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Abstract
Type 1 diabetes mellitus (T1DM) has been defined as an autoimmune disease characterised by immune-mediated destruction 
of the pancreatic β cells, leading to absolute insulin deficiency and hyperglycaemia. Current research has increasingly focused 
on immunotherapy based on immunosuppression and regulation to rescue T-cell-mediated β-cell destruction. Although T1DM 
immunotherapeutic drugs are constantly under clinical and preclinical development, several key challenges remain, including 
low response rates and difficulty in maintaining therapeutic effects. Advanced drug delivery strategies can effectively har-
ness immunotherapies and improve their potency while reducing their adverse effects. In this review, we briefly introduce the 
mechanisms of T1DM immunotherapy and focus on the current research status of the integration of the delivery techniques 
in T1DM immunotherapy. Furthermore, we critically analyse the challenges and future directions of T1DM immunotherapy.

Key Points 

Although insulin maintains normal blood glucose levels 
in type 1 diabetes mellitus (T1DM) patients, it cannot 
prevent or reverse the destruction of the islet β cells.

T1DM occurs directly due to an imbalance between 
the CD4+ effector T cells (Teffs) and regulatory T cells 
(Tregs). Teffs can promote β-cell death and the produc-
tion of immunoglobulins, which are markers of the 
autoimmune process. Immunotherapy can preserve the 
islet β cells by preventing T cells from recognising and 
attacking the antigenic epitopes of pancreatic β cells or 
promoting immune self-tolerance and homeostasis of 
Tregs.

Development of localised targeted delivery strategies 
is crucial in overcoming challenges such as off-target 
effects and systemic toxicity of T1DM immunotherapy.

1  Introduction

Type 1 diabetes mellitus (T1DM) has been defined as a 
potentially multifactorial autoimmune disorder charac-
terised by T-cell-mediated destruction of the pancreatic β 
cells, resulting in absolute deficiency of insulin synthesis 
and secretion [1]. According to the International Diabetes 
Federation Diabetes Atlas, the global prevalence of DM 
among people aged 20–79 years was estimated as 10.5% 
(536.6 million people) in 2021, and T1DM accounts for 
approximately 10% of this proportion (approximately 30 
million individuals worldwide). In one observational study 
of paediatric and adult patients with T1DM in the United 
States, diabetes-related costs totalled more than $800 per 
month [2, 3]. T1DM is initially characterised by the appear-
ance of islet autoantibodies (AAbs), followed by the clini-
cal manifestation of dysglycaemia due to partial destruction 
of the β cells, and ultimately leading to fatal complications 
due to absolute insulin deficiency such as hyperglycaemic 
hyperosmolar state (HHS) and diabetic ketoacidosis (DKA) 
[4]. HHS causes extreme dehydration and coma [5], whereas 
DKA causes death mainly through cerebral injury or cere-
bral oedema [6] in T1DM patients. Abundant evidence indi-
cates that T1DM is a dangerous chronic disease that leads 
to disability and death. Moreover, it has become a rapidly 
growing global problem with huge social, health, and eco-
nomic consequences, and effective control is the need of 
the hour.
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Since the initial model of T1DM pathogenesis proposed 
by George Eisenbarth in the 1980s, we have understood 
the chronic process of the development of T1DM through 
decades of research [7]. Currently, the synergistic effects 
of genetic and environmental factors are believed to be the 
aetiology underlying T1DM. According to the database 
of genome-wide association studies, the human leukocyte 
antigen (HLA) class II haplotypes HLA-DR and HLA-DQ 
(HLA-DR3-DQ2 or HLA-DR4-DQ8 haplotypes) within 
the major histocompatibility complex (MHC) region con-
tribute to approximately 50% of the genetic susceptibility 
by affecting T-cell recognition and tolerance to foreign and 
autologous molecules [3, 8]. Recent studies have shown that 
rare and low frequency variants, including TYK2, IFIH1, 
RBM17, PTPN22, STK39, and LRP1B, may be potential 
detection and therapeutic targets in T1DM [9]. In the pres-
ence of genetic susceptibility, environmental factors such 
as enteroviruses, intestinal microbiota, infant’s diet, and 
vitamin D can induce or aggravate the occurrence of T1DM 
[3, 10].

Owing to the lack of radical therapy, the first-line empiri-
cal treatment for T1DM patients is still insulin replacement 
therapy [11]. Although insulin has a significant therapeu-
tic effect in relieving symptoms of both T1DM and type 2 
DM (T2DM) and delaying organ damage, it does not hinder 
the T-cell-mediated progressive destruction of β cells [7]. 
Moreover, a rare fraction of patients with diabetes may pre-
sent with euglycaemic DKA (EDKA), which is character-
ised by increased anion gap metabolic acidosis, ketosis, or 
ketonuria in euglycaemia (serum glucose level < 250 mg/
dL). EDKA is commonly observed in patients with a history 
of hypoglycaemia due to starvation, chronic liver disease, 
pregnancy, infection, and alcohol abuse [12, 13]. Moreover, 
recent evidence demonstrates that sodium-glucose cotrans-
porter 2 (SGLT-2) inhibitors (e.g. dapagliflozin) may lead 
to a significant increase in the incidence of EDKA [14]. 
SGLT-2 inhibitors competitively block the reabsorption of 
30–50% of filtered glucose from the original urine in the 
proximal convoluted tubule, which stimulates increased 
secretion of glucagon and enhances lipolysis and ketogenesis 
[12]. Therefore, the existing treatments only enable T1DM 
patients to achieve normal blood glucose levels; however, 
they cannot reverse the destruction of β cells, and euglycae-
mia could even lead to misdiagnosis or delayed diagnosis by 
physicians. Thus, T1DM patients miss the optimum treat-
ment window, which results in disease progression. There-
fore, researchers have attempted to develop a novel approach 
in immunotherapy to rescue the functional loss of β cells by 
alleviating the autoimmune attack of T and B cells on the 
β cells [15].

According to the targeted intervention on immune cells, 
the current T1DM immunotherapies can be divided into 
T-cell-targeted, CD4+ regulatory T cell (Treg)-targeted, 

and dendritic cell (DC)-targeted immunotherapies. Owing 
to the complexity of the pathogenesis of T1DM, combina-
tion immunotherapies can exert simultaneous or synergis-
tic modulation to correct the autoimmune process in these 
patients [7, 16]. Whether used alone or in combination, 
the success of immunotherapy depends on its interaction 
with the epitopes. Currently, various cytokines and anti-
bodies face the challenge of transportation to the target 
sites. Another limitation is that continuous immunosup-
pressive effects cannot be induced, leading to an off-target 
effect [17]. Hence, one of the core purposes of developing 
novel delivery strategies for immunotherapeutic agents is 
to achieve a targeted and controlled release [7]. Advanced 
delivery strategies for T1DM immunotherapy, includ-
ing nanoparticles (NPs), liposomes, plasmids, engineered 
microorganisms, and microneedles (MNs), have been devel-
oped for localised on-demand delivery of drugs, cell factors, 
and antibodies to minimise toxicity in vivo. In this review, 
we summarise the fundamental immune pathogenesis of 
T1DM and several major types of T1DM immunotherapy, 
and focus on the advanced delivery strategies to overcome 
these challenges. Furthermore, we discuss the current limi-
tations of T1DM immunotherapies and their corresponding 
prospects for improving the efficacy and safety in T1DM 
patients.

2 � Immune Pathogenesis

T1DM is a polygenic disease in which susceptibility genes 
or genetic variations cause disease risk, primarily involv-
ing the HLA region on chromosome 6 and several β-cell-
specific genes [18, 19]. The pathogenesis of T1DM is 
characterised by the infiltration of islet antigen-specific T 
cells and proinflammatory antigen-presenting cells (APCs), 
as well as the concomitant loss of forkhead box protein 3 
(Foxp3+) Tregs [18, 20]. The development of T1DM can 
be divided into three stages. In the first stage, the occult 
autoimmune response to β cells precedes the clinical onset 
of T1DM. APCs such as DCs and macrophages present 
autoantigens that initiate the activation of β-cell-specific T 
cells, mainly CD4+ and CD8+ T cells. Interleukin (IL)-12 is 
produced to induce the generation of CD4+ and CD8+ effec-
tor T cells (Teffs), Th1, and Tc1, marked by the expres-
sion of the transcription factor T-bet and cytokines such as 
interferon (IFN)-γ and tumour necrosis factor (TNF)-α [21, 
22]. The autoreactive Teffs then migrate to the pancreatic 
islets and induce β-cell destruction through perforin and 
granzyme, the Fas/FasL ligand pathway, and the TNFα-
dependent pathway [23-25]. The β-cell autoimmunity is 
triggered and accompanied by the appearance of β-cell-
targeted AAbs against endogenous antigens [18, 26]. An 
histological examination of the islets showed a decrease in 
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the β-cell mass and residual insulin-containing islets and 
an increase in CD8+, CD4+ and CD20+ T-cell infiltration 
in T1DM patients aged < 7 years [27]. The AAbs com-
monly observed in T1DM patients include proinsulin (bio-
synthetic precursor of insulin), proinsulin C-A connection 
(C-peptide and proinsulin A-chain connection), glutamic 
acid decarboxylase (GAD) 65, tyrosine phosphatase IA-2 
and IA-2β, zinc transporter 8 (ZnT8), and insulin. These 
epitopes can induce the activation of CD4+ and CD8+ T 
cells and destruction of β cells [3, 26]. Peripheral Tregs 
(CD4+, CD25+, and Foxp3+ T cells) showed a significant 
reduction in a paediatric cohort with T1DM [28]. As the 
disease progresses to the second stage, individuals suffer 
from different degrees of β-cell loss, which can be detected 

by measuring the serum C-peptide levels, a byproduct of 
insulin synthesis [29]. In the first and second stages, the 
main strategy of T1DM immunotherapy is to preserve the 
remaining β-cell mass as well as inhibit β-cell autoimmun-
ity [30]. The administration of immunosuppressive drugs 
in children with new-onset T1DM can partially delay the 
developmental process [31]. The residual β cells can still 
secrete insulin compensatively and maintain euglycaemia 
[7] (Fig. 1).

However, when the disease progresses to the third stage, 
β-cell mass reduces by 70–90%. The residual β cells are 
unable to synthesise and secrete enough insulin, thus 
clinical manifestations appear gradually. Therefore, the 
main goal of immunotherapy at this stage is to preserve 

Fig. 1   Immune pathogenesis of T1DM. During thymocyte matura-
tion, positive and negative selection takes place in the thymus. This 
process involves interaction between the proteins of the MHC on the 
APCs, proinsulin and the TCR on thymocyte. In addition, autoanti-
gens from pancreatic islet β-cells are presented by APCs, thereby 
activating T cells, including Th cells type 1 and type 17 and CTLs. 
Abbreviation:  T1DM type 1 diabetes mellitus, MHC major histo-

compatibility complex, APCs antigen-presenting cells, TCR​ T-cell 
receptor, Th T-helper, CTLs cytotoxic T lymphocytes, GADA glu-
tamic-acid-decarboxylase antibody, IA2 islet tyrosine phosphatase 
2 antibody, IAA insulin autoantibody, ICA islet cell antibody, TGF 
transforming growth factor, IL interleukin, IFN interferon, TNF 
tumour necrosis factor, APCs antigen-presenting cells, CTLA-4 cyto-
toxic T lymphocyte antigen 4 
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the number and function of the remaining β cells [32]. 
Although CD4+ and CD8+ T cells have been identified 
as specific epitopes on β cells, it is difficult to target the 
autoimmune destruction caused by them [26]. Research-
ers have found that there are significant heterogeneities 
between insulitis and β-cell destruction in T1DM patients. 
For instance, although insulitis can be found in insulin-
containing islets in newly diagnosed T1DM patients, it 
is far less in insulin-deficient islets [33]. Notably, in one 
T1DM patient, different islet lobules probably exhibited 
different degrees of immunocyte infiltration and destruc-
tion [34]. Additionally, high expression of HLA-I [35] and 
endoplasmic reticulum stress markers (e.g. NLRP3 inflam-
masome) has been detected in insulin-containing lobules 
[36]. Available evidence indicates that understanding how 
to increase the response rates to targeted immunotherapy 
in T1DM patients is the key to improving the efficacy and 
reducing off-target effects (Fig. 2).

3 � Targeted Immunotherapy

The purpose of immunotherapy is to prevent, delay, or even 
reverse the development of T1DM by inhibiting the reac-
tive T cells and/or inducing T cells to tolerate the antigenic 
epitope on β cells [19]. T1DM immunotherapy can be clas-
sified into non-autoantigen-specific and autoantigen-spe-
cific interventions [7]. Most immunotherapeutic drugs and 
cytokines target T cells, Tregs, B cells, and DCs to induce 
T-cell tolerance and regulate the autoimmune process.

In the absence of targeted antigen, the immunotherapy 
for T1DM is based on the enhancement of local or sys-
temic immunomodulatory mechanisms, thus improving the 
destructive autoimmune response and immune response tar-
geting the β cells. In early studies, a series of broad-spectrum 
immunosuppressive schemes was used; however, it did not 
achieve the desired results [37-39]. Although β-cell destruc-
tion was inhibited and islet function was partially restored 

Fig. 2   T1DM stages. Abbreviation: T1DM type 1 diabetes mellitus, IFG impaired fasting glucose, IGT impaired glucose tolerance, AAbs autoan-
tibodies, Treg regulatory T cell
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in some cases, the curative effect was often temporary, and 
the occurrence of long-term immunosuppression and severe 
systemic toxicity far exceeded its benefits [40, 41]. Hence, 
researchers have turned to developing targeted immunother-
apeutic drugs and innovative delivery strategies to increase 
the response rates and reduce systemic immunosuppression 
and toxicity [42-45]. Therefore, the development of T1DM 
innovative immunotherapy depends on understanding the 
molecular basis of the T-cell response to the islets in T1DM 
patients [16, 46]. Several immunotherapeutic products have 
been used in preclinical studies or clinical trials (Table 1, 
Fig. 3).

3.1 � T‑Cell‑Targeted Immunotherapy

The key step in initiating the T-cell response is to activate 
antigen-specific T cells through T-cell receptor (TCR)/CD3 
and co-stimulatory signals, which are transmitted by the 
antigen-MHC and other molecules expressed on the sur-
face of the APCs [47]. TCR/CD3 signalling controls and 
participates in many processes such as thymus T-cell devel-
opment, Tregs production, and immature T-cell activation 
by activating various intracellular pathways [48]. Theo-
retically, the downregulation of TCR/CD3 signal intensity 
probably affects the autoimmunity in T1DM. The relation-
ship between autoreactive CD8+ T cells and the progress 
of T1DM makes these phenotypes potential biomarkers of 
disease trajectories and responses to immunotherapeutic 
intervention [49]. In a cross-sectional study of patients with 
T1DM, the increasingly depleted islet-specific CD8+ T cells 
were consistent with the slowdown of β-cell loss [20].

The use of monoclonal antibodies (mAbs) is one of the 
promising strategies for inducing an autoimmune drive against 

specific immunocyte populations. Several mAbs have been 
proven clinically safe, and they have shown varying degrees of 
efficacy in regulating autoimmune disorders, including T1DM 
[50-52]. To date, one of the most common advanced immu-
notherapeutic drugs for T1DM is the CD3 mAb teplizumab, 
an Fc receptor-nonbinding anti-CD3 mAb [44, 45, 53]. Tepli-
zumab binds to the TCR complex on the surface of T cells 
and undergoes continuous phosphorylation to generate TCR 
signals [54]. TCR signalling elicits diverse cellular responses 
such as regulating cell metabolism, inducing cell division, 
and driving effector functions, including cytolytic activity 
and secretion of signal molecules, such as IL, IFNγ, TNFα, 

Table 1   Target areas for immunotherapy development and current status for T1DM management or prevention

T1DM type 1 diabetes mellitus, Teff effector T cell, Treg regulatory T cell, DC dendritic cell, tolDCs tolerogenic dendritic cells, CTLA-4 cyto-
toxic T lymphocyte antigen 4, Foxp3 forkhead box protein 3, IL interleukin, JAK Janus kinase, GM-CSF granulocyte-macrophage colony-stimu-
lating factor, CXCL chemokine (C-X-C) ligand, rhIL-2 recombinant human interleukin-2

Target pathways Epitopes Immunotherapeutic agents Available products References and ClinicalTrials.
gov identifiers

Teff exhaustion Anti-CD3 Teplizumab, alefacept, otelixi-
zumab

Amevive® [53, 64], NCT00965458

Inhibition of T-cell activation CTLA-4/CD28 Abatacept Orencia® [108], NCT03929601
Induction of Treg Foxp3, IL-2, 21E-

22E, CD80/CD86-
CD28

Polyclonal Tregs, insulin-
specific vaccination, rhIL-2, 
belatacept

Proeukin®, Nulojix® [95], [179, 180], NCT02772679
NCT01862120

B-cell antagonists CD20 Rituximab Rituxan® [181]
DC antagonists JAK1 Ruxolitinib (JAK inhibitor) Jakafi® [182–184]
Induction of tolDCs GM-CSF, IL-4, IL-10 Antisense oligonucleotides, 

proinsulin peptide
[185, 186], NCT02354911

Cytokine antagonists IL-6, CXCL-8 (IL-8) Tocilizumab, allosteric inhibi-
tor

Actemra®, Ladarixin® NCT02293837
NCT04628481

Fig. 3   β-cell immune target sites and advanced delivery strat-
egies. Abbreviation:  Ab antibody, SPIONS superparamag-
netic iron oxide nanoparticles
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and transforming growth factor (TGF)-β [55]. A clinical trial 
demonstrated that the proportion of diabetes-free individuals 
in the teplizumab group was 57% compared with 28% in the 
placebo group. Correspondingly, antidrug antibodies were 
observed in the peripheral blood of 20–55% of teplizumab-
treated participants after the first course [56]. Another ran-
domised controlled trial of non-diabetes relatives at high risk 
for T1DM demonstrated that glucose tolerance decreased, 
whereas area under the curve (AUC) of C-peptide (1.94 vs. 
1.72 pmol/mL of the control group) and insulin secretory 
rates increased after teplizumab treatment. Moreover, the 
teplizumab-treated group demonstrated a reduced secretion 
of IFNγ and TNFα [57]. Generally, teplizumab can modu-
late pathologic T-cell signals and delay the development of 
T1DM; however, investigation of the clinical safety and target 
accuracy in further preclinical studies is warranted.

Additionally, IL-7 promotes autoimmune diabetes by 
maintaining memory T cells (TEM) in a functional state. 
Studies have shown that IL-7Rα blocking approaches can be 
one of the established treatments for T-cell-dependent auto-
immune diseases [58]. IL-7Rα blockade alters the balance of 
Tregs and TEM cells by promoting exogenous cellular regu-
lation and further increasing the threshold of Teffs activa-
tion [59]. The durable efficacy and multipronged tolerogenic 
mechanisms of anti-IL-7Rα therapy indicate a prospective 
disease-modifying approach for T1DM [58]. Similarly, 
other immunotherapeutic drugs targeting Teffs that have 
been tested in clinical trials include antithymocyte globulin 
polyclonal antibody (wide-range, nonspecific immunosup-
pressants) [60, 61], abatacept (inhibits B-cell activation and 
other DCs by acting on T follicular helper cells) [62] and 
alefacept (inhibits the co-stimulatory receptor CD2) [63, 64].

In contrast to non-autoantigen-specific immune regula-
tion, T1DM autoantigen-specific immunotherapy provides 
a more accurate targeted approach for selectively regulating 
T1DM-related autoimmunity while maintaining systemic 
immune homeostasis. The β-cell autoantigens presented 
in a non-inflammatory microenvironment can be used to 
regulate the autoreactive T cells for rescuing β cells, lead-
ing to the development of autoantigen-specific vaccination 
strategies [65, 66]. T-cell epitopes against icariside, GAD, 
and insulin are considered suitable candidates [67-69]. 
Both non-obese diabetic (NOD) mice and T1DM patients 
treated with GAD65 conjugated to aluminium hydroxide 
(GAD-alum) showed increased secretion of Th2/Tc2-related 
chemokines that suppressed the self-reactive Th1/Tc1 effec-
tor cells [70]. In a phase II clinical trial, adult patients with 
latent autoimmune DM received a subcutaneous injection 
of recombinant human GAD-alum. During the 30-month 
follow-up period, the treated group showed higher fasting 
and stimulated C-peptide concentrations as well as lower 
glycated haemoglobin levels than those in the placebo group 
(r = − 0.40; p = 0.006) [71]. Furthermore, antigen-specific 

peptide immunotherapy regulated the pathogenic T-cell 
response, providing the potential to maintain immune home-
ostasis and prevent further β-cell destruction [67]. Interest-
ingly, the incidence of T1DM has been accidentally found 
to be associated with various enterovirus infections, such 
as group B coxsackievirus (CVB). CVB infection in NOD 
mice demonstrated not only an obvious relationship with the 
pathogenesis but also a possible reduction in the incidence 
of T1DM [72]. Researchers conducted a study to investigate 
whether rotavirus vaccination could reduce the incidence 
of T1DM in children aged 8 months–11 years, however no 
significant results were observed [73]. Nevertheless, we 
believe that the inactivated virus is a promising candidate 
for antigen-specific vaccination in T1DM immunotherapy. 
Available evidence indicates that some viruses, such as rota-
virus and severe acute respiratory syndrome coronavirus 2, 
are closely related to the pathogenesis of T1DM; however, 
the underlying mechanisms need to be investigated [74].

Immune checkpoints, including anti-cytotoxic T lympho-
cyte antigen 4 (CTLA-4) and anti-programmed cell death 
(PD)-1/PD ligand 1 (PD-L1) play indispensable roles in 
regulating T-cell activation and maintaining immune haemo-
stasis [75, 76]. Antibodies against CTLA-4 and PD-1/PD-L1 
are associated with an increased risk of immune checkpoint 
inhibitor-T1DM, indicating that the CTLA-4 and PD-1/
PD-L1 pathways are related to T1DM development [77]. 
Nasr et al. [78] revealed that haematopoietic stem and pro-
genitor cells (HSPCs) are deficient in PD-L1 using transcrip-
tomic profiling and subsequent genome-wide profiling in 
NOD mice, indicating that the immunoregulatory molecule 
PD-L1 inhibits the activation of T cells. Pharmacologically 
regulated or genetically engineered HSPCs overexpressing 
PD-L1 were found in the pancreas of hyperglycaemic NOD 
mice in vivo and induced the inhibition of the autoimmune 
response, which was also confirmed in human HSPCs from 
T1DM patients in vitro. These findings demonstrate that tar-
geted and specific immune checkpoint defects may contrib-
ute to a novel immunotherapeutic strategy for T1DM. Thus, 
the selection of immune targets and accuracy of immune 
drug delivery technology are particularly important.

3.2 � Regulatory T‑Cell‑Targeted Immunotherapy

Although small, Tregs are a critical cell subgroup. They spe-
cifically express the transcription factor Foxp3 in the nucleus 
and CD25 and CTLA-4 on the cell surface actively partici-
pating in immune self-tolerance and homeostasis. Tregs defi-
ciency or dysfunction has been observed in multiple autoim-
mune diseases, including T1DM, indicating that autoreactive 
T cells cannot be cleared from the thymus [79]. TCRαβ pairs 
from islet Tregs can be captured through single-cell TCR 
sequencing, and specific islet-derived antigens including 
insulin B:9–23 and proinsulin have been detected. Moreover, 
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islet Tregs from prediabetes NOD mice effectively prevented 
T1DM in Tregs-deficient NOD CD28-/-  recipients [80]. 
Therefore, strategies for upregulating or replacing Tregs in 
T1DM may reverse autoimmunity and protect the remaining 
β cells [81].

Various Tregs-mediated inhibition mechanisms have 
been proposed, including cell–cell contact and humoral 
factor-mediated mechanisms. Currently, many molecules 
are involved in Tregs-mediated inhibition mechanisms such 
as cell surface molecules (CTLA-4, CD25, CD39, CD73, 
and GITR), cytokines (IL-2, IL-10, IL-35, and TGFβ), 
and intracellular molecules (granzyme B, cyclic adenosine 
monophosphate, and indoleamine-2,3-dioxygenase) [79, 
82]. In the process of Tregs-mediated inhibition, Foxp3 
controls the expression of key molecules that are vital for 
Tregs to perform their function, especially that of inhibi-
tion [83, 84]. Recently, CD80 and CD86 were identified as 
activation markers of Tregs by investigating the dynamics of 
endogenous B7 protein acquisition and dependence on IL-2 
signalling in purified CD4+ T cells incubated in vitro for 2 
weeks with or without IL-2 through protein-RNA single-cell 
analysis. In the absence of TCR stimulation, incubation with 
IL-2 significantly induced the upregulation of CD80 and 
CD86 expression, whereas Foxp3+ memory Tregs expressed 
significantly higher levels of IL-2RA than that of memory 
Teffs [85].

Strategies to increase the number of Tregs and/or enhance 
Tregs function have become potential treatments for 
T1DM, as shown in several clinical trials (NCT01210664, 
NCT02772679). In a phase I clinical trial, participants 
received a single infusion of different concentrations of 
amplified clone Tregs (poly Tregs), and the researchers 
found that Tregs increased the STAT5 phosphorylation in 
response to IL-2, Tregs inhibitory activity, and long-term 
survival in vivo (> 1 year) [86].

Tregs are known to have defects in T1DM patients; there-
fore, recent studies have focused on restoring self-tolerance 
through the amplification and enhancement of Tregs both 
in vivo and in vitro [87]. IL-2RA is one of the genes intrin-
sically regulated by Foxp3 with IL-2 as its ligand, which 
inhibits immunopathology by preferentially expanding Tregs 
[88]. In NOD mice, daily administration of low-dose IL-2 
significantly prevented the development of T1DM [89]. 
However, IL-2 is often limited by off-target effects caused 
by the expansion of pathogenic cells [88], whereas frequent 
high-dose IL-2 administration probably accelerates the 
development of T1DM by enhancing the immune response 
of Teffs and natural killer (NK) cells [90]. Furthermore, 
some organic compounds, such as D-mannose [91] and ethyl 
pyruvate [92], can delay T1DM development in NOD mice 
by stimulating and activating Tregs. However, these agents 
rarely achieve the expected therapeutic effects owing to their 
lack of target specificity. Accurate dose control and delivery 

technologies are urgently needed to improve the therapeutic 
effects of Tregs and to reduce their systemic adverse effects.

To improve target specificity, chimeric antigen receptors 
(CAR) and gene editing technology (e.g. CRISPR-Cas9) 
have been used to modulate Tregs [93, 94]. Antigen recep-
tors can be knocked out at precise genome locations using 
CRISPR-Cas9 genome editing, and multiple genes that regu-
late Tregs function can be edited simultaneously [94]. CAR-
modified Tregs (CAR-Tregs) can be efficiently designed and 
engineered with antigen specificity in a non-MHC-restricted 
manner. CAR-Tregs show less dependence on IL-2 during 
their growth. After maturity, CAR-Tregs maintain stable 
phenotypes and functions, preferentially migrate to target 
sites, and exert more potent and specific immunosuppression 
compared with the polyclonal Tregs. However, it is unclear 
whether CAR-Tregs cause a cytokine storm and neuronal 
cytotoxicity similar to that caused by anti-tumour CAR-T 
cells. Moreover, self- or alloantigens have not yet been fully 
characterised in the construction of antigen-specific CAR-
Tregs. Finally, CAR-Tregs depletion may also limit their effi-
cacy in immunosuppression [95]. Thus, although we have 
some achievements in tumour treatment with CAR-T cells, 
we are not fully prepared to take advantage of CAR-Tregs. 
Related research needs to be improved using animal models 
and preclinical trials.

3.3 � B‑Cell‑Targeted Immunotherapy

Although T1DM is considered an autoimmune disease medi-
ated by T cells, B cells are also involved. AAbs that iden-
tify islet antigens usually appear in the circulating periph-
eral blood in the early stages of T1DM, before the onset of 
clinical manifestations [96]. Several altered B-cell-intrinsic 
signals, including the B-cell receptor, toll-like receptors, 
co-stimulatory molecules (including CD40, CD80, and 
CD86), and cytokine receptors, are involved in promot-
ing the pathogenesis of autoimmunity [97]. B cells play a 
pathogenic role through multiple mechanisms of producing 
AAbs, presenting antigens, and secreting proinflammatory 
cytokines. Nearly 70% of B cells and plasma cells participate 
in the destruction of β cells by producing AAbs; hence, they 
should be silenced to prevent autoimmunity [98]. Rituximab, 
a chimeric human anti-CD20 mAb, can reverse the abnor-
mal functional activity of monocytes and generate proin-
flammatory cytokines through B-cell depletion in the early 
stages of T1DM [99]. Intervention with rituximab reduced 
the incidence of T1DM in NOD mice, promoted insulin 
secretion, controlled blood glucose levels, and alleviated 
insulitis [100]. In a phase II clinical trial (NCT00279305), 
early rituximab treatment delayed the decrease in C-peptide 
levels by 8.2 months, resulting in overall better retention 
of β-cell function when considering all time points. How-
ever, during the 30-month follow-up period, the reduction 
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rate of the C-peptide AUC was similar to that in the con-
trol group, indicating that rituximab did not fundamentally 
change the underlying pathophysiology of T1DM [101]. 
Therefore, from a therapeutic point of view, rituximab may 
be recommended for innate immune regulation and inflam-
matory conditions in the prevention and adjuvant treatment 
of T1DM [99].

3.4 � Dendritic Cell‑Targeted Immunotherapy

DCs are the most important subgroup of professional APCs 
that initiate and regulate the function of the adaptive immune 
system and are characterised by high levels of expression of 
MHC molecules and integrin CD11c [102, 103]. A recent 
study demonstrated that DCs with CD103 integrin could 
be detected in the islets of NOD mice [104]. DCs not only 
induce the activation of Teffs, NK cells, and helper T cells 
to control infection and cancer development but also inhibit 
inappropriate self-immune responses. DCs deficiency and 
dysfunction have been observed in the immune pathogen-
esis of T1DM. For instance, NOD mice have been shown to 
express diabetes genetic susceptibility regions and insulin-
dependent diabetes loci, which make epitopes on the DCs 
ideal targets for immunotherapeutic interventions [105].

A DCs scan can recognise a variety of antigens, including 
microorganisms released by dead cells, extracellular fluid, 
and apoptotic cells [106]. These antigens can be processed 
and presented on class MHC I and II molecules to naive T 
cells in the form of polypeptides. Most DCs reside in the 
body in an immature state, and these immature DCs (iDCs) 
are usually regarded as tolerant DCs (TDCs). Under these 
circumstances, iDCs lack many features and processes that 
lead to strong T-cell responses, such as increased MHC pres-
entation, expression of co-stimulatory molecules (CD80 and 
CD86), and production of inflammatory cytokines, such as 
IL-12, IL-23, and TNFα, which are effective in detecting and 
isolating antigens. Designing an effective treatment method 
to induce DCs should fulfil two main objectives: (1) pass-
ing the ‘autoantigen’ of the disease to the TDCs popula-
tion for processing and presentation; and (2) regulating or 
covering the expression profile of these DCs and present-
ing signals that inhibit T-cell activation to T cells, thereby 
inducing tolerance. DC receptor/co-stimulatory molecules 
such as CD80/CD86, also identified as B7-1 and B7-2, pro-
duce the necessary signals to initiate the induction and dif-
ferentiation of immature T cells and may inhibit immune 
tolerance, similar to that in T1DM [107]. CD80/CD86 can 
bind to CD28 on the surface of T cells for self-regulation 
and intercellular binding or to CTLA-4 produced by T cells 
to reduce immunosuppression and cell dissociation. The 
first immunotherapeutic product targeting CD80/CD86 co-
stimulatory binding to CD28 was the fusion protein CTLA4-
immunoglobulin (Ig) called abatacept. Abatacept is a kind 

of co-stimulatory modulator that inhibits CD28-mediated 
T-cell co-stimulation by binding to CD80/86 on APCs, thus 
inhibiting T-cell activation to protect the β cells from attack 
[108, 109]. In a clinical trial, the CTLA4/Ig treatment group 
exhibited a smaller percentage of change in the C-peptide 
AUC from that at baseline and a lower overall C-peptide rate 
within 24 months when compared with the placebo group 
[62]. Interestingly, the decrease in central memory (CM) 
CD4+ T cells induced by CTLA4/Ig can also be used as a 
surrogate indicator of decreased C-peptide levels in patients 
newly diagnosed with T1DM [110]. Abatacept treatment 
drove peripheral contraction of the CM CD4+ T cells and 
expansion of naive (CD45R0- CD62L+) CD4 T cells, with 
a significantly slow rate of C-peptide decline. These find-
ings suggest that quantification of CM CD4+ T cells may 
provide a surrogate immune marker for C-peptide decline 
following T1DM diagnosis, and that co-stimulation block-
ade may exert beneficial therapeutic effects by modulating 
this subset [111]. Moreover, CTLA4-Ig was approved by the 
US FDA in 2005 for the treatment of rheumatoid arthritis, 
and in 2009 for the treatment of juvenile idiopathic arthri-
tis, demonstrating the efficacy and potential for the clini-
cal application of CTLA4/Ig treatment [110]. However, 
CTLA4/Ig does not maintain long-lasting immune tolerance 
in recipients, probably because of the increase in activated 
B cells, reprogrammed co-stimulatory ligand gene expres-
sion, and reduced inhibition of anti-insulin antibodies [112]. 
This seems to be a short-term effect and may reduce as the 
autoimmunity in T1DM patients fades over time [62].

3.5 � Combination Immunotherapies

Ideally, a combination of two or more immunotherapeutic 
drugs can exert synergistic tolerance induction effects to 
achieve better therapeutic effects or reduce adverse effects. 
He et al. [113] observed the protective effects of combined 
rapamycin/γ-aminobutyric acid (GABA) therapy in NOD 
mice via two different mechanisms. Rapamycin (sirolimus) 
is a macrolide immunosuppressant that inhibits the mecha-
nistic target of rapamycin (mTOR) protein kinase, blocks the 
activation of T and B lymphocytes, and induces the expan-
sion of Tregs by inhibiting the response of DCs to IL-2 
[114]. Simultaneously, GABA exerts synergistic protective 
and regenerative effects in both mice and humans by promot-
ing the proliferation of the pancreatic α cells and regulating 
peripheral blood glucose levels significantly [115]. Under 
the combined treatment of rapamycin and GABA, insulitis 
was significantly alleviated and the structure and function 
of the islets were partially restored in the NOD mice [113]. 
Similar synergistic effects were observed in a phase I clinical 
trial involving low doses of IL-2 and rapamycin. Rapamycin/
IL-2 combination therapy transiently increased Foxp3+ natu-
ral Tregs, eosinophils, and NK cells, with a direct correlation 
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with soluble IL-2RA levels. The absolute white blood cell 
count, frequency of lymphocyte and monocyte populations, 
and CD4:CD8 ratio with combination therapy showed no 
significant changes in the serum cytokine analysis and flow 
cytometry, indicating that rapamycin/IL-2 combination ther-
apy did not alter CD4 or CD8 Teffs differentiation [116]. In 
another study, NOD mice were administered a combined 
medication loaded with polyethylene glycol (PEG)-mediated 
anti-CD28Fab antibody fragment (PV1-PEG) and rapam-
ycin. Compared with monotherapy with either agent, the 
combination of anti-CD28/rapamycin treatment exhibited a 
complementary style in remarkably inhibiting the activation 
and infiltration of T cells in the islets and T1DM develop-
ment [117].

Immunotherapy is also frequently combined with stand-
ard insulin replacement therapy, islet transplantation, stem 
cell therapy, or other immunomodulators to produce a syn-
ergistic effect owing to the complexity of T1DM. The com-
bination of immunotherapy and insulin replacement therapy 
enables the remaining β cells to retain and secrete part of the 
endogenous insulin while a sufficient supplement of exog-
enous insulin is obtained. This synergism is conducive for 
maintaining euglycaemia and homeostasis in T1DM patients 
[118]. Moreover, oral administration of insulin with a CD6 
inhibitor may induce immune tolerance, although the thera-
peutic effect is not sustainable [119].

Currently, transplantation of vascularised islet tissues or 
stem cells is an emerging T1DM therapy to promote islet 
β-cell regeneration [120, 121]. However, the biggest chal-
lenge for these stem cell-derived β cells or β-cell transplan-
tation is transplant rejection, indicating that combination 
immunotherapy is necessary for tackling self-immune-medi-
ated attack by the host [122]. Ideally, immunosuppressive 
therapy should minimise lymphatic depletion and enhance 
Tregs function by inducing islet antigen-specific Tregs 
or diminishing the production of the targeting cytokines 
needed for Teffs activation and expansion [123]. To date, 
mTOR inhibitors (e.g. sirolimus and everolimus) are most 
frequently used for immunosuppression to prevent immune 
rejection against islet transplantations and β-cell regenera-
tion engineering in clinical settings. In a previous study, a 
diabetic-humanised NOD/severe combined immunodefi-
ciency IL2R null (NSG) mouse model received renal sub-
capsular human islet allografts with a transfusion of 1 × 
107 human spleen mononuclear cells to test the therapeutic 
regimen of low-dose recombinant human IL-2/rapamycin. 
Monotherapy with either IL-2 or rapamycin for 3 weeks 
did not prolong survival, whereas the combination therapy 
of IL-2/rapamycin significantly prolonged human islet 
allograft survival for up to 62 days, indicating the impor-
tance of synergism. The proportion of hCD45+ cells in the 
peripheral blood of NSG mice treated with IL-2/rapamycin 
significantly declined with reduced IFNγ production and 

perforin-1 expression, indicating that IL-2/rapamycin may 
have the potential to inhibit transplant rejection of human 
islet allograft by expanding Tregs in vivo and suppressing 
Teffs function [124]. However, available evidence indicates 
that long-term administration may mediate the loss of islet 
cell function and vitality by inhibiting mTOR complex 2 
[123, 125]. A recent preclinical study showed that Tregs 
with mixed donor and recipient haematopoietic chimerism 
might be an effective method for inducing islet transplanta-
tion tolerance. According to the Edmonton protocol, some 
researchers combined myeloablative and/or non-myeloabla-
tive haematopoietic stem cell transplantation with Tregs to 
induce continuously mixed chimerism and allograft toler-
ance in islet transplantation [126]. This chimera avoids the 
use of mTOR inhibitors and is expected to be a substitute for 
immunosuppressants in islet transplantation.

4 � Delivery Strategies for Immunotherapy

Advances in medical engineering and drug-delivery strat-
egies have accelerated immunotherapy testing in T1DM 
models. Drug or antigen formulations can be designed in 
complex functional forms, allowing fine-tuning of the dose, 
timing, and route of administration [42]. Nanoscale par-
ticles or scaffolds have been commonly used in combina-
tion immunotherapy with islet transplantation [127, 128]. 
Nanopreparations enhance the characteristics of immunity 
medicine through modification, possess specificity for 
targeted delivery sites, and reduce off-target effects and 
adverse effects due to systemic immunosuppression [129]. 
For instance, the overexpression of phospholipids (PS) on 
the cell membrane can lead to the progression of diabetic 
microvascular complications, such as diabetic kidney disease 
and diabetic retinopathy. Liposome coating helps PS to be 
efficiently taken up by the DCs with an improved immune 
response rate to induce immune tolerance while reducing 
systemic adverse effects caused by off-target effects [130]. 
Some scaffold materials have been reported to help recruit 
Tregs to induce T-cell tolerance in islet grafts. In a previ-
ous study, primary Tregs and transplanted islets loaded in 
polylactic acid-glycolide copolymer (PLGA) microporous 
scaffolds were co-located in the abdominal fat of NOD 
mice. The survival rate of the grafts in the NOD mice was 
prolonged and blood glucose returned to a normal state, 
indicating that the transplanted Tregs may be replaced by 
receptor-derived Tregs through the mechanisms of infec-
tion tolerance and systemic tolerance toward islet antigens 
[127]. Moreover, advanced delivery strategies and bioma-
terials can provide convenient, efficient, and minimally 
invasive drug administration to improve the comfort and 
compliance in T1DM patients [131]. MNs are considered a 
promising drug delivery system facilitating the transmission 
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of autoantigens through the epithelial barrier in a minimally 
invasive approach. Compared with conventional intravascu-
lar or subcutaneous injections, MNs can directly penetrate 
the epithelial layer of NOD mice and significantly stimulate 
the proliferation of antigen-specific CD8+ T cells in skin-
draining lymph nodes by local injection of proinsulin in vivo 
[131]. Herein, we describe a series of advanced drug deliv-
ery strategies to improve the safety and efficacy of T1DM 
immunotherapy and discuss the expected clinical effects 
(Table 2).

4.1 � Nanoparticles

NPs are structures sized from 1 to 100 nm with a solid 
core surrounded by suitable chemicals that affect the size, 
polarity, and electric charge of the NPs [132]. Nanoscale 
polymeric particles and scaffolds have been designed for 
multiple immune tolerance induction strategies for the tar-
geted inhibition of T-cell activity [133]. Supramolecular 
nanostructures can be loaded with or combined with small-
molecule drugs, antigenic peptides, and cytokines, thereby 
altering and optimising the approach for presenting autoan-
tigens [128]. Nanomaterials are commonly classified into 
organic materials such as liposomes, polymers, including 
PLGA, polylactide, poly(β-amino esters), and PEG, or inor-
ganic materials such as Au and porous Si [134]. PLGA is 
the most commonly used polymer in multiple drug delivery 
applications, mainly because it has been approved by the 
FDA. The byproducts generated after PLGA degradation can 
downregulate the MHC II molecules. This potentially useful 
immunosuppressive effect is in contrast to that of other poly-
mer-based NPs that have an adjuvant effect, highlighting the 
importance of the properties of the polymeric carrier used to 
promote tolerance. In a previous study, syngeneic apoptotic 
cellular carriers and synthetic NPs were covalently cross-
linked to diabetogenic peptides or proteins using ethylene 
carbodiimide (ECDI) to induce antigen-specific T-cell toler-
ance [133]. Autoantigenic peptides chemically cross-linked 
to splenic leukocytes (Ag-ECDI-SP) can directly engage in 

TCR signalling in the absence of co-stimulatory molecules, 
probably because of the indirect mechanisms involving host 
APCs. The Ag-ECDI-SP NPs readily induce apoptosis and 
are sequentially phagocytosed by macrophages and DCs, 
thus inducing immunosuppression of the host to the autoan-
tigens [135]. Combined with the B-cell depletion strategy 
with anti-CD20 rituximab and a short course of rapamycin, 
Ag-ECDI-SP seemed to induce indefinite exoantigen-spe-
cific tolerance in diabetic C57Bl/6 mice; however, there is a 
concern whether the normal immunity of experimental ani-
mals is also impaired [133]. Another carboxylated 500 nm 
biodegradable PLGA NP (either surface-coupled with or 
encapsulating the cognate diabetogenic peptides) was used 
as a surrogate antigen carrier for the induction of tolerance 
in diabetogenic BDC2.5 CD4+ and NY8.3 CD8+ T cells. 
Reduced infiltration of Teffs and cytokine production were 
observed within the pancreas of p31-PLG tolerized mice, 
concomitant with selective retention in the spleen via the 
CTLA-4 and PD-1 pathways [136]. The strategy of encap-
sulating Ag into PLG NPs has been improved to become 
more effective and safer for targeting and tolerising both 
CD4+ and/or CD8+ diabetogenic T cells [136, 137]. Nota-
bly, the encapsulation of NPs not only delivered antigens to 
induce tolerance in MHC II-restricted T cells but also deliv-
ered them to APCs for cross-presentation to regulate CD8+ 
T-cell responses, as observed in PLG (NRPA7)-treated 
recipients of CD8+ NY8.3 T cells [138] (Table 3).

Except with the Teffs-targeted immunosuppression strat-
egy, the transplanting islet-loaded microporous PLG scaf-
fold focused more on recruiting Tregs to induce tolerance 
to pancreatic β-cells. In combination with immunotherapy 
and islet transplantation, the PLG scaffold provided a plat-
form to co-localise Tregs with the islets for extrarenal and 
extrahepatic islet graft protection. The PLG scaffold induced 
recipient-derived Tregs to replace the transplanted Tregs, 
indicating the successful establishment of systemic tolerance 
to islet antigens [127].

NPs are usually designed to be captured by APCs via 
phagocytosis or micropinocytosis and accumulate in the 

Table 2   Characteristics of delivery strategies for T1DM immunotherapies

T1DM type 1 diabetes mellitus, BLP bacterium-like particle, mAb monoclonal antibody, ECM extracellular matrix, mRNA messenger RNA, 
siRNA small-interfering RNA

Delivery strategy Classes of delivery Advantages Limitations

Nanoparticle
Plasmid
Engineered bacteria and BLP
Liposome
Microneedle

mRNA/siRNA
Compounds
mAb
Insulin
Antigen
Cytokine
Antigenic peptide and protein
Enzyme and kinase

Target-specific organs or cells
Biodegradability and biocompatibility
Localised delivery
Protect cargo from degradation
Sustained and on-demand release
Possibility to provide stealthiness
Interaction with ECM
US FDA approval

Immune heterogeneity
Potential systemic toxicity and adverse 

effects
Insufficient bioavailability
Lack of research on long-term safety
Difficult to commercialise
Low drug loading
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draining lymph nodes targeting T-cells and APC traffick-
ing [128]. Immune tolerance induced by DC-targeted nano-
medicines is an outstanding immunotherapeutic strategy for 
treating T1DM [134]. Compared with conventional immu-
nosuppressive therapies, tolerogenic immunotherapy of DCs 
reduces the activation of T and B cells by inhibiting the 
presentation of autoantigens, thus indirectly protecting the 
β cells from being attacked [134]. iDCs not only present 
antigens and induce tolerance to autoimmunity but also take 
up a wide range of exogenous materials, including NPs, via 
multiple internalisation mechanisms, resulting in alteration 
of the transport kinetics of the antigens [134, 139]. Sev-
eral NP factors, including size, shape, surface structure, and 
surface charge, have been reported to alter immune targets 
and engineer DCs [140, 141]. Kim et al. [142] prepared an 
NP system containing ovalbumin (OVA) + dexamethasone 
(Dex) by encapsulating Dex and model antigen OVA with 
PLGA NPs. Among the available size of polymeric NPs 
(ranging from 300 nm to 2 μm) that can be efficiently taken 
up by DCs via phagocytosis, the researchers determined that 
the average particle size of 864.8 nm was the optimal size. 
These findings provide a prospective DC regulatory strat-
egy for adjusting the sizes of NPs. Moreover, synergistic 
and superposition effects appear to exist in this adjustment 
strategy. A dual-sized microparticle (MP) system estab-
lished by phagocytosable (approximately 1 μm) and non-
phagocytosable (approximately 30 μm) MPs exhibited the 
outstanding property of simultaneously delivering tolerance-
promoting factors both intracellularly and extracellularly 
to DCs. In recent-onset NOD mice, the PLGA-MP system 
enhanced Tregs in the pancreatic lymph nodes and spleen, 
with upregulated PD-1 on CD4+ and CD8+ T cells, result-
ing in the induction of T-cell tolerance and preservation of 
hyperglycaemia for up to 100 days [143].

4.2 � Plasmid

A DNA vaccine has been developed to regulate the immune 
responses during immunotherapy for cancer and autoim-
mune diseases [144]. Plasmids are circular DNA molecules 
extracted from bacteria that can replicate independently 
from the genomic DNA of bacterial chromosomes, making 
them ideal vectors for constructing DNA vaccines [145]. 
Plasmid DNA (pDNA) represents a critical starting point for 
many genetic engineering pursuits, including the develop-
ment of recombinant proteins, viral vectors, and advanced 
immunotherapeutics [144]. Known diabetic autoantigen-
specific epitopes, such as preproinsulin2, GAD65, and 
ZnT8 as well as epitopes expressing intracellular apop-
tosis-inducing signalling molecules, such as BAX, have 
been inserted in pDNA [146-148]. Engineered plasma was 
designed to induce TDC migration to the draining lymph 
nodes, which subsequently present antigens to regulate PL
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autoantigen-specific Tregs, thus inducing Tregs expansion 
and suppressing the corresponding Teffs [147]. Moreover, 
plasmids can be simultaneously inserted into multiple anti-
gen epitopes to ensure the success of mediating immune 
tolerance in T1DM. A multiple-epitope vaccination was 
conducted to co-deliver pDNA of multiple epitopes/mimo-
topes from four β-cell antigens (proinsulin, GAD65, ChgA, 
and islet-specific glucose-6-phosphatase-related protein) 
and then efficiently presented to CD4+ and CD8+ T cells. 
CD25+ TCR-transgenic T cells and Foxp3+ cells were found 
to increase the draining lymph nodes in NOD mice, and the 
induced Tregs exerted partial immunosuppression in the late 
stage of the disease [149].

4.3 � Engineered Bacteria with Derived Materials

Current studies have demonstrated that Lactococcus lactis, 
a safe engineering strain, has been developed as a novel vec-
tor for the delivery of immunotherapeutic drugs. L. lactis is 
commonly prepared for oral administration, which encap-
sulates and protects antigens from undergoing enzymatic 
hydrolysis or hydrolysis [150]. In previous studies, NOD 
mice were orally administered with heat shock protein65-
6IA2P2-loaded L. lactis. The recombinant L. lactis suc-
cessfully delivered antigens to the intestinal mucosa and 
maintained euglycaemia for approximately 32 weeks [150]. 
Recently, an innovative strategy for early intervention in 
T1DM targeting neutrophil extracellular traps (NETs) with 
staphylococcal nuclease (SNase) has been developed. NOD 
mice were administered recombinant L. lactis encapsulat-
ing and expressing SNase, which effectively diminished the 
NETs and alleviated intestinal inflammation, as proven by 
the increased IL-4 levels and well-controlled levels of infec-
tion markers or inflammatory indicators such as C-reactive 
protein and TNFα in the early stages [151].

To avoid additional inflammatory responses mediated by 
the endogenous antigens of engineered bacteria, inanimate 
lactic acid bacteria have been proposed as antigen delivery 
platforms (i.e. bacterium-like particles [BLPs]) [152]. These 
mechanisms are similar to those of engineered bacteria, 
which are used as protective vectors or immune stimulants in 
T1DM prevention owing to their immunostimulatory prop-
erties. Furthermore, BLPs exhibit improved stability and 
safety [153]. These findings suggest that engineered bacteria 
with derived materials have shown remarkable potential for 
preparing convenient, safe, and low-cost oral administrations 
that mediate antigen-specific immune tolerance in T1DM.

4.4 � Liposome

Liposomes (lipoplexes), characterised by a fluid lipid bilayer 
membrane and nanoscale size, are widely used in drug deliv-
ery systems because of their ease of fabrication, low toxicity, 

and outstanding biodegradability. With optimal physical and 
chemical properties (e.g. size, charge, and membrane fluid-
ity) and appropriate components (properties and proportion 
of components), liposomes provide an on-demand adjunc-
tive strategy [154]. Liposomes have been shown to enhance 
the in vivo delivery of insulin and particularly increase 
its oral bioavailability. Arginine-insulin complex (AINS)-
loaded liposome was incorporated into cysteine-modified 
alginate hydrogel to form AINS-Lip-Gel. The intestinal 
permeability of AINS and AINS-Lip-Gel is approximately 
200% and 600% in vitro, respectively, which is significantly 
higher than that of free insulin; moreover, the in vivo hypo-
glycaemic effect was an excitonic effect [155]. Targeted 
delivery can be achieved using functionalised liposomes, 
such as for specifically targeted delivery of mAbs to epitopes 
[3]. Pellegrino et al. [156] targeted downregulation of the 
PTPN22 mutant gene by using a liposome vector carrying 
the small-interfering RNA (siRNA) duplex, leading to spe-
cific target mRNA downregulation and increased release of 
IL-2. Moreover, the combination of liposomes and siRNA 
did not affect the conformational stability of siRNA or celiac 
disease spectrum, indicating that liposomes can maintain the 
stability and activity of the cargos.

Additionally, studies have shown that liposomes them-
selves have an interventional effect on the progression of 
T1DM. PS connect the receptors on the macrophages and 
T cells, promote the polarisation of macrophages to the 
M2 phase, and secrete IL-10 and TGFβ, thereby mediating 
the immune tolerance of β cells [157]. Liposomes are effi-
ciently phagocytosed by DCs, and suppress latent Teffs in 
the peripheral blood mononuclear cells of T1DM patients 
[158]. They have been shown to encapsulate various com-
ponents, including insulin, and mediate immune tolerance in 
experimental NOD mice. However, only insulin-containing 
liposomes significantly reduced the incidence of T1DM, 
whereas liposomes containing C-peptide, GAD65, and IA2 
peptides did not achieve the desired effect [159]. These find-
ings suggest that insulin-containing PS liposomes have a 
unique role in the immune response.

4.5 � Microneedles

In previous studies, the main components delivered through 
the MNs were mainly insulin and T2DM therapeutic drugs. 
Recently, researchers have focused on the use of MNs in 
immunotherapeutic drug delivery owing to the abundance 
of immunoreactive APCs in the skin. MNs are considered 
a suitable drug delivery system and an available replace-
ment for subcutaneous injections to deliver autoantigens in a 
minimally invasive manner [160]. The available components 
include autoantigenic peptides, active pharmaceutical ingre-
dients, hydrophobic peptides, and NPs [131, 161, 162]. The 
components remain physically stable upon extrusion through 
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the MN chamber and diffuse rapidly and widely through-
out the dermis; they are presented by the APCs, including 
Langerhans cells (LCs) and dermal DCs, to induce antigen-
specific immunotherapy (ASI) [162]. ASI aims to induce 
regulatory immune response and autoimmune tolerance to 
reduce or prevent autoimmune-mediated β-cell destruction 
[67]. Abundant immunoreactive LCs and DC make the skin 
an attractive target for T1DM immunotherapy. MNs have 
been proposed as a suitable drug delivery device to pro-
mote intradermal delivery of autoantigens in a minimally 
invasive and painless manner. Researchers constructed a 
stainless steel MN array comprising 30 projections of 500 
μm to deliver a therapeutically relevant dose of proinsulin 
into the skin. The MN array punctured the skin of the NOD 
mice, and 86% of the therapeutic payload was reproducibly 
delivered into the local tissue after a single insertion for 
150 s [131]. Interestingly, an innovatively coated MN system 
addressed the problem of preserving drug activity. Yang L et 
al. [160] proposed an optimised triple-component (proinsu-
lin–diluent–surfactant) coating formulation that facilitated 
the quantitative, uniform, and reproducible coating of the 
immunotherapeutic drugs in the MNs. Advanced coating 
provides an innovative preparation strategy for a stable, 
convenient, and targeted transdermal drug delivery device. 
These results indicated that MNs are an efficient, comfort-
able, and safe autoantigen delivery device for ASI induction. 
However, the issues of time and money for mass production 
as well as the difficulty of storage and transportation need 
to be addressed [131, 163].

4.6 � Exosome

Exosomes play a role not only in immune stimulation but 
also in immune tolerance, and they are becoming an alterna-
tive tool for T1DM immunotherapy to induce and re-estab-
lish self-tolerance [164, 165]. Current studies demonstrated 
that stem cell-derived exosomes have innate therapeutic 
potential and may protect pancreatic β cells from autoim-
mune attack, thereby ameliorating T1DM progression [166]. 
Exosomes isolated from menstrual blood-derived mesenchy-
mal stromal cells (MSCs) enhanced β-cell regeneration and 
insulin secretion through the pancreatic and duodenal home-
obox 1 pathways in a T1DM mice model [167]. A recent 
study showed that streptozotocin (STZ)-induced diabetic 
mice treated with MSC-derived exosomes showed reduced 
blood glucose levels and elevated plasma insulin levels, indi-
cating the activation of insulin-producing β cells [168]. His-
topathological examination also demonstrated an increase 
in the size and number of islet β cells and a decrease in islet 
fibrosis and inflammation. Notably, some researchers have 
pointed out that exosomes can be used as an alternative to 
stem cell therapies, because they are safer, faster, easier to 

inject, more effective, and have a longer storage time [169, 
170].

MSC-derived exosomes also have immunomodulatory 
effects [171, 172]. In vitro studies showed that bone marrow 
MSC (BMSC)-derived exosomes inhibit the maturation of 
DCs, reduce the secretion of the proinflammatory cytokine 
IL-12, and promote the production of the anti-inflamma-
tory cytokine TGFβ, thus contributing to the regulation of 
DC-induced immune responses [173]. In vivo experiments 
revealed that exosomes derived from adipose-derived MSCs 
exerted protective effects in STZ-induced T1DM mice by 
increasing Tregs and their products without altering the pro-
liferation index of lymphocytes [174].

Some animal experiments have shown that exosomes 
ameliorate diabetic complications. Brain endothelium-
derived exosomes ameliorate cognitive dysfunction in STZ-
induced diabetic rats by improving the cerebral vascular dys-
function and enhancing neurogenesis [175, 176]. Another 
study showed that exosomes derived from adipose stem cells 
inhibited the activation of MPC5 and mTOR signalling by 
promoting the expression of miR-486, enhancing autophagic 
flux, and diminishing podocyte damage, thus improving the 
symptoms of diabetic nephropathy [177]. Furthermore, an 
exosome isolated from human umbilical cord mesenchymal 
stem cells upregulated the expression of vascular endothe-
lial growth factor and TGFβ-1, promoting granulation tis-
sue regeneration and angiogenesis, thereby facilitating skin 
wound healing [178].

5 � Discussions and Prospects

Although there is an overall understanding of the patho-
genesis of T1DM, immunotherapy drugs based on exist-
ing epitopes do not meet our needs for long-term control 
or reversal of the T1DM development process. We need to 
develop novel therapeutic targets with their corresponding 
targeted immunotherapeutic drugs. However, T1DM immu-
notherapy inhibits the Teffs activation and pancreatic β-cell 
induction while causing deficiency or dysfunction in the host 
systemic immune system. Immunity dysfunction is likely 
to cause irreversible damage to the host when coping with 
infectious diseases or cancer, especially in growing children. 
Therefore, the development of localised targeted delivery 
strategies is the key to overcome challenges such as off-
target effects and systemic toxicity.

Furthermore, we confirmed that immunotherapy should 
be used in combination with other therapies, including insu-
lin replacement therapy or islet transplantation, to achieve 
optimal outcomes. In the third-stage patients, the remainder 
pancreatic β cells cannot produce enough insulin to main-
tain normal blood sugar levels even when T1DM is com-
pletely reversed. Therefore, other therapies that supplement 
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endogenous or exogenous insulin are necessary in T1DM 
immunotherapy. Currently, combination immunotherapy is 
usually associated with insulin replacement therapy; how-
ever, precisely controlling the amount of exogenous insulin 
remains a concern. The combination of immunotherapy with 
β-cell regeneration engineering may be the optimal treat-
ment regimen. Additionally, advanced drug delivery sys-
tems have demonstrated their potential in immunotherapy 
against various diseases, such as tumours, as they improve 
the immune response rate and reduce systemic off-target 
effects. However, there is a long way to go before they can 
be used in preclinical studies and clinical trials. In sum-
mary, immunotherapy is a promising treatment for T1DM 
because it fundamentally targets the pathogenic mechanism 
of T1DM. The development of novel antigen-specific targets 
and targeted delivery strategies is the future direction for 
T1DM immunotherapy.
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