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Abstract

Over the past 20 years, a variety of potential adjuvants have been studied to enhance the effect of oral vaccines in the intestinal
mucosal immune system; however, no licensed adjuvant for clinical application in oral vaccines is available. In this review, we
systematically updated the research progress of oral vaccine adjuvants over the past 2 decades, including biogenic adjuvants, non-
biogenic adjuvants, and their multi-type composite adjuvant materials, and introduced their immune mechanisms of adjuvanticity,
aiming at providing theoretical basis for developing feasible and effective adjuvants for oral vaccines. Based on these insights,
we briefly discussed the challenges in the development of oral vaccine adjuvants and prospects for their future development.

Key Points

Biogenic adjuvant materials used in the study of oral vac-
cines include bacteria-derived adjuvants, biologic proteins
or peptides, intestinal immune cells targeting peptides, and
some small-molecule immunomodulatory proteins.

Non-biogenic adjuvant materials used in oral vaccine
studies mainly involve biodegradable polymers {such as
poly(p,L-lactide-co-glycolide) [PLG], poly( b,L-lactic-co-
glycolic acid) [PLGA], chitosan and their derivatives,
alpha-galactosylceramide [a-GalCer], ulex europaeus
agglutinin-1 [UEA-1]}, and some synthetic toll-like
receptor agonists and their derivatives.

The combination of multitype materials has been used to
design oral adjuvants; some protein vaccines (or biogenic
adjuvants) are usually coated (or capsuled) with polymer-
based microparticles/nanoparticles to prevent degradation
in mucosa; some biogenic adjuvants are usually combined
with the engineered living intestinal beneficial bacteria as a
carrier to construct oral vaccine candidates.
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1 Introduction

Pathogens initiate infection mainly by accessing the
mucosal surface of the host, especially from oral-to-gas-
trointestinal tract (GIT). It is generally considered that
direct vaccination via the mucosal surface at the initial site
of infection is the most effective way to trigger protective
mucosal immune response against pathogens [1-3], but
the vast majority of vaccines are administered by injection
[2]. Compared with parenteral vaccination (or traditional
injection), peroral vaccination or administration requires
less stringent regulatory requirements, allowing for the
self-administration of oral formulations. For humans, oral
vaccination will minimize the need for trained healthcare
personnel [4, 5] and eliminate occupational needle-stick
injuries, which could reduce blood-borne infectious dis-
eases such as acquired immune deficiency syndrome
(AIDS)/human immunodeficiency virus (HIV) and hepa-
titis [6, 7]. For animal husbandry and aquaculture, the use
of oral vaccination for disease prevention and control can
reduce the labor cost of animal management and reduce
the stress response of animals. Therefore, oral vaccination
is potentially easier, safer, more convenient, more time-
saving, and more economical [8].
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However, oral vaccination is still challenging because
most oral vaccinations universally could not trigger suf-
ficient immune response, mainly because of an inadequate
specific secretory immunoglobulin A (sIgA) response.
There are two main reasons for this dilemma. First, the
harsh conditions of the gastrointestinal environment,
including hydrochloric acid, digestive enzymes, bile salts,
mucus, antimicrobial peptides, and gastrointestinal peri-
stalsis, would cause low bioavailability of antigens, which
leads to acquired immune tolerance instead of stimulation
[9-12]. Second, antigen-presenting cells (APCs) resid-
ing in the GIT are tolerogenic and hyporesponsive [13];
therefore, substantial impediments exist for oral vaccines
to reach the inductive site of the mucosa-associated lym-
phoid tissues (MALT) and to trigger immune response,
which critically hinders the effectiveness of oral mucosal
immunization.

Given the poor immunogenicity (or low bioavailabil-
ity) of oral vaccines, using appropriate and effective oral
mucosal adjuvants may be critical to the success of pero-
ral mucosal vaccination. Typical adjuvants, such as alum,
complete Freund’s adjuvant (CFA), and incomplete Fre-
und’s adjuvant (IFA), etc., have long been used in inject-
able vaccination but they do not work well in peroral
mucosal immunity. To successfully stimulate intestinal
mucosal immunity, oral vaccine adjuvants need to have
two main properties—GIT delivery stability and intestinal
mucosal adjuvanticity—because they must find an effec-
tive way to deliver vaccines (or antigens) to the dendritic
cells (DCs), macrophages, and lymphocytes located in
MALT through these natural barriers in GIT, and exert
their adjuvant properties, while protecting the loaded vac-
cines (or antigens) from the harsh peroral mucosal envi-
ronment. Therefore, it is necessary to explore effective
peroral mucosal adjuvants to improve the effectiveness of
oral vaccines; however, to date, no adjuvants have been
included in licensed oral vaccines [14].

In recent years, many researchers have focused on finding
safe and effective adjuvants (or delivery systems) to formu-
late oral vaccines, and have made great progress in the devel-
opment of oral vaccine adjuvants. At present, some potential
oral mucosal adjuvants have shown promising prospects, for
instance modified bacterial enterotoxins (e.g., double-mutant
heat-labile toxin [dmLT] of Escherichia coli and multiple
mutant cholera toxin [mmCT]), some small molecule immu-
nomodulatory proteins, and some non-biogenic biodegrad-
able polymer materials {e.g., poly(p,L-lactide-co-glycolide)
[PLG], poly(p,L-lactic-co-glycolic acid) [PLGA], alpha-
galactosylceramide [a-GalCer], Ulex europaeus agglutinin-1
[UEA-1]}, and some synthetic toll-like receptor (TLR) ago-
nists and their derivatives.

In this review, we systematically summarize various pero-
ral adjuvant candidates, including the completed, ongoing,
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and planned study candidates. According to the physico-
chemical properties of these peroral adjuvant candidates, we
classified the existing or emerging oral vaccine adjuvants as
biogenic adjuvants (including bacteria-derived or biologic
protein, peptide, or immunostimulants, small-molecule pro-
teins, etc.), non-biogenic adjuvants (e.g., various biocom-
patible polymer-based microparticles/nanoparticles), and
biogenic and non-biogenic composite adjuvants. We also
introduced their general properties, mechanisms of adju-
vanticity, origins and brief histories, preparation processes,
and results of preclinical studies or even clinical studies,
and discussed prospects for their application as oral vaccine
adjuvants. This article reviews the research progress of oral
adjuvants in recent years, aiming to promote the application
prospects of oral vaccines.

2 Biogenic Type Oral Vaccine Adjuvants

At present, many effective oral vaccine adjuvants are still
derived from biological material, such as bacteria-derived
adjuvants (e.g., bacterial enterotoxins, bacterial flagellin,
bacteria-derived enterocyte-targeting proteins, and some
bacteria-derived proteins), protozoan-derived adjuvants,
intestinal immune cells targeting peptide adjuvants, small
molecular immunomodulatory proteins (SMIPs; e.g.,
cytokines and thymosin a-1 [Tal]), Fc region of immuno-
globulin (Ig) G, and adjuvants composed of multiple bio-
genic materials (Table 1).

2.1 Bacteria-Derived Adjuvants for Oral Vaccines

Targeting specific bacterial organelles or components, the
host’s immune system has evolved to recognize infections
and activate the most potent immune cells to fight the patho-
genic bacteria. When developing vaccines, adding appropri-
ate bacterial organelles or components into vaccines would
produce a stronger immune response to provide better and
more enduring immune protection against infections. Bac-
teria-derived adjuvants have attracted particular interest for
the development of oral vaccines because specific bacterial
organelles or components have a role as immune stimulators.

2.1.1 Bacterial Enterotoxin Adjuvants

The most well-studied mucosal adjuvants to date are still
the adenosine diphosphate (ADP)-ribosylating bacterial
enterotoxins, such as cholera toxin (CT) produced by Vibrio
cholerae, heat-labile toxins (LT) produced by enterotoxi-
genic Escherichia coli (ETEC), as well as their mutants or
subunits. Initially, CT and LT were not only highly effective
mucosal adjuvants but they were also very toxic, which pre-
cluded their clinical application. However, much effort has
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been devoted to developing variants of these enterotoxins
that are low or non-toxic but still retain their adjuvant activ-
ity [15], such as LT (R192G or single-mutant LT [mLT])
[16], dmLT [17], and mmCT [18]. These enterotoxins (CT
and LT) and their mutants (or subunits) [dmLT and mLT]
can increase the generation of antigen-specific IgA antibod-
ies, T-cell responses, and long-lasting memory when coad-
ministered with antigens through the mucosal or transcuta-
neous routes [16, 19]. CT, LT, and some LT mutants could
increase antigen capture in the small intestine by promoting
DC migration from the subepithelial dome (SED) to the fol-
licle-associated epithelium (FAE) between 1.5 and 12 h after
oral administration [20]. Additionally, preclinical research
showed that LT, dmLT, CT, and mmCT can all significantly
raise T helper (Th) 17 responses and thus increase antibody
responses (Fig. 1a) [16, 18, 19, 21].

Double mutant heat-labile enterotoxin (dmLT) The most
widely used and promising bacterial enterotoxin adjuvant
to date is LT (R192G/L211A) or dmLT. In fact, dmLT is
a genetically attenuated derivative of a wild-type ETEC
heat-labile enterotoxin, which changes arginine to glycine
at amino acid position 192 to disrupt the enzymatic and toxic
activity of LT, and changes leucine to alanine at a poten-
tial pepsin-sensitive proteolytic cleavage site at amino acid
position 211 [17]. This detoxified or attenuated form of LT
retains its antigenicity and adjuvant properties. dmLT has
been shown to be safe, well tolerated, and reasonably immu-
nogenic in oral doses up to 100 pg in humans [22]. To date,
dmLT has been an effective adjuvant that strongly potenti-
ated the immune responses of various vaccines administered
parenterally and mucosally against infectious pathogens
(Table 1), e.g., Streptococcus pneumoniae (23], Helicobac-
ter pylori [24, 25], tetanus toxoid [17], CT [18], and ETEC
[26]. Noteworthy, when prophylactic immunization was
performed with H. pylori lysate antigens, dmLT promoted
strong B- and T-cell immune responses to H. pylori antigens
and reduced the bacterial load in stomachs of H. pylori-
infected mice [25]. Adding dmLT to an attenuated Salmo-
nella-vectored ETEC vaccine improved its immunogenicity
in mice [27]. Through preclinical studies, Holmgren et al.
showed that adding dmLT to the multivalent ETEC vaccine
(ETVAX) significantly improved both the anti-colonization
factor (CF) and anti-LT responses following oral immuni-
zation [28]. Moreover, the phase I study of human volun-
teer trials proved that dmLT further enhanced the mucosal
immune responses to CF antigens present in low amounts in
this ETVAX vaccine [28, 29]. In addition, through clinical
trials of human volunteers, Harro et al. demonstrated that
the shedding of challenge strain (ETEC H10407) in those
human volunteers orally administered ACE527 (the ETEC
vaccine) and dmLT was tenfold lower than in those who
received the vaccine alone, illustrating that dmLT can sig-
nificantly contribute to vaccine efficacy to protect human

A\ Adis

volunteers against ETEC challenge [30]. In conclusion,
dmLT is a well-tolerated and powerful mucosal adjuvant
for coadministered antigens.

Multiple Mutant Cholera Toxin (mmCT) CT used to be an
effective adjuvant, widely used to induce mucosal immune
responses in animal models; however, the strong enterotoxic-
ity of CT precludes its use in human or veterinary vaccines.
The recently developed mmCT, which derived from CT with
mutations in multi-sites in its A subunit and is fully resist-
ant to proteolytic cleavage, is a strong, yet practically non-
toxic novel mucosal adjuvant. Compared with native CT, the
cAMP-inducing activity of mmCT decreased by >1000-fold
[31]. Compared with dmLT, mmCT protein is more easily
produced and purified in large quantities because mmCT
is secreted from the extracellular medium of CT-deleted V.
cholerae, while dmLT is located in inclusion bodies [19,
31]. mmCT possesses similar adjuvant activity and safety as
dmLT, which promotes human Th17 responses via cAMP-
dependent protein kinase A and caspase-1/inflammasome-
dependent interleukin (IL)-1 signaling [18]. The study by
Holmgren et al. [32] reported that intragastric immuniza-
tion of H. pylori whole-cell vaccine (WCV) together with
mmCT reduced the colonization of H. pylori in the stomach
of mice by 50- to 125-fold, which was associated with rises
in both the anti-H. pylori antibody responses of serum IgG
and intestinal mucosal IgA and the responses of strong T cell
and interferon (IFN)-y and IL-17A cytokines. Moreover, its
immune effect is similar to that of WCV together with CT,
indicating mmCT, a non-toxic adjuvant, can replace CT as
an adjuvant without loss in protective efficacy [32].

In conclusion, mmCT has no enterotoxicity but retains
strong adjuvant activity, is economical and easy to be pro-
duced, and has great potential in designing oral vaccines.

2.1.2 Bacterial Flagellin

Flagellin, the main structural protein of bacterial fla-
gella, is considered a pathogen-associated molecular pat-
tern (PAMP). TLRS can recognize flagellin, thus activat-
ing the production of inflammatory molecules, including
chemokines and cytokines (Fig. 1b), and then triggering
cellular immune responses, including DCs, through mye-
loid differentiation factor 88 (MyD88) signaling [33, 34].
In addition to TLRS activation, flagellin can bind to cyto-
solic nucleotide binding oligomerization domain-like recep-
tors, NLRC4, which activate the caspase-1 inflammasome
[35]. TLRS is extensively expressed in the lung, intestinal
epithelial cells, monocytes/macrophages, and DCs [36],
Because flagellin is easy to express, is stable and potently
activates the adaptive immune response by binding to TLRS
[37, 38], it has attracted a lot of attention as a vaccine adju-
vant. Oral administration of flagellin-based vaccines could
induce effective immune protection in mice. In the study
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Fig. 1 Concise mechanisms of oral adjuvants at intestinal mucosal
sites. a Bacterial enterotoxin (dmLT, mmCT) targets GM1 recep-
tors, promotes Thl7 response, and subsequently induces antigen-
specific IgA antibodies. b Bacterial flagellin increases TLRS5 stimu-
lation that activates the production of inflammatory cytokines and
subsequently augments innate and adaptive immune responses. ¢c1 M
cell-targeting peptides (CKS9, Col) specifically target and bind to M
cells. ¢2 RANKL, increasing the number of M cells. ¢3 DC-target-
ing ligand (DCpep), specifically targets and binds to dendritic cells.
d Small molecular immunomodulatory proteins (cytokines and Tal)
directly stimulate, attract immune cells, and induce immune response.
el PLG and PLGA protect antigens from degradation in GIT, allow

by Ren et al. [39], the HSN1 chimeric virus-like particles
(VLPs) containing membrane-anchored FliC (FliC-VLP)
were administered orally to mice, and the virus-specific
IgG titers of immunized mice were tenfold higher than those
of mice immunized with HSN1-VLPs lacking FliC, which
significantly improved the protective immune response to
lethal challenge from both homologous and heterologous
HS5NI viruses. According to Zhou et al. [34], mice orally
inoculated with LBNSE-Flagellin (the recombinant rabies
viruses [TRABV] expressing flagellin of Salmonella enterica
subsp.) could recruit/activate more DCs and B cells in the
periphery, and trigger a stronger adaptive immune response
(i.e., virus-neutralizing antibody level). LBNSE-Flagellin
could shield more mice from LDs, challenge infection with

i ! EIL-2@> IL-12 E
v ik o K\ !
o x i : \%o% N gkl
3535 i ML-1Bg S @ SEX o
Inflammatory cytokines 1 F & [
production L6 % g / :
IL-128% 5= ’ Thicen ThZeell

IL2

B cell

1 Plasma cell

DpC Thi cell

|
Trafficking antigen to draining lymph nodes

* T cell and B cell activation and expansion

the sustained and extended release of encapsulated antigens, and
enhance antigen uptake by APCs, and subsequently the delivery of
these microparticle-containing APCs to specific lymphoid compart-
ments. €2 CS and its derivatives (TMC, HACC) and e3 PAHs possess
mucoadhesive properties and permeation-enhancing effects. e4 ALG
possesses mucoadhesive properties. f UEA-1 specifically targets and
binds to M cells. g a-GalCer activates the iNKT-cell. h CpG-ODN
activates TLR9 on B-lymphocytes and DCs, stimulates antigen pres-
entation and induction of antigen-specific immune response towards
the Thl phenotype. CS chitosan, PAHs polyanhydrides, ALG alginate,
iNKT-cell invariant natural killer T cell

rabies viruses strain CVS-24 compared with the parent virus
LBNSE group. An innovative study by Girard et al. [40]
revealed that plant-produced flagellin (flagellin of Salmo-
nella typhimurium [F1jB]) was a more potent and effective
adjuvant for oral immunization. Beyond that, using plant-
produced flagellin as an adjuvant for oral vaccine did not
elicit an immune response against F1jB.

By incorporating membrane-anchored flagellin into bac-
terial ghosts (BGs), it may be possible to create a more effec-
tive oral BG-based vaccine [41]. Moreover, synthesizing
varied flagellins in an oral live bacterial vaccine strain is an
attractive method for generating protective immunity. In the
study by Eom et al., mice were shown to be protected against
the virulent Salmonella SL.1344 strain [42] after receiving an
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oral immunization with attenuated S. typhimurium BRD509
vaccine strain that expressed FliC and FljB flagellins (dipha-
sic S. typhimurium has two flagellin genes—the flagellin in
phase I is FliC and the flagellin in phase II is FIjB [43]). In
addition, it is another promising way to develop oral probi-
otic live vaccine strains or oral attenuated (or non-virulent)
salmonella live vaccine strains by integrating heterogeneous
antigens into the hypervariable region of flagellin of probi-
otic strain [44] or attenuated (or non-virulent) salmonella
strain [45-47].

In summary, it is commonly acknowledged that flagellin
can boost an antigen-specific immune response when used as
an adjuvant. This will facilitate the development of flagellin-
based vaccines that are safer and more effective, as well as
their entry into oral clinical trials.

2.1.3 Bacteria-Derived Enterocyte Targeting Proteins

Expression of enterocyte binding proteins derived from
some pathogenic bacteria on the surface of probiotic strains
as adjuvants to deliver eukaryotic expression plasmids into
host intestinal epithelial cells could be an effective oral
DNA vaccine strategy [36]. Internalin A (InlA) in Listeria
monocytogenes (L. monocytogenes) and fibronectin binding
protein A (FnBPA) in Staphylococcus aureus (S. aureus)
are well-known enterocyte targeting proteins. InlA is a cell
wall protein that allows L. monocytogenes to bind to and be
internalized by epithelial cells [48]. And FnBPA is an epi-
thelial cell binding protein that can bind to fibrinogen, elas-
tin, and fibronectin allowing for internalization of S. aureus
into non-phagocytic cells [49]. When InlA (or mInlA, the
mutated form of InlA [Ser192Asn and Tyr369Ser]) [50] and/
or FnBPA [51-53] were expressed on the surface of lac-
tic acid bacteria (LAB) strains, these recombinant strains
acquire the ability to invade mammalian cells through the
interaction between InlA and/or FnBPA and cellular recep-
tors, resulting in the increase of targeted antigens cDNA in
the intestinal lumen and the enhancement of host immune
response [50-53].

2.1.4 Other Bacteria-Derived Proteins

Rarely investigated as mucosal adjuvants, some bacterial
proteins and messengers still lack a clear understanding of
how exactly they trigger immunity. However, they could be
candidates for oral vaccine adjuvants because of their capac-
ity to facilitate the immune response to antigens.

Muramyl dipeptide (MDP) is part of the bacterial cell
wall and is delivered as a dipeptide with tuftsin, a biologi-
cally active compound [54, 55]. Although their roles in oral
immune adjustment have not been fully elucidated, it has
been demonstrated that MDP and tuftsin can activate APCs
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[55]. In the study by Jiang et al. [54], the fusion protein
of MDP and tuftsin was utilized as an adjuvant to modify
the Lactobacillus casei vaccine strain. The results showed
that antibody and T-cell responses were improved after oral
administration in BALB/c mice.

PorA is an outer membrane protein (OMP) from the Neis-
seria meningitidis [56]. It is remarkable that PorA has an
important feature of oral protein adjuvants, namely resist-
ance to proteolytic enzymes in the GIT [57]. It has the poten-
tial to act as an oral adjuvant when conjugated to antigens.
For example, when PorA was fused with the H. pylori HpaA
antigen and expressed in Lactococcus lactis, PorA could sig-
nificantly enhance the antibody response against the HpaA
antigen after oral administration in mice [57].

3'5'-Cyclic di-adenosine monophosphate (c-di-AMP) is
a bacterial second messenger that has strong mucosal adju-
vant activity and numerous effects on the immune system,
including type I IFN responses, promotion of Th1 and Th2
responses, increasing lymphocyte proliferation, and activa-
tion of APCs [58, 59]. Oral administration of recombinant
L. lactis strains co-producing c-di-AMP and an anti-Trypa-
nosoma cruzi antigen resulted in a 7. cruzi-specific immune
response

The Salmonella resistance to complement killing (RCK)
protein plays an important role in interfering with comple-
ment killing and invading cells, including epithelial cells
and APCs [60, 61]. The use of RCK as an oral adjuvant for
the L. lactis vaccine strain successfully increased immune
responses, conferring full protection against very-virulent
infectious bursal disease virus (IBDV) challenge [62].

2.2 Protozoan-Derived Adjuvant Variant-Specific
Surface Proteins

A novel oral adjuvant candidate could be achieved from
parasitic protozoa, Giardia lamblia, which colonizes in the
lumen of the upper small intestine of many vertebrate hosts.
Serradell et al. [63] reported the variant-specific surface
proteins (VSPs) from the Giardia lamblia surface can not
only resist proteolytic digestion and extreme pH in GIT, as
well as temperatures, but also stimulate host innate immune
responses in a TLR-4-dependent manner. They constructed
chimeric VSP-pseudotyped VLPs expressing hemagglutinin
(HA) and neuraminidase (NA) of the influenza virus. These
VSP-pseudotyped VLPs, but not plain VLPs, produced
robust immune responses, protecting mice from influenza
infection and HA-expressing tumors after oral immuniza-
tion. This versatile oral vaccine adjuvant based on VSPs
can be applied to antigens from different infectious agents
or tumors and facilitate their use in remote areas where cold-
chain for vaccine is not guaranteed.
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2.3 Intestinal Inmune Cells Targeting Peptide
Adjuvants

Microfold cells (M cells), a unique subset of epithelial cells
found in the epithelia covering MALT, such as Peyer’s
patches, are used by the mucosal immune system to sample
antigens in the GIT [64]. A variety of substances, including
bacteria, viruses, and antigens, can be transported by M cells
from the lumen to the underlying lymphoid tissues thanks to
their great transcytotic ability [65-68]. Additionally, various
antigens delivered by M cells can be sampled and captured
by DCs positioned inside or beneath the epithelium [69, 70].
In addition, DCs can extend their probing dendrites into the
lumen to sample commensal or microbial immunogens after
passing through tight junctions to reach the gut epithelia
[71]. These DCs subsequently migrate into the lymphoid
follicles, where processed antigens are presented to B and
T cells to sequentially trigger humoral (IgA) and T-cell
immune responses [68, 72]. The aforementioned immuno-
logic mechanisms of M cells and DCs can be exploited for
the development of oral vaccine adjuvants. Therefore, target-
ing intestinal immune cells (such as M cells and/or DCs) is
a promising strategy for developing oral vaccine adjuvants.

2.3.1 M Cell-Mediated Oral Adjuvants

In peroral mucosal vaccination, targeting M cells is consid-
ered a frontline prerequisite for effectively inducing anti-
gen-specific immunostimulatory effects [73]. In the GIT, M
cells are the antigen-collecting portals located on the FAE
of Peyer’s patches and the gut-associated lymphoid tissue
(GALT) of different species, which facilitate to transport
antigens from gut lumen to the submucosal immune system
[68, 74, 75]. M cells are believed to play a role in controlling
gastrointestinal infection and immunity [73]. Therefore, M
cell targeting might be a promising strategy for developing
effective oral vaccine adjuvants [76].

M cell-targeting peptides Through phage display technol-
ogy, Cho and colleagues [77] identified an M cell-homing
peptide, CKS9 (CKSTHPLSC), which can facilitate the tran-
scytosis of target antigen in M cells. In addition, accord-
ing to Kim et al. [78], fusion of enhanced green fluores-
cence protein (EGFP) with another M cell-homing peptide,
Col, could direct EGFP to bind to M cells and effectively
transport it to mucosal immune induction sites to improve
immune induction. Soon afterwards, with M cell-targeting
peptides (Col or CKS9) as an oral vaccine adjuvant and
LAB strain as an oral delivery vector, researchers tried to
develop probiotic-derived oral vaccines against porcine diar-
rheal diseases, including porcine epidemic diarrhea (PED)
[79] and swine dysentery [80], and obtained encouraging
experimental outcomes after oral administration in mice.

In addition, the efficient uptake of antigens by M cells
requires specific surface receptor molecules. Targeting the
inherent receptors specifically expressed on the surface of
M cells is another way to target M cells to deliver antigens
to improve vaccine efficacy. Glycoprotein-2 (GP-2) is a
glycosylphosphatidyl inositol anchoring protein that is spe-
cifically expressed on M cells and serves as a transcytotic
receptor for luminal antigens [81]. Therefore, targeting GP-2
with specific ligands should increase antigen delivery to the
immune initiation sites. Khan et al. [82] selected a GP2-
binding peptide ligand, Gb-1, through phage library screen-
ing, which showed high binding affinity to GP-2. When
fused with EGFP, Gb-1 significantly enhanced the uptake
of EGFP by M cells compared with EGFP alone. Likewise,
the Gb1-EGFP fusion induced effective mucosal and sys-
temic immune responses after oral administration in mice.
Therefore, exploiting the GP2-binding peptide Gb-1 for oral
vaccine delivery would be a realistic approach.

Cytokine receptor activator of nuclear factor kappa B
(NF-kB) ligand (RANKL). The proportion of M cells in
intestinal epithelial cells is very low, accounting for approxi-
mately 1% of the total intestinal surface [68]. Therefore, if
the number of M cells could be increased, it would be a
promising technique to improve the effect of oral vaccines. It
has been well-documented that the cytokine receptor activa-
tor of the nuclear factor Kappa B (NF-kB) ligand (RANKL)
is a prevalent control factor for inducing M cells to differ-
entiate from intestinal epithelial precursor cells by interact-
ing with the cytokine receptor activator of NF-kB (RANK)
expressed on the sub-epithelium of Peyer’s patches in the
intestinal tract [83—-85]. It has been proven that systemic
administration of exogenous soluble RANKL (sRANKL)
can correct the M-cell deficiency and uptake impairment
in the Peyer's Patch [73]. In this regard, oral immunization
by administering RANKL to induce the supraphysiological
amount of M cells and then administering M cell-targeting
antigens may be a viable approach to enhance the effect of
oral vaccination.

A recombinant L. lactis IL-1403 producing and secret-
ing soluble RANKL (sRANKL-LAB) constructed by Kim
et al. could increase the expression of M cells in mice to be
1.51-fold higher than that in the untreated group through
oral administration [83]. Maharjan et al. firstly administered
intraperitoneally (or systemically) transmembrane RANKL
(mRANKL) to mice and then delivered microparticulate
antigen orally, which significantly increased the expression
of M cells in FAE, showing similar effect as SRANKL-LAB
[85]. They also demonstrated that RANKL-mediated trans-
cytosis of antigens through M cells can enhance mucosal and
humoral immunity. Choe et al. constructed RANKL-secret-
ing L. lactis (LL RANKL) as an oral adjuvant for the aP2
subunit (soluble recombinant partial spike S1 protein from
PEDV) vaccine loaded in hydroxypropyl methylcellulose

A\ Adis



158

B.Ouetal.

phthalate (HPMCP) microspheres (HPMCP [aP2] plus LL
RANKL) [86]. Their results showed that titers of virus-spe-
cific IgA antibodies in colostrum, and neutralizing antibod-
ies in serum of sows vaccinated with HPMCP (aP2) plus
LL RANKL increased significantly, and the survival rate
of newborn suckling piglets delivered by sows vaccinated
with HPMCP (aP2) plus LL RANKL was similar to that
of piglets delivered by sows vaccinated with a commercial
PED killed vaccine. These preclinical studies show that oral
administration of RANKL is a promising adjuvant strategy,
which could be used for effective oral vaccination and even
oral therapeutic administration.

2.3.2 Dendritic Cell-Targeting Ligands

DCs represent the interface of the innate and adaptive
immunity, and DCs play a pivotal role in priming T-cell
immune responses against the inoculated antigen. There-
fore, DCs are the major determinants of vaccination,
so targeting oral vaccines to DCs is another strategy to
enhance vaccination efficacy [87-89]. With DC-targeting
peptides (DCpep, FYPSYHSTPQRP) as adjuvant, many
researchers tried to utilize various LAB strains (including
Lactobacillus plantarum, L. casei, Lactobacillus acido-
philus, Lactobacillus saerimneri, L. lactis, etc.) as oral
delivery vectors to develop oral vaccines for zoonotic or
veterinary infectious diseases, such as Bacillus anthracis,
and obtained good preclinical research results in animal
model experiments of various diseases (Table 1). These
research cases showed that modifying and specifically
targeting a certain antigen to DCs can enhance antigen
uptake.

2.4 Small Molecular Immunomodulatory Proteins

SMIPs are synthesized and secreted by a variety of tissue
cells (mainly immune cells). They have many biological
functions, such as regulating innate immunity and adaptive
immunity, hematogenesis, cell growth, pluripotent stem
cells and damaged tissue repair. To date, SMIPs used in the
research of peroral vaccine adjuvants are mainly cytokines
and Tal.

2.4.1 Cytokine-Derived Oral Adjuvants

Cytokines are small proteins released by various cell types.
Their functions are to stimulate, attract, and regulate the
activity of immune cells (especially T cells), enhance the
signal transduction of APCs, and sequentially improve the
immune response to pathogens. They play a critical role
in the regulation of innate and adaptive immunity [93,
94]. Cytokines have already been used orally to steer the
immune system towards an increase in local cytotoxic T
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lymphocyte (CTL) activity and/or increased IgG and IgA
titers. Some cytokines have been investigated as adjuvants
for oral vaccines, and success has been reported in various
preclinical studies, in which IL-2 is the most widely used
oral adjuvant (Table 1). In particular, by genetically modi-
fying probiotic strains (L. casei strain or Bacillus subtilis
spores) to express corresponding host cytokines (such as
IL-1p [95, 96], IL-2 [97-99], IL-6 [75], IL-12 [100], and
granulocyte-macrophage colony-stimulating factor [GM-
CSF] [101]), and oral coadministration with antigens or
vaccine strains could significantly stimulate the production
of specific antibody response in animals compared with
the control groups. In some animal challenge tests, obvi-
ous protective immunity could be produced to fight against
various infectious diseases, such as H. pylori infection [98,
99], Leishmania major infection [100], rabbit hemorrhagic
disease (RHD) [97], and canine corona virus (CCV) [101].
Despite the above promising results, the potential safety
concerns of cytokines need to be considered before using
them as adjuvants [93]. According to the immunological
properties of target antigens (or diseases), selecting specific
and suitable cytokines as oral adjuvants needs to be based
on the expected immune response of vaccination and its
known influence on immune cells, but this is still one of the
challenges of current immunological research. Overall, the
optimal regimen of cytokines should be determined before
starting clinical studies.

2.4.2 Thymosin a-1

Tal is a non-toxic immunomodified peptide hormone
secreted by the thymus. It plays a very important role in cel-
lular immune response by triggering T-cell maturation, aug-
menting T-cell function, developing antibody production,
promoting reconstitution of immune defects, and increasing
cytotoxic cells, Th1 and Th2 cytokine production, and IgG
and intestinal sIgA production [102—-104]. On account of its
adjuvant attributes, by conjoining with the CSFV-E2 anti-
gen and displaying it on the surface of L. plantarum, Tal
could be used as an adjuvant of oral vaccine against classical
swine fever virus (CSFV), which showed that Tal molecule
adjuvant could enhance immune response and augment spe-
cific lymphocyte functions [102]. Therefore, Tal will be a
promising adjuvant strategy in the development of an oral
LAB vaccine [36].

2.5 FcRegion of Inmunoglobulin G

As a potential adjuvant, the Fc region of IgG has attracted
considerable attention. More and more evidence has demon-
strated that fusion of the Ig Fc domain with the desired pro-
tein can facilitate dimerization of the protein, thus potently
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elevating the pharmacological and immunological character-
istics of the protein [105—107], because the Fc region of IgG
specifically binds to the FcRn (neonatal Fc receptor for IgG),
which mediates IgG transport across the polarized epithe-
lial cell lining on the mucosal surfaces [108]. As we know,
IgG plays a predominant role in providing immune defense
against foreign pathogens. Therefore, researchers have tried
to target pathogenic antigens to FcRn as a new strategy to
overcome intestinal epithelial barriers for mucosal vaccine
delivery and drug therapy. Fc fusion proteins, or the recom-
binant proteins constructed by fusing the desired pathogenic
antigens with the Ig Fc domain, have recently been utilized
to produce vaccine candidates against infectious agents,
including herpes simplex virus (HSV; gD-Fc) [109], pseu-
dorabies virus (PRV) (gB-IgG2aFc) [110], HIV (Gag-Fc)
[111], influenza A (HIN1) virus (3M2e-Fc) [112] and classi-
cal swine fever virus (CSFV) (E2-Fc) [113]. The aforemen-
tioned Fc fusion proteins could improve humoral and cel-
lular immune responses by oral or intranasal immunization.

2.6 Biogenic Composite Oral Adjuvants

By combining two or more biogenic adjuvant materials to
form a new composite adjuvant regimen, it is possible to
improve mucosal immunity of target antigens in the intes-
tine lumen. In this way, the advantages of each adjuvant
could be fully utilized to enhance the overall immune effect.
Until now, only the combination of intestinal immune cells
targeting peptides and cytokines or the combination of two
intestinal immune cells targeting peptides have been used
as composite biogenic adjuvants in the development of oral
vaccines, achieving good preclinical results. In particular,
Li et al. [75] reported a novel biogenic composite mucosal
adjuvant, IL-6-CKS9, which was a recombinant cytokine
produced by conjugating an M cell-targeting peptide (CKS9)
with the c-terminus of murine IL-6. Oral administration of
recombinant L. lactis IL-1403 vaccine strain containing
the above composite adjuvant promoted mucosal immune
response. In addition, through combining the M cell-target-
ing peptide (Col) and DC-targeting peptide (DCpep) as a
composite adjuvant, Ma et al. [114] genetically engineered
a Lactobacillus vaccine strain that could target intestinal
M cells and DCs and express COE antigen of PEDV. The
recombinant strain efficiently induced anti-PEDV mucosal,
humoral, and cellular immune responses in mice after oral
administration. This suggests that the combination of Col
and DCpep is a promising adjuvant strategy for oral probi-
otic vaccines. It is believed that more biogenic composite
oral adjuvants will appear in the future.

3 Non-biogenic Oral Vaccine Adjuvants

Non-biogenic oral vaccine adjuvant materials are mostly
polymeric microparticles/nanoparticles. They have many
advantages, such as good biocompatibility, biodegradabil-
ity, easy processing and modification, controllable surface
properties, etc., and they could deliver and protect DNA and
antigen protein of oral vaccines (or drugs) and control their
release. Beyond that, they also possess mucosal absorptiv-
ity and immunostimulatory activity to activate or enhance
immunity. Therefore, the application of non-biogenic adju-
vant materials in oral vaccine research, and even in biomedi-
cal research, has become increasingly popular, showing
great application prospects (Table 2).

3.1 Alum

Alum, also referred to as ‘aluminium salts’, encompass alu-
minium potassium sulphate, aluminium hydroxide, alumin-
ium phosphate, and amorphous aluminium hydroxyphos-
phate sulfate [115]. Alum is one of the most widely accepted
vaccine adjuvants and is a component of several licensed
parenteral vaccines [116]. Kapusta et al. [117] reported oral
administration with nanogram doses of alum-adjuvanted
hepatitis B surface antigen (HBsAg) in mice-induced
humoral immune response at the protective level. How-
ever, alum is unable to enhance cell-mediated Th1 or CTL
responses, which are vital to control most intracellular path-
ogens [118]. Furthermore, alum is considered a poor inducer
of mucosal immunity [37].

3.2 Polymer-Based Microparticle/Nanoparticle Oral
Adjuvants

To overcome the harsh environment of the GIT, differ-
ent types of polymer-based nanoparticles (including syn-
thetic and natural polymers) have been widely studied for
the preparation of various microparticle/nanoparticle vac-
cines (or nanoparticle adjuvants) for the GIT due to their
biocompatibility, biodegradability, non-toxic nature, and
ease of modification into desired shapes and sizes, as well
as protecting the vaccine bioactivity from adverse situations
[2, 119]. Polymer-based nanoparticle adjuvants are made
of polymers such polyanhydride, poly (ethylene-glycol),
PLG, PLGA, poly(lactic acid) [PLA], chitosan, alginate, and
their derivatives, among others, and they have demonstrated
enhancement of intestinal immune responses in vaccines for
preventing various infections and treating various inflamma-
tory diseases [7]. In this part, the application and research
progress of polymer-based microparticles/nanoparticles as
adjuvants for the peroral vaccines were reviewed.
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3.2.1 Polyanhydride-Based Oral Adjuvant Materials

Polyanhydrides (PAHs), a class of synthetic biodegradable,
non-cytotoxic, biocompatible polymers, are polymerized
by methyl vinyl ether and maleic anhydride [120, 121].
PAHs are inherently highly reactive to water, thus leading
to relatively rapid hydrolytic degradation, breaking down
into carboxylic acids without cytotoxicity [121]. PAHs have
been used in vaccine delivery systems for a long time, and
polyanhydride nanoparticles (PNPs) are licensed for oral
drug delivery in the UK [121-123]. In fact, PAHs are also a
promising oral vaccine encapsulating material with the func-
tion of adjuvant and carrier. First, polyanhydride particles
are cleaved in the gut to expose carboxylic acid groups that
form hydrogen bonds with the hydroxyl groups of glycopro-
teins in the gut mucus, giving polyanhydride particles their
mucoadhesive properties [124, 125]. Second, it has been
reported that polyanhydride particles possess intrinsic adju-
vant properties, which can activate APCs and regulate the
immune responses [121, 126]. Furthermore, polyanhydride
particles have been demonstrated to be able to provide sus-
tained release of protein antigens via surface erosion [121,
125]. In addition, polyanhydride materials can be made into
nano-encapsulated formulations by nanotechnology, which
can exert better adjuvant effects. PNP-based vaccines have
been shown to successfully encapsulate and release antigens,
activate B and T cells, and induce both antibody- and cell-
mediated immunity towards a variety of immunogens [127].
Moreover, PNPs act as agonists of various TLRs (TLR2, 4,
and 5) [10, 126], innate immunity, complement system, and
APCs to modulate the immune responses and induce long-
lasting immunity [121, 126, 128]. Renu et al. reported that
mucoadhesive PNPs could protect the vaccine cargo and
deliver it to intestinal immune sites to elicit robust mucosal
immunity and mitigate Salmonella colonization and shed-
ding [125]. Overall, PNPs have potent immune adjuvant
properties when administered orally and can target immune
cells of chickens [125], mice [129, 130], rats [131, 132], and
other animals.

3.2.2 Poly(p,L-Lactide-co-Glycolide)
and Poly(p,L-Lactic-co-Glycolic Acid)

PLG is a biodegradable and biocompatible polymer [133].
Microparticles prepared from PLG have been proven to be
effective adjuvants for a variety of antigens because micro-
encapsulation of PLG can protect antigens from adverse deg-
radation, allow sustained and prolonged release of antigens
for a long time, and enhance uptake of antigen by APCs
[134]. These APCs containing PLG-microparticles are then
delivered to specific lymphoid compartments, such as the
spleen and mesenteric lymph nodes, where they effectively
present antigenic epitopes to T lymphocytes, especially

Th1 and Tc, thus inducing strong specific cell-mediated
immunity (Fig. lel) [134, 135], which is urgently needed
for eliminating intracellular pathogens in host cells. Kim
et al. reported that using H. pylori lysates encapsulated in
PLG nanoparticles as an oral vaccine candidate could induce
the H. pylori-specific mucosal and systemic responses in
mice, and enhanced Th2-type responses [136]. Kofler et al.
reported that the pulmonary and serum immune responses
of BALB/c mice were enhanced by oral immunization with
LW50020 encapsulated with PLG microspheres [137].
Ramya et al. used PLG microspheres as an oral delivery
system for f-propiolactone inactivated concentrated rabies
virus (CRV) and found that Th1-mediated cellular immunity
was activated after oral administration of PLG+CRYV in mice
[138]. In addition, PLG microspheres also have many poten-
tial advantages in gene therapy [133].

PLGA nanoparticles are US FDA-approved biocompat-
ible and biodegradable polymers, which are widely used
in preclinical vaccine delivery. PLGA has the functions of
delivery device, protection, sustained release of encapsu-
lated antigen, and enhancement of antigen uptake during
vaccination [139-141]. In addition, PLGA combined with
pH-responsive materials can adapt to the extreme GIT more
efficiently and has the potential to become an oral vaccine
adjuvant. Tan et al. designed an acid-resistant PLGA nano-
particle (HP55/PLGA-CCF) using pH-responsive material,
HP-55, which was an effective immunomodulator and an
oral carrier to enhance the efficacy of subunit vaccines. Mice
immunized with HP55/PLGA-CCF nanoparticles could
induce high levels of urease-specific antibodies and mem-
ory T-cell responses [142]. As pointed out by Munang’andu
and Evensen [143], adjuvants that serve as antigen delivery
vehicles and immunostimulants are able to enhance anti-
gen uptake by APC. Furthermore, PLGA has the above
two inherent adjuvant properties [144]. PLGA NP-rOmpW
(i.e., the outer membrane protein W [OmpW] of Aeromonas
hydrophila encapsulated in PLGA nanoparticles) provided
dose-dependent protection against A. hydrophila infection
in Rohu (Labeo rohita Hamilton) after oral administration
[140]. In general, the design of PLGA nanoparticles as an
oral immune adjuvant is a promising strategy to improve
antigen uptake and vaccine efficiency.

3.2.3 Chitin, Chitosan and Their Derivatives

Chitin particles possess TLR-2-dependent adjuvant activity
and can augment the Th1, Th2, and Th17 antigen-specific
immune responses when admixed with protein antigens
[145]. Chitosan (CS), a deacetylated form of chitin, is a
polysaccharide composed of N-acetyl-p-glucosamine and
D-glucosamine [146]. Because of its low toxicity, excellent
biocompatibility, biodegradability, antimicrobial activity,
mucoadhesive properties, and permeation-enhancing effects,
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chitosan has been widely used as a potential excipient for the
oral delivery of DNA, peptides, and live attenuated virus
[147-151]; however, its limited mucoadhesive strength and
low water solubility at neutral and basic pHs are considered
as two major drawbacks of its biomedical applications. The
chemical modification of chitosan results in quaternized chi-
tosan [152] or its derivatives, such as N-trimethyl chitosan
(TMC) [153], O-2'-hydroxypropyltrimethyl ammonium
chloride chitosan (O-2'-HACC) [154], and mannosylated
chitosan (MCS) nanoparticles [155]. This enhanced the
mucoadhesive properties of chitosan. In addition, many
researchers are trying to optimize chitosan nanoparticles
and combine them with other nano-materials for composite
adjuvants, which can promote a more efficient immune func-
tion and serve as a promising carrier for oral protein vaccine
delivery [146].

3.2.4 Alginate and Its Derivatives

Alginate is a non-toxic, biodegradable, low cost, readily
available polysaccharide copolymer containing (1-4)-linked
B-p-mannuronate and a-L-guluronate residues, and is a
mucoadhesive, biocompatible, non-immunogenic substance
[2]. Alginate has been widely used in drug delivery because
of its ability to contract in the stomach and release its cargo
in the intestine. Alginate polymer as a single component
is rarely used as an adjuvant. Alginate would usually be
anchored/coated with chitosan or other electropositive mate-
rials by chemical modification to develop alginate-based
composite adjuvant formulations for oral protein antigens
(or vaccines) delivery (Tables 2, 3), such as alginate-coated
chitosan microparticles (ACMs) [156] and alginate-chitosan
coated layered double hydroxide nanoparticles (LDHs)
nanocomposites (ALG-CHT-LDH) [157].

3.3 M Cell-Targeting Polymeric Particles (Ulex
Europaeus Agglutinin-1)

UEA-1 is a lectin with specific binding activity to epitopes
containing o-L-fucose [158]. UEA-1 can exclusively bind to
M cells of mouse small intestine [159] and has been identi-
fied as an M cell-selective molecular marker [160]. Bioac-
tive UEA-1 has been explored in the present investigation
for targeted oral immunization. Gupta and Vyas reported
UEA-1 conjugated liposomes as an oral M cell-targeted
vaccine delivery vector [161]. In their study, the UEA-1
conjugated liposomes were predominantly targeted to the
M cells. The serum anti-HBsAg IgG titer was obtained after
oral immunization with HBsAg-encapsulated liposomes
conjugated with UEA-1 for 3 consecutive days. The boost-
ing immune effect was comparable with the titer recorded
after single intramuscular immunization with alum-HBsAg
[161]. Moreover, UEA-1-conjugated liposomes induced
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higher sIgA levels in mucosal secretions and cytokine levels
in the spleen homogenates [161].

3.4 Alpha-Galactosylceramide

a-GalCer, a synthetic glycolipid, is a potent inducer of the
invariant natural killer T (iNKT) cells, which are an impor-
tant innate immune cell type [162]. a-GalCer can be pre-
sented by the CD1d molecules on the APC to NKT cells
[163], which leads to activation and expansion of NKT
cells, and subsequently induces full maturation of DCs in
the spleen after immunization [162]. Therefore, a-GalCer
is identified as a non-toxic oral adjuvant. It has recently
been shown that a-GalCer acted as an oral active adjuvant
to induce T-cell immunity against pathogenic bacteria and
viruses through efficient activation/maturation of DCs.
According to studies, a-GalCer potentiated mucosal immune
responses to the HIV model envelope peptide (R15K pep-
tide) [162], ETEC vaccine [164], V. cholerae vaccine [14],
and whole-cell killed (WCK) H. pylori candidate vaccine
[165] through oral immunization. The study by Davitt et al.
demonstrated that a-GalCer was as effective as the ‘gold
standard’ mucosal adjuvant CT in promoting intestinal IgA
responses against a novel ETEC antigen [164]. In another
study by Davitt et al., the addition of a-GalCer enhanced
mucosal immunogenicity of Dukoral®, the most widely
licensed oral cholera vaccine (OCV) internationally, and
significantly increased intestinal anti-LPS and anti-cholera
toxin B subunit (CTB) IgA responses against V. cholerae
infections [14]. Longet et al. demonstrated that oral immu-
nization of H. pylori WC antigen adjuvanted with a-GalCer
significantly reduced bacterial loads in the stomach of H.
pylori-infected mice; this reduction was IFNy- and CD1d-
dependent, similar to CT as adjuvant [165]. In conclusion,
a-GalCer is an effective mucosal adjuvant for oral immu-
nization and can enhance the mucosal responses of IgA
and Th1 in mice, but its safety and efficacy in humans still
warrant further evaluation. In addition to its impressive oral
adjuvant effects in mice, a-GalCer has been tested in clinical
trials for the treatment of cancer and hepatitis, in which its
safety has been assessed [14].

3.5 Synthetic Toll-Like Receptor (TLR)-Agonist
Molecules

As mentioned earlier, TLR molecules have been the tar-
get of many new mucosal vaccine candidates. Targeting
one or more TLR(s) might activate sensors of innate TLR
pathogens and promote intracellular signaling cascades
that lead to upregulation of the production of chemokines
and cytokines required for DC maturation, which results
in increased magnitude and quality of immune responses
[93, 166]. Some synthetic TLR ligands could also activate
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Results or immune responses References

Selected antigens or vaccines Animal models or cell

Disease models (pathogens)

Explanations

Table 3 (continued)

Adjuvant names

>
>
(="
=
»

models

[185]

Enhanced M cell targeting

BALB/c mice

Membrane protein B of B.

Swine dysentery (B. hyod-

CKS9-WSC-PLGA MPs Porous PLGA

and transcytosis ability
Showed elevated secretory

hyodysenteriae loaded into

ysenteriae)

MPs coated with M cell-

porous PLGA MPs coated
with the WSC conjugated

with CKS9

homing peptide (CKS9)-
coupled water-soluble

chitosan

IgA responses and sys-

temic IgG responses
Induced both Th1- and Th2-

type responses

[214]

Induced serum anti-HBsAg

C57BL/6 mice

Recombinant HBsAg encap-

HBV

Alginate-coated chitosan

AlgChiPs

IgG and anti-HBsAg sIgA

sulated into AlgChiPs

particles

The immune response results of the above examples are all the results of the oral immunization test

CS chitosan, FMD foot and mouth disease, GM-CSF granulocyte-macrophage colony-stimulating factor, HBsAg hepatitis B surface antigen, HBV hepatitis B virus, IFN interferon, g immu-

noglobulin, /L interleukin, MPs microparticles, NPs nanoparticles, OMPs outer membrane proteins, OVA ovalbumin, PLGA poly(p,L-lactic-co-glycolic acid), SC subcutaneous, sIGA secretory

immunoglobulin A, TGF transforming growth factor, Th T helper, TLR toll-like receptor

TLR signals and subsequently promote immune responses,
which have been exploited as potential adjuvants of mucosal
vaccines. For example, incorporation of the TLR4 agonist
monophosphoryl lipid A (MPL) into nanoparticle vac-
cines could contribute to triggering TLR signaling with
mucosal DCs and subsequently improve the capture effi-
ciency of vaccines [160]. The TLR 7/8 agonists R848 have
showed great potential as oral vaccine adjuvants because
they can directly activate APCs and enhance both humoral
and cellular immune responses, especially Th1 responses
[167]. According to Borducchi et al., oral administration
of Ad26/MVA combined with the TLR7 agonist GS-986
could decrease the level of SIV viral DNA in lymph nodes
and peripheral blood, as well as control and delay virologic
rebound following antiretroviral therapy discontinuation in
SIV-infected Rhesus Monkeys [168].

In addition, CpG oligodeoxynucleotides (CpG-ODN) are
another promising synthetic TLR-agonist adjuvant. They
are short single-stranded synthetic DNA molecules that
can activate the immune system and have been found to be
effective in the prevention and treatment of infectious dis-
eases, allergies, and cancers [16, 169]. CpG-ODN, a ligand
of TLRY, can activate TLR9 on B-lymphocytes and DCs,
showing potent activity in stimulating antigen presentation
and inducing antigen-specific immune response towards the
Th1 phenotype [170]. Alignani et al. reported CpG-ODN-
loaded ovalbumin (OVA) induced specific mucosal and
systemic immune response in mice after oral administra-
tion [171]. CpG-ODN has different classes, such as CpG-
ODN 2007 [172], CpG-ODN 1668 [173], and CpG-ODN
1826 [174], and has also shown potent mucosal adjuvant
activity. Hjelm et al. [175] used a panel of TLR agonists
(PIC [TLR3], FLAG [TLRS5], GARD [TLR7], CpG [TLR9],
CpG-ISS [CpG 1018, alternate CpG motif, TLR9], and
CLO097 [TLR7/8]) as adjuvants combined with Norwalk
VLPs (NV VLPs) coadministered to mice through intra-
nasal and oral routes to determine the mucosal adjuvant
activity of these immunomodulators. Of these, intranasal
co-delivery of VLPs with TLR7 or TLRY agonists (i.e.,
GARD or CpG) produced the most robust and broad-spec-
trum immune response, but oral administration with other
TLR agonists (i.e., PIC, FLAG, and CL097) could not con-
sistently enhance VLP-specific immune responses in mice.

According to our knowledge, there are no human trials
using TLR agonists as oral vaccine adjuvants. These above
studies are preclinical studies, indicating that TLR plays
an important role in inducing immune response in the oral
route.

3.6 Composite Non-biogenic Material Adjuvants

Through chemical modification or nanotechnology, the phys-
icochemical properties of non-biogenic adjuvant materials
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(or polymeric nanoparticles) can be improved by combin-
ing them with another non-biogenic adjuvant material. Their
advantages can be complementary, which is beneficial to
enhance the interaction between nanoparticle adjuvant and
intestinal endocytosis pathways [176, 177]. For instance,
UEA-1 is the M-cell selective molecular signature, which
could exclusively adhere to M cells, and MPL is a TLR ago-
nist. With a combination of UEA-1 and MPL, Ma et al. [160]
reported that the composite material, UEA-MPL-conjugated
PLGA-lipid nanoparticles, can be effectively transported by
M cells and captured by mucosal DCs, showing the poten-
tial of an attractive oral vaccine delivery system for boost-
ing oral immunity. Ma et al. found that OVA-UEA-MPL/
lipid nanoparticles stimulated the most effective mucosal
IgA and serum IgG antibodies during oral vaccination [160].
Sarti et al. used MPL-conjugated PLGA nanoparticles as an
oral adjuvant of OVA in mice [178], and compared with the
control formulation group, it generated significantly higher
IgA titers, which indicated that MPL-PLGA nanoparticles
had the ability to induce mucosal immunity. Salman et al.
reported that mannosamine-coated poly(anhydride) nanopar-
ticles as an oral composite adjuvant of OVA induced strong,
long-lasting systemic and mucosal immune responses than
the non-conjugated vectors [179]. Moreover, Mishra et al.
demonstrated that LTA (Lotus tetragonolobus from Winged
or Asparagus pea)-anchored PLGA nanoparticles could
elicit strong mucosal and systemic response and hence could
be a promising M cell-targeting adjuvant for oral mucosal
immunization against hepatitis B [180]. Alginate-coated
chitosan nanoparticles are of interest because of their great
stability and immunostimulatory properties. They can effec-
tively transport antigens into the M cells and subsequently
induce significant immune responses in serum IgG and
mucosal sIgA levels [156, 181]. Borges et al. demonstrated
that alginate-coated chitosan nanoparticles showed poten-
tial as a delivery system for oral recombinant HBsAg [182].
Most recently, Yu et al. demonstrated that alginate-chitosan
coated layered double hydroxide nanocomposites (ALG-
CHT-LDHs) showed great potential in oral protein vaccine
delivery [157]. In addition, Taha-Abdelaziz et al. reported
that oral administration of PLGA-encapsulated CpG ODN,
and Campylobacter jejuni lysate reduced cecal colonization
by C. jejuni in chickens [183].

The above studies show that the physicochemical prop-
erties of single non-biogenic adjuvant material can be
improved by comprehensive combination of double or triple,
or even quadruple, adjuvant materials through nanotechnol-
ogy, so as to correctly match the size, electric charge, hydro-
phobicity, and other physicochemical properties of antigen,
and so that antigen can cross the mucosal barriers and target
APCs [184]. Through the appropriate combination of a vari-
ety of non-biogenic adjuvant materials, its advantages could
be developed and its disadvantages could be avoided, so as

to construct a universal and powerful oral vaccine carrier
or adjuvant.

4 Biogenic and Non-biogenic Combined
Composite Material for Oral Adjuvants

Nowadays, using conjugation techniques to combine bio-
genic adjuvants (such as M cell-targeting peptides, bacterial
flagellin, or cytokines, etc.) with other non-biogenic adju-
vants to create composite adjuvants can give full play to the
advantages of the activity of each adjuvant, thus enhancing
the overall activity of adjuvants (Table 3). The composite
adjuvant, PLGA microparticles coated with chitosan-cou-
pled M cell-homing peptide (CKS9), can strengthen the
targeting ability to M cells, and the mucosal and systemic
immune responses were induced when it was used to deliver
swine dysentery vaccine [185]. As mentioned previously,
PNPs are natural mucoadhesive polymers that could effi-
ciently deliver antigens to the GALT [179], and flagellar pro-
tein possesses potent immune adjuvant activity. Renu et al.
designed a Salmonella subunit vaccine (OMPs-F-PNPs)
that consisted of PNPs containing immunogenic Salmo-
nella OMPs and entrapped flagellar (F) protein and surface
F-protein-coated PNPs. The vaccine could induce specific
immune response to mitigate Salmonella colonization in
the intestines of chickens vaccinated orally [125]. Yang
et al. used PLGA nanoparticles combined with cytokine as
adjuvant to deliver DNA vaccine of foot and mouth disease,
which significantly enhanced its immunogenicity than naked
DNA [186]. Generally, the conjugation of biogenic adjuvant
and non-biogenic adjuvant as composite adjuvants is another
frequently used and promising way to assist the delivery of
oral vaccine and enhance its immunogenicity.

5 Concluding Remarks, Challenges,
and Future Perspectives

The complex and harsh environment in GIT leads to the
weak immunogenicity of peroral mucosal vaccines. Prepara-
tion of effective adjuvants to enhance the immune response
is an integral part of the development of oral vaccines. Over
the past few decades, several biogenic and/or non-biogenic
adjuvants have been used in the trials of various peroral
mucosal vaccines to enhance their immune responses. At
present, among the aforementioned adjuvant candidates of
peroral vaccines, only dmLT has undergone human clinical
trials and further passed clinical phase I and II trials [187,
188], while other adjuvant candidates are still in animal (or
veterinary or aquatic) experimental stage (Fig. 2). In this
review, some adjuvants have been tested on farm animals,
such as pigs, birds, fish, etc., to develop veterinary vaccines
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(or adjuvants) (Fig. 2). For the development of veterinary
vaccines (or adjuvants), the target animals are the most ideal
animal models. Mice (especially BALB/c mice) are com-
monly used animal models for preclinical trials of adjuvants
(or vaccines) in animals or humans (Fig. 2). Animal models
play a critical role in the in vivo study of the immunology
and pharmacology of oral adjuvant (or vaccines) candidates,
as well as the evaluation of potential applications in humans.
However, it is undeniable that many animal models used
in oral adjuvant (or vaccines) tests have limited predictive
value for the human response to oral adjuvants (or vaccines)
in terms of both efficacy and toxicology [189]. Among the
examples of oral adjuvants (or candidates) we summarized
(Tables 1, 2, 3), there were few reports focusing on the pur-
poseful selection of animal models to evaluate the efficacy
of oral adjuvants. Many researchers chose animal models
for their animal experiments based on the disease types they
were studying, instead of the oral adjuvants, which made it
difficult to translate the positive effects of oral adjuvants on
animal models to humans and required considerable analysis
and debate. It is necessary to improve the existing animal
models to make them more predictive for humans.

An obvious advantage of biogenic adjuvants is that they
can be constructed or optimized by genetic engineering. On
the one hand, gene editing technology is used to remove
their toxicity and optimize their adjuvant performance,
such as from LT to dmLT (R192G/L211A) and from CT to
mmCT. On the other hand, the biogenic adjuvants could be
fused with the target antigens by DNA recombination tech-
nology to construct the fusion protein vaccines. In addition,
most biogenic adjuvants could be encoded and expressed in
beneficial bacterial strains, such as probiotics (e.g., LAB),
attenuated live bacteria, or gut commensal bacteria, as a
protective strategy across the GIT against degradation from
gastric acid and proteases, etc. This is also another promis-
ing way to develop oral vaccines. Ideally, adjuvants should
not induce adaptive immune responses against themselves,
but should promote appropriate immune response to accom-
panying antigens [190, 191]. However, some well-known
protein-based oral adjuvants listed above, including FliC
[192, 193], CTB [194], FnBPA [51], PorA [195], and even
the well-studied dmLT [196], have been reported to produce
a certain degree of immune response against themselves in
the host, thereby potentially affecting their effectiveness as
adjuvants. However, FIjB has been reported to produce no
immune response against itself [40], and an appropriate oral
dose of dmLT is still safe, well tolerated, and reasonably
immunogenic [196].

Using non-biogenic adjuvants, protein antigens could be
coated in a variety of ways, such as lipidation, nanoparticle
encapsulation (using polymersomes, for example), adsorp-
tion and conjugation to polymer-based microparticles/
nanoparticles (using PLGA, chitosan, alginate, etc.) and/

A\ Adis

or additive/synergistic admixture [167]. In addition, com-
bining two or more types of adjuvant materials (including
biogenic and non-biogenic materials) to construct com-
posite adjuvants can make up for inherent flaws of some
biogenic adjuvants, such as their short half-life and ease
of degradation in GIT, and strengthen their immune effects
in the intestinal tract. There are also some nanomaterials
that can control the slow release of vaccines. For example,
some TLR ligands are often chimeric with other nano-
adjuvant materials, therefore the adjuvant effect is better.

Undoubtedly, in order to exert the adjuvant activity
for peroral mucosal vaccines, more attention should be
focused on the endogenous immune activation mecha-
nisms of adjuvants and the immunological and pharma-
cological relationship among adjuvants, vaccines (or
antigens) and the host gastrointestinal mucosal immune
system. Although there are various adjuvant strategies,
they should all be studied in detail before selecting the
optimum formulation. The formulation of vaccines and
adjuvants should not only maintain the immunogenicity of
the vaccine but also protect their adjuvant activity. This is
an issue that needs meticulous consideration when design-
ing oral vaccines.

The development of oral adjuvants still presents many
challenges. As mentioned earlier, the GIT is a complex and
harsh environment, which leads to the instability of adju-
vants, especially biogenic adjuvants, and hinders the interac-
tion between oral adjuvants and intestinal epithelial cells. On
the other hand, the low proportion of M cells in the intes-
tinal epithelium would limit the effect of M cell-mediated
adjuvants. However, we believe that more and more oral
adjuvants, similar to RANKL, that can induce M-cell differ-
entiation will emerge in the future to change this dilemma.
The potential safety concerns of adjuvants, such as cytokine-
derived adjuvants [93], are another challenge. The effective
targeting, pharmacokinetics and nanotoxicology of some
potential oral adjuvants need to be further evaluated.

As mentioned previously, the targeting peptides that tar-
get intestinal immune cells (or receptor proteins on their
cell surface) can improve the binding ability of antigens to
bind to intestinal DCs or M cells (or receptors). Therefore,
in addition to the targeting peptides of human and/or mouse
intestinal immune cells (and their receptor proteins), some
researchers are trying to screen and identify specific M cells
or DC-binding peptides of other animal species for studies in
veterinary or comparative medicine by using the cell-based
phage display technique combined with high-throughput
sequencing; for instance, the chicken DC-binding peptide
(SPHLHTSSPWER, named SP) [197] and the porcine
TLR2-targeting peptide ligand (NAGHLSQ) [198] [porcine
TLR?2 is highly expressed in M cells and plays an important
role in pig mucosal immune responses]. Aiming at M cells
or DCs (or receptor proteins on their cell surface), it will
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Biogenic adjuvants

Bacteria-derived adjuvants
Bacterial enterotoxin adjuvants
dmLT
mmCT
Bacterial ﬂagelTln
FliC and FIjB
[Bacteriat enterocyte-targeting proteins|
InlIA
FnBPA

Other bacterial adjuvants
MDP
PorA
c-di-AMP
RCK —~—

[Inestinal immune cells targeting peptides

M-cell-mediated oral adjuvants,
M-cell targeting peptides
CKS9

Col
Gbl1

RANKL \
Dendritic cells targeting ligands.
pep —
\ /
SMIPs li
~ Cytokine-derived adjuvants
IL-2

IL-1p

Composite biogenic material adjuvants

IL-6 v
IL-12 -
| GM-CSF ==
| Thymosin o -1 |
Fec region of IgG )j \ ’

1L-6-CKS9 1
l Col-DCpep i

Flagellin protein-coated PNPs
CKS9-CNs

PLGA MPs coated with CKS9-coupled CS
Alginate-coated chitosan NPs
Flagellin protein coated CS NPs

Non-biogenic adjuvants
I Alum |

Polymer-based microparticles/nanoparticles

Polyanhydride based adjuvants
/[ — PLG and PLGA

. A Chitin, chitosan and their derivatives
D Chitin
}v = A = Chitosan

Quaternized chitosan
TMC
0-2'-HACC
MCS NPs

Alginate and its derivatives

a-Galce

MPL
R848
GS-986
CpG-ODN

‘omposite non-biogenic material adjuvants

UEA-MPL-PLGA-lipid NPs
MPL-PLGA NPs
LTA-PLGA- NPs

Alginate-chitosan NPs
ALG-CHT-LDHs
~  PLGA-CpG ODN

PLGA NPs

with cytokine adj

Biogenic and non-biogenic combined composite adjuvants

Fig.2 List of oral adjuvant candidates developed and their cor-
responding in vivo tests. According to the physicochemical proper-
ties, oral adjuvants could be divided into biogenic, non-biogenic,
and a biogenic and non-biogenic combined composite. In vivo tests
for oral adjuvant development have involved humans, rabbits, fish,
rodents, pigs, primates, canines, and chickens. No connection means
the in vivo test has not yet been carried out. a-GalCer alpha-Galac-
tosylceramide, c-di-AMP 3'5'-cyclic di-adenosine monophosphate,
CKS9 M cell-targeting peptide, Col M cell-specific peptide ligands,
CpG-ODN CpG oligodeoxynucleotides, DCpep dendritic cell-target-

be a trend to develop more targeting peptides for different
animal species, especially in the prevention and control of
veterinary infectious diseases. Furthermore, with further
understanding of the mechanisms of action of some less-
studied candidate adjuvants, such as muramyl dipeptide and
tuftsin fusion protein (MT) [54, 55], N. meningitidis PorA
[57], c-di-AMP [58], RCK protein [62], etc., these may be
the future development direction of oral adjuvants.

With the development of oral adjuvants in recent years,
it is believed that more reasonable and effective oral adju-
vants will appear in the future and hence solve the challenges
mentioned.
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