraction-induced dam-
age, especially in nonexercised mice [45, 68, 69]. As in the 
case of dystrophin, utrophin consists of four major domains 
(Fig. 1): the NT/ABD1 domain that binds F- and γ-actin, the 
CenR domain composed of spectrin repeats, the CR domain, 
and the CT domain [66, 70]. Importantly, utrophin simi-
larly to dystrophin has the capacity to bind β-dystroglycan, 
α-dystrobrevin-1, plectin, and ankyrins [19, 24, 53, 60], 
although the utrophin affinity for β-dystroglycan might be 
lower than that of dystrophin [71]. Despite the structural 
similarities, the CenR of Up395 is composed of 22 spec-
trin repeats, in contrast to the 24 repeats in Dp427, and the 

Table 1  Amino-acid and structural comparison of distinct protein binding domains and motifs in dystrophin and utrophin

ABD1/2 actin-binding domain 1/2, MTBS1/2 microtubules binding site 1/2, MK2BS Ser/Thr kinase MAP/microtubule affinity-regulating kinase 
2 (MARK2) binding site, nNOS neuronal nitric oxide synthase, DGBS β-dystroglycan binding site α/β-STBS, syntrophin binding site, DBBS 
α-dystrobrevin binding site, EF-hands motif composed of two EF-hands 1 and 2, WW WW domain, ZZ ZZ-type zinc finger motif
The dystrophin R20–R23 of MTBS2 was extended to R20–R24 allowing the analysis of the full region between two hinges, H3 and H4.

Binding site Dystrophin amino acids 
(NP_003997.2)

References Utrophin amino acids 
(NP_009055)

Amino acid iden-
tity (%)

Amino acid simi-
larity (%)

TM score

ABD1 9–246 [224, 225] 28–261 73 87 0.94848
MTBS1 710–1965 [226] 687–1965 38 60 0.66477
MK2BS 1155–1367 [40] 1125–1334 55 73 0.90185
ABD2 1416–1880 [36] 1383–1855 42 67 0.47078
nNOS/STBS 1992–2208 [41] 1849–2080 40 62 0.95623
MTBS2 2471–3040 [226] 2229–2797 46 69 0.18199
DGBS 3054–3446 [227] 2811–3203 80 88 0.77853
STBS 3444–3535 [228] 3201–3311 66 81 0.41259
α-STBS 3444–3494 [228] 3201–3251 63 80 0.43252
β-STBS 3495–3535 [228] 3265–3292 68 82 0.28808
α-DBBS 3501–3541 [229] 3265–3293 69 82 0.63588
WW 3055–3092 [50] 2812–2849 84 94 0.85983
EF-hands 3130–3206 [50] 2892–2963 72 81 0.90849
ZZ 3307–3354 [230] 3064–3111 92 97 0.82243
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full-length utrophin lacks the sequence corresponding to the 
spectrin repeats 15 and 19 of dystrophin, and thus the ability 
to interact with nNOS and microtubules are compromised 
[45, 49]. Importantly, the lack of efficient locating of nNOS 
and microtubules to the complex impairs the regulation of 
the blood flow to the muscles [45, 72] and contributes to 
the contraction-induced myofiber damage [49], respectively. 
Furthermore, while dystrophin binds actin through ABD1 
and ABD2, utrophin lacks the functional ABD2 [73] and 
its interaction with actin occurs through ABD1 that is addi-
tionally influenced by spectrin repeats R1–R10 [33] and by 
the 28 amino acid extension at the N-terminus [74]. In vitro 
experiments revealed also that mechanical properties of dys-
trophin and utrophin might differ in myofibers. Specifically, 
phosphorylation of utrophin increases its stiffness, predis-
posing it to function at MTJs (where it naturally occurs) 
rather than at the sarcolemma as a molecular shock absorber 
[75, 76].

To further explain the differential binding capacity of 
dystrophin and utrophin, we compared their nucleotide and 
amino acid sequences. The analysis showed that two main 
muscle isoforms, Dp427m and Up395a, share 86.37% nucle-
otide (NG_012232.1, NG_042293.1) and 41.61% amino 
acid (NP_003997.2, NP_009055.2) sequence identity. The 
extended amino acid comparison revealed that depending 
on the domain, the amino acid identity may rise to 81% 
(Table 1). Particularly, the highest homology was found in 
regions that enable both dystrophin and utrophin interac-
tion with β-dystroglycan via the DGBS (amino acid 81% 
identity and 88% similarity), F-actin via ABD1 (73% amino 
acid identity and 87% similarity), α-dystrobrevins via DBBS 
(69% amino acid identity and 82% similarity), and α/β syn-
trophins via the STBS (66% amino acid identity and 81% 
similarity). In contrast, the sequence analysis revealed that 
the dystrophin region responsible for nNOS/α-syntrophin 
binding (nNOS/α-syntrophin binding site, nNOS/STBS) dif-
fers from that of utrophin, with only 40% identical and 62% 
similar amino acids.

We further compared the dystrophin MARK2 binding site 
(MK2BS), the second domain with actin-binding properties 
(ABD2), and the crucial region shown to bind to and organ-
ize microtubules (R20–R23) with utrophin corresponding 
amino acid sequences. For MK2BS, the matching sequence 
in utrophin was found to encompass R8–R9, which is the 
same region that was detected by Yamashita and team [40], 
with 55% identical and 73% similar amino acids. Of note, 
mdx mice exhibit significant loss of MARK2 in germ cells 
during spermatogenesis, while mdx/utrn+/− mice show 
an even more significant decrease of MARK2, leading to 
apoptosis and decreased proliferation of spermatogenic cells 
[77]. These results suggest that the amino acid similarity 
in the MK2BS at the level of 73% suffices for dystrophin 
and utrophin interaction with MARK2 and that utrophin, 

like dystrophin, might regulate stem cell division [39]. Pre-
vious results showed that utrophin differs from dystrophin 
in its ability to bind and organize microtubules and does 
not contain ABD2 [49, 73]. Our analysis revealed the high-
est homology to dystrophin ABD2 domain in utrophin in 
a region between the end of the 10th spectrin repeat and 
the 15th spectrin repeat (42% amino acid identity and 67 % 
similarity), to MTBS1 between the 4th and the 15th spectrin 
repeat (38% amino acid identity and 60% similarity), and 
MTBS2 between the 18th and the 21st spectrin repeat (46% 
amino acid identity and 69% similarity). These values are 
below the results obtained for MARK2 while on par with 
the nNOS homology comparison values, thus they indicate 
that alterations in the amino acid sequence are responsible 
for the observed changes in the interaction with actin fila-
ments and microtubules for dystrophin and utrophin [49, 73]. 
In summary, the sequence analysis showed that the loss of 
protein domain homology corresponds well with functional 
studies showing differential binding properties of dystrophin 
and utrophin.

To further investigate similarity and differences between 
dystrophin and utrophin, an in silico folding analysis of vari-
ous domains was performed (Figs. 2B, 3, and 4, Table 1). 
We created 3D models for domains of interest using the 
I-TASSER tool [78] followed by comparison of structures 
based on a quantitative assessment of protein structure 
similarity (TM score) that is determined by the TM-align 
algorithm [79]. The TM score has values between 0 and 
1, where scores below 0.17 correspond to unrelated pro-
teins, 0.5 to proteins having generally the same folding 
characteristics, and 1 indicating a perfect match. In silico 
in-between comparison of dystrophin and utrophin revealed 
that regions showing high amino acid similarity, including 
ABD1 (87%), MK2BS (73%), DGBS (88%), and DBBS 
(82%), also show high structural resemblance (0.95, 0.90, 
0.78, 0.64 TM scores, respectively) (Table 1, Fig. 2B). Anal-
ogously relatively high structural resemblance was detected 
within DGBS regions, spanning the WW domain, EF hands, 
and the ZZ motif (0.86, 0.91, 0.82 TM scores, respectively) 
(Table 1). This data thus overlaps with scientific findings 
showing that utrophin is able to retain β-dystroglycan [80], 
actin [81], α-dystrobrevin [82], and MARK2 [40] bind-
ing properties of dystrophin. However, to our surprise, the 
STBS, despite the 66% amino acid identity, exhibited rela-
tively low structural similarity (0.41 TM score), with par-
ticularly low resemblance in the β-STBS (0.29 TM score).

As dystrophin improves its stability and binding to the sar-
colemma through spectrin repeats R1–R3 (Dp427m, 337–667 
aa; Up395a, 308–637 aa) and possibly R10–R12 (Dp427m, 
1368–1676 aa; Up395A, 1336–1648 aa) [62], we also assessed 
the sequence homology in the corresponding utrophin regions. 
The analysis showed that paralogous subdomains in utrophin 
display average (on par with MK2BS) amino acid identity 
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(56% and 49%) and similarity (77% and 73%) and high struc-
tural resemblance (0.73589 and 0.96328 TM score) to dystro-
phin R1–R3 and R10–R12 regions, respectively (Fig. 4). We 
also compared the content of nonpolar, polar uncharged, and 
charged amino acids in dystrophin and utrophin. Importantly, 
the analysis showed that the percentages of corresponding 
amino acid groups in R1–R3 and R10–R12 regions of dystro-
phin and utrophin are alike (Fig. 4). To conclude, these results 
indicate that utrophin, similarly to dystrophin, might directly 
interact with sarcolemma; however, further experimental anal-
yses are required to confirm this hypothesis.

5  Replacement of the Mutated DMD Gene

A defective DMD gene can be replaced with a dystrophin 
or utrophin coding sequence delivered by rAAV vectors 
[83]. An important aspect of rAAV vectors is their ability 

to administer new genes to the skeletal and cardiac muscles 
of adult mammals in a systemic manner [84]. Other advan-
tages of rAAV vectors include relatively long and stable 
gene expression and the ability to infect both dividing and 
nondividing cells [85, 86]. Moreover, AAV DNA functions 
as an episome in the cell, rarely integrating into the host’s 
genetic material, which significantly reduces risks associated 
with mutagenesis [87].

The downside of rAAV vectors is their small size, which 
translates into the possibility of accepting a limited amount 
of DNA, which is approximately 5 kbp [88]. This is espe-
cially important in the case of the coding sequences of the 
full length DMD/UTRN mRNAs, as they are above 10 kb. 
A solution to this problem emerged when one of the BMD 
patients had mild disease symptoms, walking on his own at 
61 years of age, despite the extensive deletion of about 46% 
in the DMD gene [89]. Based on this discovery, several dif-
ferently structured micro- and mini-dystrophins (μ/mDys) 

Fig. 3  Comparison of 3D structures of protein binding motifs of 
dystrophin and utrophin. The images represent superimposed 3D 
structures (TM-align software) of distinct domains and binding sites 
of dystrophin (pink) and utrophin (blue). The microtubules bind-
ing site 2 (MTBS2) is shown as the repeat sequence R20–R23 (the 
sequence that directly binds microtubules) and R20–R24 (includes 
the whole region between two hinges). ABD1/2 actin biding domain 

1/2, DBBS α-dystrobrevin binding site, DGBS β-dystroglycan binding 
site, EF-hands a region composed of two EF-hands motifs, 1 and 2, 
MK2BS Ser/Thr kinase MAP/Microtubule affinity-regulating kinase 
2 (MARK2) binding site, nNOS/STBS, nNOS/α-syntrophin binding 
site, MTBS1/2 microtubules binding site 1/2, STBS, α/β-syntrophins 
binding site, WW WW motif, ZZ ZZ-type zinc finger motif
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have been proposed, from which fragments of the gene cod-
ing sequence have been deleted [90]. The mDys gene, simi-
lar to the DMD coding sequence present in BMD patients, is 
approximately 6–8 kbp in size and thus its delivery requires 
the use of two vectors [91]. In contrast, smaller versions of 
the DMD coding sequence (μDys) can fit seamlessly into 
rAAVs [12]. Importantly, the strategy grounded on rAAV 
vector delivery could be applied to all DMD and BMD 
patients, without the knowledge of a specific mutation type.

AAVs come in the form of various serotypes that differ 
in tissue tropism and transduction efficiency that may also 
be species dependent [92]. In striated muscles, AAV9 and 
AAVrh74 (highly similar to AAV8) are currently used in 
clinical trials for DMD [13, 93, 94] and an AAV9 mutant, 
AAVMYO, showed very high transduction efficiency in 
more recent studies [95]. Some rAAV vectors have also been 
shown to be able to edit satellite cells, albeit with reduced 
efficiency [85, 86]. This may indicate the need for repeated 

rAAV vector delivery to maintain the therapeutic effect of 
μ/mDys. However, it is important to note that each deliv-
ery following the initial rAAV vector administration would 
require immunosuppression to prevent the body’s response 
against the viral capsid proteins acquired after the first injec-
tion [93, 96]. The time at which therapeutic rAAV vectors 
should be delivered again is not fully predictable but only 
estimated to reflect the half-life of adult fibrils. Studies in 
large animals have shown that this period can be 5–15 years 
or longer [92].

Observation of the severity of the disease phenotype in 
patients with various mutations allowed to determine key 
areas of the DMD gene to preserve the greatest functional-
ity of the resulting protein [88, 97]. Both the actin-bind-
ing N-terminal and the β-dystroglycan-binding domains 
are considered essential [1], with restoration of the DGC 
alone shown to be insufficient to prevent fiber degenera-
tion [98–100]. By contrast, the CT domain as well as the 

Fig. 4  Comparison of dystrophin and utrophin spectrin repeats 
R1–R3 and R10–R12. Amino acid alignments and 3D structures of 
R1–R3 (A) and R10–R12 (B) of dystrophin and utrophin are shown. 
Green indicates hydrophobic amino acids (A, alanine; F, phenylala-
nine; I, isoleucine; L, leucine; M, methionine; P, proline; V, valine; 
W, tryptophan); red, acidic amino acids (D, aspartic acid; E, glutamic 

acid); blue, basic amino acids (H, histidine; K, lysine; R, arginine); 
gray, other amino acids (C, cysteine; G, glycine; N, asparagine; S, 
serine; T, threonine; Q, glutamine; Y, tyrosine). The superimposed 
3D structures of spectrin repeats R1–R3 and R10–R12 of dystrophin 
(pink) and utrophin (blue) were generated with the TM-align software
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whole central portion of dystrophin is usually omitted from 
μDys. Clinical trials have commenced on several proteins. 
Currently, four rAAV vectors [101] carrying three different 
μDys are in human trials: (1) manufactured and tested by 
Pfizer (μDys-P) [102–104], (2) Sarepta Therapeutics or Gen-
ethon in collaboration with Sarepta Therapeutics (μDys–ST 
and μDys–G, respectively) [90, 105–112], and (3) Solid Bio-
sciences (μDys–SB) [113–115] (Fig. 5, Table 2). Sarepta’s 
studies involve the use of rAAV–rh74-containing MHCK7 

promoter (μDys–ST) or AAV-8 with Spc5.12 (collaboration 
with Genethon, μDys–G) while others introduce rAAV9 
with a muscle-specific (μDys–P) and CK8 (μDys–SB) pro-
moters, respectively. Preclinical experimental data indicate 
that all rAAV–μDys vectors used in clinical trials allow 
for expression of truncated dystrophin in skeletal muscles 
of dystrophic mice [90, 102, 105–109, 113–116] and dogs 
[111], leading to pathology reduction and fiber size nor-
malization (Table 2). Importantly, μDys–ST (Elevidys) has 

Fig. 5  Graphical representation, 3D structures, and sequence align-
ment of μDys and μUtr proteins. 3D structures were predicted with 
the I-TASSER software. Note that μDys–Y and μDys–P show a more 
condensed structure, while μDys–ST/G, μDys–SB, and μUtr–O are 
linear, being more comparable to the full-length dystrophin. Sequence 
alignment of μDys and μUtr proteins revealed that H1 and H3 regions 
are dissimilar (lower panel, marked red). μDys–Y micro-dystrophin 

from [118], μDys–P micro-dystrophin manufactured and tested by 
Pfizer [102], μDys–ST/G micro-dystrophins manufactured and tested 
by Sarepta Therapeutics (μDys–ST) and by Genethon and Sarepta 
Therapeutics (μDys–G) [90], μDys–SB micro-dystrophin manufac-
tured and tested by Solid Biosciences [113], μUtr–O micro-utrophin 
designed by Odom et al. [112, 187]. N/A not applicable
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been recently approved by the FDA through the accelerated 
approval pathway for the treatment of DMD boys ages 4–5 
years based on the preliminary clinical data [117]. Each of 
the tested μDys has a functional actin and β-dystroglycan 
binding sites; however, different overall sequence and struc-
ture that might determine their ability to compensate for the 
full-length dystrophin absent in DMD patients. μDys–SB 
stands out from the other truncated dystrophins as it contains 
the nNOS binding site (Table 2).

Based on the available studies and in silico structure 
analysis, we compared all three μDys that are currently in 
clinical trials and additionally with the first μDys (μDys–Y) 
designed by Yuasa et al. [90, 102, 113, 118]. Both μDys–SB 
and μDys–ST/G showed similar rod domain structure to 
the one present in dystrophin, while μDys–P and μDys–Y 
revealed a more condensed most probable structure, with 
the nonpresent spectrin-like repeat “linear folding” (Fig. 5). 
However, it needs to be taken into consideration that the 
I-TASSER tool shows a few proposed models and a struc-
ture (although less probable) similar to the μDys–SB and 
μDys–ST/G structures were also obtained. The diversity in 

μDys–P and μDys–Y models suggests nonetheless that these 
μDys proteins might have problems with suitable folding.

Despite the many benefits of rAAV-based therapy, there 
are still some aspects that will need to be further investi-
gated and resolved. Since rAAV vectors exist in the cell 
as episomes, they will be lost during cell division, and the 
level of dystrophin will decrease [85, 119]. Another problem 
is the immune response induced by AAV [88, 120]. Some 
patients have pre-existing antibodies against specific sero-
types and even if they are seronegative, the first gene transfer 
might exclude them from rAAV vector re-administration. 
Theoretically, this could be overcome by using other rAAV 
serotypes. Some researchers are also considering the use 
of plasmapheresis or other methods to weaken the body’s 
immune response to the vector [121]. The immune response 
can also be activated by the newly generated dystrophin 
[103, 107, 112, 122, 123]. In people with DMD, the expres-
sion of the gene does not usually lead to the production of 
a functional protein. Therefore, when a vector encoding the 
m/μDys gene is introduced into the body, the resulting pro-
tein might be recognized as foreign. In response, the body 

Table 2  Comparison of effectiveness of selected μDys and μUtr in in vivo testing

μDys–Y micro-dystrophin [118], μDys–P micro-dystrophin manufactured and tested by Pfizer [102], μDys–ST/G micro-dystrophin manufactured 
and tested by Sarepta Therapeutics and by Genethon and Sarepta Therapeutics [90], μDys–SB micro-dystrophin manufactured and tested by 
Solid Biosciences [113], μUtr–O micro-utrophin [187], i.v. intravenous, i.m. intramuscular, i.p. intraperitoneal, + + + completely normalized 
(compared to WT), + + greatly improved (compared with mdx), + improved (compared with mdx), – negative effect, N/A not applicable, Muscle 
force includes contractile force and distance on treadmill analyses, GRMD golden retriever muscular dystrophy dog, GSHPMD German short-
haired pointer muscular dystrophy dog

Vector (injec-
tion mode)

Animal mod-
els/human 
studies

μDys/μUtr: 
sk. muscle/
heart

β-DB/α/
β-ST/SG/

nNOS CNFs/muscle 
force

Fiber size 
normaliza-
tion/body 
weight

Immune 
response 
against μDys/
μUtr

References

μDys–Y E1–Ad (i.m.) mdx + + +/N/A + + +/+ + 
+/+ + +/

N/A N/A/N/A N/A/N/A N/A [118]

μDys–P rAAV (i.m.)
rAAV2.5 

(i.m.)

mdx,
humans

+ + +/N/A NA/NA/+ 
+ +/

N/A + + +/N/A + + +/N/A Immune 
response 
(humans)

[102–104]

μDys–ST/G rAAV2 (i.m.)
rAAV5 (i.m.)
rAAV6 (i.v.)
rAAV9 (i.m.)
rAAV9 (i.v.)
rAAV2/8 

(i.v.)

mdx,
mdx/utrn-/-/
GRMD, 

GSHPMD,
humans

+ + +/+ + + + + +/+ + 
+/+ + +/

− + + +/+ + + + + +/− 
(mdx)

Immune 
response 
(mdx, 
GSHPMD, 
humans),

transient 
immune 
response 
(GRMD)

[90, 105–107, 
110–112, 
123, 231]

μDys–SB rAAV9 (i.v.)
rAAV6 (i.m.)
rAAV6 (i.p.)

DBA/2J-mdx,
mdx4cv,
mdx

+ + +/+ + + + + +/+ + 
+/+ + +/

+ + + +/+ + + + +/+ N/A [113, 114]

μUtr–O rAAV9 (i.p.)
rAAV9 (i.m.)
rAAV9 (i.v.)

mdx + + +/+ + + + + +/+ + 
+/+ + +/

N/A + + +/+ + + +++/N/A No immune 
response

[107, 112, 
187]
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might start producing T lymphocytes, significantly reducing 
the effectiveness of the therapy as well as posing threats to 
the patient. One of the proposed solutions is the use of an 
additional vector that would reduce the immune response 
and lead to a more efficient expression of the delivered gene 
[124]. Other emerging strategies rely on the use of transient 
immune suppression to prevent activation of B and T cells, 
leading to the recognition of dystrophin or AAV proteins by 
effector cells [92].

In contrast to dystrophin constructs, the use of the utrophin 
sequence allows the immune response to be bypassed and the 
therapy to work effectively [107, 112] (Table 2). Particularly, 2 
weeks following the intramuscular delivery of rAAV–μUtr and 
rAAV–μDys to German shorthaired pointer muscular dystro-
phy (GSHPMD) dogs, in which a deletion of the whole DMD 
gene occurred [125], Song et al. observed a strong immune 
system response against the μDys, with no adverse reactions to 
μUtr [112]. Similarly, recent experiments in mice showed that 
μUtr induces lower overall immunogenicity than μDys [107] 
and that delivery of rAAV carrying μDys gene induces gen-
eration of dystrophin-specific antibodies [122]. Also, the first 
results from the ongoing clinical trials showed that μDys-ST/G 
can induce serious adverse effects associated with anti-dystro-
phin T-cell responses in patients lacking N-terminal epitopes 
[123]. In agreement, our sequence alignment analyses revealed 
that while μDys–ST/G and μUtr–O show relatively high amino 
acid identity and similarity (61% and 76%, respectively), H1 
has no significant similarity between both proteins and is 
the least conserved region (Fig. 5). Additionally, the hinge 3 
region, which is present in μDys–P also reveals no significant 
similarity between dystrophin and utrophin (Fig. 5). These 
results indicate that H1 and H3 in μDys could be sequentially 
optimized for synthesis in DMD patients based on the utrophin 
sequence. On the other hand, μUtr might be generally a better 
solution to dystrophin-based therapies due to the “foreign” 
properties of μDys.

6  Exon Skipping with AONs

The pre-mRNA exon skipping approach using RNA or 
DNA antisense oligonucleotides (AONs) is grounded on 
the fact that most DMD patients can theoretically produce 
dystrophin similar to that produced in BMD patients if the 
reading frame is corrected. AONs can be synthesized based 
on a variety of chemical backbones [126], with commonly 
used 2′O-methyl-ribo-oligonucleoside-phosphorothioate 
(2′OMePS) and phosphorodiamidate morpholino oligom-
ers (PMO) [127, 128]. Upon their delivery to the cell and 
binding to specific sequences in the DMD pre-mRNA, the 
mutant exon and sometimes additional contiguous exons 

can be skipped during mRNA maturation. Ultimately, this 
process can restore the reading frame and result in produc-
tion of a partially functional dystrophin protein (Fig. 6A, 
B). Most DMD patients have deletions of one or more 
exons, which are usually grouped in two hot spot regions, 
the first region spanning exons 3–9 and the second encom-
passing exons 45–55 [129]. Mutations in these fragments 
are observed in 7% and 47% of all DMD patients, respec-
tively [130]. It is estimated that approximately 70% of DMD 
patients who have a deletion could be treated by skipping 
one exon [131]. Multiple exons skipping has emerged as an 
alternative method that could extend therapeutic application 
of this approach, in which case, administration of a cocktail 
of multiple antisense oligonucleotides results in skipping of 
multiple exons to restore the dystrophin mRNA open read-
ing frame [132].

Independently of each other, two types of antisense oli-
gonucleotides have been developed for exon 51 skipping 
in patients, based on a PMO (eteplirsen) and 2′OMePS 
(drisapersen) modification [133–135]. In contrast to 
drisapersen (Kyndrisa, BioMarin Pharmaceutical), etep-
lirsen (Exondys, Sarepta Therapeutics) received accel-
erated approval in 2016 by the FDA based on a slight 
increase in dystrophin levels, 0.4% and 0.9% of the con-
trol level, in 13 and 11 DMD patients after 48 and 180 
weeks of treatment, respectively. Eteplirsen also slowed 
progression of the disease, as measured by the distance 
achieved by the 6-minute walk distance (6MWD), when 
patients treated for 3 years were compared with a histori-
cal control group of patients with DMD who had only 
received supportive care. However, FDA noted that no 
functional benefit of eteplirsen treatment has yet been 
convincingly demonstrated and manufacturers have been 
asked to submit confirmatory data. Despite approval 
from FDA and still ongoing tests, EMA decided to 
refuse the marketing authorization of eteplirsen in 2018 
(EMA/621972/2018). Sarepta Therapeutics received FDA 
approval also for PMOs targeting exons 45 and 53 with 
active substances known as casimersen (Amonydys 45) 
[136, 137] and golodirsen (Vyondys 53) [138], respec-
tively, which together with eteplirsen are under phase 3 of 
clinical trial [casimersen and golodirsen (NCT02500381), 
eteplirsen (NCT03992430)]. Additionally, NS Pharma 
received approval in 2020 in Japan and the USA for a 
PMO designed to skip exon 53 (viltolarsen (Viltepso, 
NS-065/NCNP-01) [139, 140]. Both Viltepso and yet 
another PMO, brogidirsen that targets exon 44 (NS-089/
NCNP-02) are currently in clinical trials (NCT04337112, 
NCT04129294).

The limitations of the early AON exon-skipping strat-
egies include low myocardial efficacy, poor cellular 
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uptake, and rapid exit from the circulatory system. More 
recent approaches tackle some of these drawbacks. These 
include delivery of SQY51, a tricyclo-DNA molecule 
targeting exon 51 (NCT05753462), developed by SQY 
Therapeutics [141] and AOC 1044 from Avidity Bio-
sciences (NCT05670730). The latter one induces exon 
44 skipping and is bound to a monoclonal antibody for 
enhanced uptake to muscle cells. Published data on sys-
temic delivery of the tricyclo-DNA AON to mdx mice are 
particularly encouraging, as high-level exon 51 skipping 
was observed not only in skeletal muscles but also in the 
heart and, to a lesser extent, in the brain [141]. Since 
both AONs and dystrophin transcripts are not permanent, 
treatment with AONs is not a one-time procedure and 
must be repeated [142]. Importantly, while approximately 
20% of uniformly distributed endogenous dystrophin in 
myofibers and cardiomyocytes may suffice to halt pro-
gression of DMD [143], much lower levels might be 
already beneficial for patients [144, 145].

7  Stop Codon Readthrough

Approximately 10–15% of DMD cases are due to non-
sense mutations in the dystrophin gene [146]. Blocking a 
premature stop codon could be achieved by suppressing 
the reading of premature stop codons by binding therapeu-
tic molecules to ribosomes, which enable the full-length 
translation of the modified dystrophin protein [147]. One 
such molecule is Ataluren (PTC124), also known as Trans-
larna [148]. Treatment of mdx mice rescued striated mus-
cle function within 2–8 weeks of drug administration, with 
approximately 20–25% dystrophin levels of the amount 
detected in the muscles of healthy control mice [149]. Fur-
thermore, the treatment resulted in a significant reduction 
in creatine kinase levels and dystrophin presence in the 
heart of mdx mice. These promising results led to first 
clinical trials in healthy volunteers and DMD patients, 
showing high tolerability and safety when administering 
the drug as well as a positive effect on the 6MWD result 
of the affected boys [150–152]. Based on these results, 

Fig. 6  Restorative repair of the DMD gene expression with antisense 
oligonucleotides (AONs) and CRISPR/Cas9 technology. A Expres-
sion of the DMD gene in control samples based on a DMD fragment 
that encompasses exons 50–54 that is transcribed and translated into 
a protein region composed of H3 and spectrin repeats R20 and R21. 
B, C Deletion of DMD exons 50, 51, 52, or 55 (Δ50, Δ51, Δ52, 
Δ55) causes DMD as it changes the dystrophin reading frame and 
the protein cannot be synthesized. In (B) is shown an example where 
the reading frame can be restored in patients carrying Δ52 mutation 
via the use of AONs that induce skipping of exons 51 and 53 in pre-

mRNA. Note that although the truncated dystrophin is missing part 
of hinge 3 (H3) and R20 or part of R20 and R21, the synthesized pro-
tein fragments have largely unaffected 3D structures. As presented in 
C, the dystrophin reading frame in patients with distinct mutations, 
including Δ50, Δ51, Δ52, Δ55, can be restored by deleting a rela-
tively large fragment of the DMD gene with the CRISPR/Cas9 tech-
nology. Note that the gRNAs are designed to cut within exons 47 and 
58 to remove a relatively large region within the rod domain (Δ47–
58) so that the perfect spectrin repeat structure is recreated from the 
remaining R18 and R23 fragments [161]
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EMA approved ataluren in 2014 for treatment of DMD 
caused by nonsense mutations in patients aged 5 years 
and over [153] (EMEA/H/C/002720). In contrast, the FDA 
did not agree to use it in the USA for this purpose due to 
insufficient data showing a positive effect of the treatment 
(NCT00759876). Additional research is underway to dem-
onstrate the positive effect of such therapy [148].

8  Gene Editing with CRISPR/Cas9

CRISPR/Cas9 applications were confirmed to have a posi-
tive outcome in DMD disease models, including those 
based on a point mutation correction or in-frame deletion 
of premature stop codon [154, 155], exon or exons deletion 
[155–164], exon in-frame deletion (reframing) [155, 159, 
165], exon knock-in [159, 166], or base editing [167, 168]. 
CRISPR technology was introduced to the DMD gene edit-
ing through a nonsense point mutation correction in 2014 
[154]. Long et al. used SpCas9 and a single sgRNA, show-
ing the ability of CRISPR/Cas9 to correct the sequence in 
mdx embryos. The genetically mosaic animals contained 
2–100% correction of the DMD gene, which contributed 
to decreased values of creatine kinase in serum as well 
as enhanced muscle performance when compared with 
dystrophic mdx mice. The dystrophin open reading frame 
(ORF) was also restored, e.g., in myoblasts and induced 
pluripotent stem cells derived from DMD patients by a 
single sgRNA pair inducing deletion of exons 45–55 [158, 
169]. In contrast to the AON-based therapy, the CRISPR/
Cas9 can be designed to precisely cut within exons to 
restore not only the ORF but also the structural properties 
of spectrin repeats. Specifically, Duchene et al. demon-
strated that SaCas9 administration with two sgRNAs to a 
humanized mouse model of DMD (del52hDMD/mdx) can 
lead to DNA breaks in exons 47 and 58, restoration of the 
ORF, and synthesis of a functional dystrophin with nor-
mally phased spectrin-like repeats [161] (Fig. 6C). Inter-
estingly, the highest repair outcome, at the level of 86%, 
was observed in the hearts of dystrophic animals, as has 
been seen with deletion strategies [170].

CRISPR/Cas9 technology also allows for larger inser-
tions and Pickar-Oliver et al. showed that the full-length 
dystrophin can be obtained in del52hDMD/mdx mice based 
on the homology-independent target integration approach 
(HITI) following dual rAAV vector delivery of CRISPR/
Cas9 and a donor DNA sequence [166]. To increase avail-
ability of the treatment to a higher number of patients, a 
larger fragment was additionally delivered, containing not 
only exon 52 but also exons up to 79, along with a polyA 
sequence. After administration of the 28-exon sequence, the 
mice achieved correction in the hearts up to 7% at the DNA 

and over 25% at the mRNA level, while much lower efficien-
cies were obtained in skeletal muscles [166]. Notably, this 
level of dystrophin synthesis might suffice to improve the 
cardiac muscle function [45, 171].

Nonsense mutations can also be corrected through the 
CRISPR/nCas9 base editing method. For example, Ryu 
et al. showed that with the base editor-induced substitution 
of adenine to guanine, it is possible to exchange a prema-
ture stop codon for glutamine and obtain the full-length 
dystrophin translation in 17% of myofibers of the injected 
TA of dystrophic mice [168]. In a more recent study, Xu 
et al. showed that modified variants of adenine base editor 
(iABE–NGA) improved the editing efficiency and specificity 
[167]. The optimalization of the PAM-interacting domain 
allowed for nearly complete rescue of dystrophin in mdx4cv 
mouse hearts, with up to 15% rescue in skeletal muscle fib-
ers. Furthermore, low off-target effect and no toxicity were 
detected. The functionality of the CRISPR/Cas9 prime edit-
ing method was also confirmed in iPSC-derived cardiomyo-
cytes carrying an exon 51 deletion in the DMD gene [172]. 
This approach enabled insertion of two base pairs in exon 
52, which led to restoration of the ORF and translation of 
the truncated dystrophin at 24.8–39.7% of the control level. 
Additionally, the corrected cardiomyocytes showed improve-
ment in contractile functions.

Some studies, however, point to limitations of the 
CRISPR/Cas9-mediated editing of the DMD gene. Particu-
larly, potentially therapeutic excision of exons 6 and 7 in a 
mouse model carrying an out-of-frame deletion mutation 
of exons 8–34 resulted in synthesis of corrected mRNA 
but only low-level production of truncated dystrophin, pre-
sumably due to low protein stability [173]. In contrast, an 
increased amount of Dp71 variant with an altered C-termi-
nus (Dp71f variant, without exon 78) was observed at the 
sarcolemma, shown previously to modify the dystrophin 
function [174]. Furthermore, nonuniform correction of the 
DMD gene after the CRISPR/Cas9-mediated exon exci-
sion across nuclei in myofibers resulted in poor therapeutic 
efficacy, despite the overall high dystrophin protein levels, 
likely because of segmental reparation of the sarcolemma 
[175, 176]. Morin et al. indicated that modest but uniform 
distribution of dystrophin at the membrane of myofibers, 
obtained e.g., with AONs, might be more therapeutic than 
high levels of dystrophin generated only in some nuclei in 
the myofiber [175].

Although genome editing therapies are theoretically 
capable of producing the intended therapeutic effect after 
a single application, retreatment may be necessary for 
patients with DMD [177]. Losing Cas9 and gRNA after 
the desired change has occurred in myofibers would not 
be problematic as the target site would be corrected. How-
ever, since these changes most often result in production 
of only a partially functional protein, this will not fully 
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prevent the muscle damage associated with DMD. Moreo-
ver, when severe damage occurs, the multinuclear mus-
cle fiber can lose a nucleus containing the therapeutically 
altered genetic material, which might lead to restoration 
of the original mutation. Therefore, patients receiving this 
form of therapy might experience a progressive decline 
in dystrophin levels unless the CRISPR/Cas9 is delivered 
efficiently to satellite cells.

Another aspect that adversely affects CRISPR/Cas9-based 
therapies is the possibility of genome editing in nondesired 
sites (off-target mutations). This can be particularly worry-
ing in the case of in vivo editing as it can lead to gene dys-
function, epigenetic changes, or even carcinogenesis [177]. 
However, many studies indicate a low risk of this process 
and given that the muscle tissue can be considered perma-
nently post-mitotic, off-target mutation oncogenic effects are 
unlikely. Moreover, there are methods to reduce chances of 
such side-effects without sacrificing efficient genome edit-
ing, for example, by using a pair of nCas9 to generate two 
incisions instead of DSBs or by using the FokI–dCas9 sys-
tem [178].

As in the case of therapies involving in vivo delivery of 
micro- or mini-dystrophin genes, there are also risks associ-
ated with CRISPR/Cas9 delivery by rAAV vectors. The pos-
sible immune response of the organism against rAAV, a ther-
apeutic protein, as well as Cas9, could prevent the desired 
outcome [179, 180]. An antinuclease immune response 
may be induced in part by prior exposure of the organism 
to the bacteria from which Cas9 is derived. Because of this 
response, cells of the immune system could eliminate Cas9-
containing cells, rendering the therapy futile. One of the 
proposed solutions is to use a vector suppressing the body’s 
immune response [124] which allowed for effective expres-
sion of the mini-dystrophin gene in double-knockout mdx/
mTRG2 mouse model. Also, special immunosuppression and 
specially designed dystrophins are in tests [130, 181].

9  Utrophin‑Based Therapies

Studies originally performed in a mouse model of DMD 
demonstrated enormous potential of both the full-length and 
truncated utrophin in compensating for the lack of dystro-
phin and preventing muscular dystrophy [68, 182]. Further-
more, increased full-length utrophin synthesis ameliorated 
the pathology in a dose-dependent manner [68], without 
any toxicity [183], and truncated utrophins mitigated the 
pathology in dystrophic mice and dogs [69, 184]. Surpris-
ingly, recent studies indicate that while dystrophin and 
utrophin can co-exist at the sarcolemma [185] and μDys 
is stably localized at distinct types of myofibers for a long 
period of time in mdx mice, μUtr is gradually waning from 
dystrophin-deficient 1, 2a, and 2d types of fibers, in which 

higher expression of the utrn gene is observed [186]. Further 
research is required to address this discrepancy and rele-
vance to human clinical studies. It is important to note, how-
ever, that like dystrophin, also truncated utrophin sequences 
might require optimization to, e.g., reduce its stiffness, alter 
the mode of interaction with actin filaments, increase the 
affinity to β-dystroglycan, or add fragments necessary for 
interaction with crucial proteins, such as nNOS or MARK2 
[20, 39, 45, 74, 76].

Apart from approaches based on delivery of micro-
utrophin genes [107, 112, 186, 187] (Fig. 7A), strategies 
grounded on overexpression of the native UTRN gene 
through small molecules or peptides, including orally bio-
available ezutromid (formally SMT C1100) and SMT022357 
[66, 188], heregulin [189], or activators of the NO pathway 
[190], as well as the use of genetic engineering tools such 
as artificial zinc finger transcription factors “Jazz” and the 
updated version “JZifi1” [191, 192] or CRISPR/Cas9 [193] 
can be distinguished. Furthermore, there are strategies used 
to increase the utrophin protein level at the sarcolemma and 
stabilize the UGC [194–196] or prevent degradation of the 
UTRN transcripts [197–199].

One of the prospective strategies to boost the utrophin 
levels is activation of UTRN-A promoter with orally avail-
able drug ezutromid or SMT022357, the second-generation 
compound with improved physicochemical properties 
[188] (Fig. 7B). Daily doses of ezutromid increased the 
expression of the utrn gene in striated muscles of mdx mice, 
resulting in sarcolemmal stability and amelioration of the 
dystrophin loss-associated pathology [200]. Ezutromid went 
successfully through phase 1 (healthy male volunteers) and 
phase 1b (DMD boys) clinical trials that tested its safety 
[201, 202]. Nonetheless, a phase 2 trial failed to achieve its 
endpoints and the development program has been abandoned 
by Summit Therapeutics [203].

Changes in gene activation can be induced by admin-
istration of complexes composed of catalytically inactive 
dCas9 with transcription activator or repressor [204, 205]. 
To increase the expression of the UTRN gene, dCas9 might 
be bound to multiple copies of VP16 transcriptional activa-
tor, and such complex could be then directed to UTRN-A and 
-B promoters by specially designed gRNAs, where VP16 
domains would facilitate recruitment of the pre-initiation 
complex. Such approach led to elevated expression of the 
UTRN gene in myoblasts derived from a DMD patient with 
exon 42–52 deletion [206]. In a more recent approach that 
overcomes the large size of dCas9 fused to a transcriptional 
activation domain, a dual-rAAV9 system was successfully 
used to elevate the utrophin levels and ameliorate muscular 
dystrophy in mdx mice [193]. Although this is still an experi-
mental strategy that requires further research, it could be of 
great benefit in treating both DMD and BMD patients, lead-
ing to a sustained increase in the expression of the utrophin 
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gene, regardless of the type of the mutation in the DMD 
gene [207].

Another molecule shown to increase the utrophin level 
in membrane fractions in muscle cells is biglycan (Fig. 7C). 
Biglycan is a leucine-rich protein of the extracellular matrix 
(EMC). Following synthesis, it plays an important role in 
muscle development and regeneration, localizing dystro-
brevins, syntrophins, and nNOS to the sarcolemma and sta-
bilizing the DGC [208, 209]. Biglycan comes in two forms 
with significantly different functions. While the glycanated 
form does not seem to have a therapeutic value in DMD, 
the intraperitoneal injection of recombinant human non-
glycanated biglycan upregulated utrophin, sarcoglycans, 
and nNOS, as well as improved the overall muscle health 
and function in mdx mice [196]. The nNOS increase at the 
sarcolemma of dystrophic myofibers might be unexpected 

given the results obtained from other studies [45] and the 
fact that utrophin does not contain the site present in dys-
trophin (R16–R17) that interacts with syntrophin/nNOS [46, 
72] and might indicate that nNOS might be localized to the 
sarcolemma through mechanisms independent of utrophin/
dystrophin. Biglycan was also upregulated in mdx mice 
by the rAAV vectors. Particularly, intravenous delivery of 
rAAV8 carrying biglycan cDNA resulted in increased utro-
phin levels as well as γ-sarcoglycan, α-dystrobrevin, and 
α1-syntrophin [210]. An optimized nonglycanated version 
of biglycan for systemic delivery to humans developed by 
Tivorsan Pharmaceuticals, called TVN-102, is currently in 
the preclinical testing phase [211].

Cytoxic T cell GalNAc transferase (Galgt2) is an enzyme 
normally distributed at NMJs of myofibers that can gly-
cosylate α-dystroglycan in extrasynaptic regions when 

Fig. 7  Schematic representation of utrophin-based therapies for 
DMD. Utrophin increased levels could be achieved through rAAV-
mediated delivery of genes encoding μUtr (A), activation of the 
endogenous UTRN gene promoter directly through ezutromid/
SMT022357, or indirectly via heregulin that induces distinct signal-
ing events (B), stabilization of the utrophin-glycoprotein complex 

(UGC) through biglycan or GALGT2 (C), or counteracting UTRN 
mRNA degradation by blocking microRNAs (miRNAs; (D) with 
AONs (1) or by the CRISPR/Cas9-directed excision of the DNA 
sequence, which upon transcription serves as a binding site for miR-
NAs (2)
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upregulated in wt and mdx myofibers [194, 212]. Mdx/
Galg2 transgenic mice displayed no signs of muscular dys-
trophy attributed to increased utrophin and other UGC com-
ponents at the sarcolemma [194] (Fig. 7C). Interestingly, 
reduced myofiber diameter presumably due to inability 
of satellite cells to fuse with myofibers and abnormalities 
in NMJs were observed upon embryonic upregulation of 
Galgt2 [194, 212]. These disadvantageous effects can be 
omitted in mice by postnatal delivery of GALGT2 with 
rAAV; however, these entitle some therapeutic effects that 
are utrophin independent [195, 213]. rAAVrh74/GALGT2 
delivery to gastrocnemius in macaques also resulted in 
increased glycosylation of α-dystroglycan and elevated lev-
els of utrophin [214], which initiated a phase 1/2 clinical 
trial assessing the safety and efficacy of GALGT2 gene ther-
apy in humans (NCT03333590). The most recent data from 
dystrophic dogs that were administered intravenously with 
rAAVrh74/GALGT and analyzed 3 months later indicate that 
while the treatment induces muscle glycosylation, UTRN 
expression and lowers fibrosis, it has no effect on muscle 
strength [215]. Based on this data, the authors indicate that 
the GALGT2 therapy might be better suited for younger indi-
viduals before the onset of the severe form of the disease.

An alternative solution to enhance the expression of the 
UTRN gene would be to block the repression of mRNA 
transcripts (Fig. 7D). As previously mentioned, utrophin 
occurs naturally in myofibers; however, during muscle dif-
ferentiation, its expression is attenuated and dystrophin 
replaces utrophin at the sarcolemma [216]. Apart from the 
direct negative regulation of the promoter [217], posttran-
scriptional repression mechanisms targeting the utrophin 
mRNA significantly reduce the expression of the UTRN gene 
[218]; hence, blocking this process would have a significant 
effect on the amount of utrophin protein. Indeed, Loro et al. 
identified trichostatin A (TSA) and giovinostat as two com-
pounds that could relive utrophin posttranscriptional repres-
sion based on a high-throughput screen with 3127 particles, 
1000 of which were FDA-approved drugs, and a reporter 
containing UTRN 5′ and 3′ UTRs [197]. Interestingly, their 
potential to support the treatment of DMD has been previ-
ously discovered; however, their mechanism of action was 
linked to their ability to inhibit histone deacetylases [219, 
220]. Other strategies aiming at posttranscriptional control 
of the expression of the UTRN gene include blocking miR-
NAs with AONs [198] (Fig. 7D1) and cutting out the 3′ UTR 
region targeted by miRNAs in the UTRN gene by CRISPR/
Cas9 [199] (Fig. 7D2).

The use of utrophin in the treatment of DMD and BMD 
is a promising solution. It is important to note, however, 
that the regulatory machinery of the UTRN gene expression 
appears to be very complex. Recent results by Georgieva 
et al. point out that the epigenetic manipulation of the down-
stream utrophin enhancer is yet another promising approach 

to increase the utrophin levels and improve the muscle func-
tion [221]. Certainly, utrophin cannot completely compen-
sate for the lack of dystrophin, which is especially apparent 
when dystrophic muscles with high amounts of utrophin are 
forced to exercise [45]. This might be due to its different 
mechanistic properties [16, 17] and/or the lack of ability 
to bind specific proteins such as nNOS [45]. Neverthe-
less, neither mini- nor micro-dystrophins can compensate 
for the lack of the full-length dystrophin as observed in 
BMD patients. An important aspect that may outweigh the 
advantages associated with therapies based on dystrophin 
gene repair or delivery, is that utrophin does not induce an 
immune response in DMD patients. Furthermore, utrophin-
based therapies can be used regardless of the mutation type 
in the DMD gene.

10  Conclusions

Corticosteroids, mechanical ventilation, cardiac medica-
tion, and rehabilitation markedly raised the median life 
expectancy of DMD patients born in recent years [130, 
222]. In the meantime, many experimental therapeutic 
approaches have been advanced, with some of them shown 
to inhibit the disease progression not only in distinct dis-
ease animal models but also in humans. First new drugs 
based on restoration of the reading frame of dystrophin via 
readthrough of nonsense codons, antisense oligonucleo-
tide-driven exon skipping, and rAAV-mediated delivery of 
μDys are now available to patients in some countries. The 
first two strategies are limited to DMD boys with strictly 
defined mutations and induce dystrophin translation in 
a relatively small number of fibers. However, even this 
limited therapeutic outcome has the potential to amelio-
rate the disease progression and prolong their lives. On 
the other hand, the recently approved treatment based on 
rAAV–μDys–ST can be theoretically applied to all patients 
regardless of the DMD genetic alteration and has the 
potential to induce a high level of the therapeutic protein 
in a vast number of fibers. Refinement of the above strate-
gies as well as others, grounded on, e.g., drugs designed 
to activate transcription of the UTRN gene or stabilize the 
UGC is ongoing [223].

The structural and functional properties of both dys-
trophin and utrophin proteins have a crucial impact on the 
therapeutic outcome. Theoretically, delivery of therapeutics 
based on repair or restoration of the DMD gene expression 
should be more beneficial to patients than strategies based 
on μUtr synthesis or upregulation of the UTRN gene. How-
ever, dystrophin is not naturally available in DMD boys and 
immune response against newly synthesized dystrophin 
might render such therapeutic approaches futile [123]. Care-
ful comparative analyses of dystrophin and utrophin might 
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lead to the design of safer and more therapeutic dystrophins, 
with proper folding characteristics. Particularly, we show 
that H1 and H3 regions that have been commonly used in 
μDys share no sequence homology to the corresponding 
regions in utrophin that is naturally present in dystrophic 
tissues, and thus could, theoretically, more easily induce the 
immune response in treated DMD boys. On the other hand, 
despite the sequential and structural limitations, utrophin 
can partially compensate for the lack of dystrophin in animal 
models of DMD. It is important to stress though that long-
term outcomes of therapeutic strategies grounded on utro-
phin and engineered micro-proteins are currently unknown 
and require further clinical testing.

Every presented therapeutic approach, while beneficial, 
has its own limitations. It is known that dystrophin and utro-
phin can co-localize at the sarcolemma [185]. The moderate 
level of utrophin does not affect the DMD gene expression, 
but its high amounts lead to a reduction of dystrophin, sug-
gesting that there are finite β-dystroglycan and actin bind-
ing sites at the muscle membrane and in the interior side of 
muscle cells, respectively. Nevertheless, the ability of utro-
phin and dystrophin to co-localize sheds light on the pos-
sibility of combined dystrophin/utrophin therapy. Guiraud 
et al. showed that 30% AON restoration of dystrophin and 
overexpression of utrophin can lead to greater therapeutic 
benefits than every single approach alone [185]. The data 
suggest that combining various therapies might be a better 
solution, overcoming limitations of each approach.
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