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Abstract
In recent years, an increase in the discovery and development of biotherapeutics employing new modalities, such as biocon-
jugates or novel routes of delivery, has created bioanalytical challenges. The inherent complexity of conjugated molecular 
structures means that quantification of the bioconjugate and its multiple components is critical for preclinical/clinical studies 
to inform drug discovery and development. Moreover, bioconjugates involve additional multifactorial complexity because of 
the potential for in vivo catabolism and biotransformation, which may require thorough investigations in multiple biological 
matrices. Furthermore, excipients that enhance absorption are frequently evaluated and employed for the development of oral 
and inhaled biotherapeutics. Risk-benefit assessments are required for novel or existing excipients that utilize dosages above 
previously approved levels. Bioanalytical methods that can measure both excipients and potential drug metabolites in biologi-
cal matrices are highly relevant to these emerging bioanalysis challenges. We discuss the bioanalytical strategies for analyz-
ing bioconjugates such as antibody–drug conjugates and antibody–oligonucleotide conjugates and review recent advances in 
bioanalytical methods for the quantification and characterization of novel bioconjugates. We also discuss bioanalytical consid-
erations for both biotherapeutics and excipients through novel administration routes and review analyses in various biological 
matrices, from the extensively studied serum or plasma to tissue biopsy in the context of preclinical and clinical studies from 
both technical and regulatory perspectives.

Ruipeng Mu and Jiaqi Yuan have contributed equally to this work.

 *	 Anton I. Rosenbaum 
	 anton.rosenbaum@astrazeneca.com

1	 Integrated Bioanalysis, Clinical Pharmacology 
and Quantitative Pharmacology, Clinical Pharmacology 
and Safety Sciences, R&D, AstraZeneca, 
South San Francisco, CA, USA

Key Points 

The increasing use of new modalities such as bioconju-
gates and novel delivery routes in biotherapeutics brings 
challenges to the bioanalytical field.

Sophisticated bioanalytical methods and comprehensive 
strategies are crucial for the success of drug discovery 
and the development of these emerging therapeutic 
approaches.

Past experience with and knowledge gained from the use 
of small and large molecules can help guide the bio-
analytical strategies and methods development for new 
modalities and novel delivery routes.

1  Introduction

Biotherapeutics have been defined to date as a class of 
drugs that are derived from a living organism and utilized 
for the treatment, prevention, or cure of disease in humans, 
but emerging technologies may require an updated defini-
tion [1, 2]. Compared with synthetic chemical drugs, bio-
therapeutics often have the advantage of highly selective 
targeting, potentially limiting off-target interactions and 
thus adverse events [3]. Modern biotherapeutics emerged 
in the late twentieth century and quickly expanded into a 
variety of therapeutic areas, with diverse modalities such 
as peptides, cytokines, enzymes, and antibodies [4–7]. 
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With recent advancements in protein engineering, biother-
apeutics have further expanded to novel delivery routes 
and advanced bioconjugates to allow for highly specific 
targeted delivery of potent drugs, leading to improved 
therapeutic indexes (TI) and thus patient experiences [8, 
9].

One of the primary goals of drug discovery and develop-
ment is to optimize the TI by increasing the drug’s efficacy 
and minimizing associated toxicities. Modern drug devel-
opment includes an array of different therapeutic modali-
ties aimed at improving the TI and potentially treating 
hitherto underserved patient populations. Bioconjugates 
are chemical fusions of several molecular entities with 
at least one being a biomolecule. For an antibody–drug 
conjugate (ADC), a type of bioconjugate, an antibody tar-
gets a specific receptor expressed by tumor cells and an 
attached drug mediates the therapeutic response. Histori-
cally, the dominant form of bioconjugates has been ADCs 
aimed at the oncology setting, with increased numbers of 
approvals in the past few years. Recently, the implementa-
tion of bioconjugate therapeutics has been expanding to 
immunosuppressive, anti-inflammatory, and antimicrobial 
indications, among others [9].

Besides maximizing the TI, an important consideration 
for drug development is patient centricity. It is critical that 
the medication administration is convenient and comfort-
able. This would benefit patient compliance and thus maxi-
mize the therapeutic potential of the medication. Tradi-
tional routes of administration of biologic drugs have been 
largely limited to various injection routes: subcutaneous, 
intramuscular, or intravenous. Alternatively, microneedle 
technology is being used for transdermal drug delivery. It 
uses micro-scale needles to penetrate the stratum corneum 
without damaging the capillaries or nerves. However, it 
can cause skin irritation and allergic reactions [10–12]. 
Other drug administration methods, especially noninva-
sive routes (e.g., oral or inhalation), are of great interest 
for their patient centricity. For example, oral drugs can be 
easily self-administered, and inhaled drugs can achieve 
rapid absorption and directly target the airways to treat 
respiratory diseases while minimizing systemic exposure 
to the drug, thus increasing its TI [13]. However, signifi-
cant challenges exist for biotherapeutic delivery via non-
invasive routes as biologics are subject to degradation and 
absorption challenges [14–17]. Biotherapeutics may have 
limited absorption from the administration site to circula-
tion and thus require more sensitive bioanalytical meth-
odologies for characterization of their pharmacokinetics 
in circulation. Emerging research into the biodistribution 
of biotherapeutics further adds to the complexity of bio-
analysis because of the sensitivity and selectivity chal-
lenges associated with certain tissue types. As a result, 
the selection of appropriate bioanalytical methodologies 

(e.g., enzyme-linked immunosorbent assay [ELISA], liq-
uid chromatography-mass spectrometry [LC-MS], and 
polymerase chain reaction [PCR]) is critical to generate 
the exposure data necessary to inform drug development. 
Critically, the bioanalytical methodology employed should 
demonstrate consistent performance throughout the drug-
development cycle to enable preclinical or clinical imple-
mentation, especially for studies supporting regulatory 
submissions. Moreover, compared with the conventional 
injection administration routes—where absorption and 
biodistribution characteristics can have lower variabil-
ity—greater intersubject and interoccasion variability is 
common for oral or inhaled biotherapeutics, thus present-
ing an additional bioanalytical challenge. For example, 
for respiratory drugs, the particle size of the droplets and 
the depth of the inhaled breath can result in significant 
differences in the amount of drug absorbed [18]. Another 
challenge arises from the interest in better understanding 
the biotherapeutics’ biotransformations and their potential 
impact on the TI [19].

Bioanalytical strategy for each drug candidate must 
be designed to address specific questions and challenges 
associated with the development of a given drug. Analyti-
cal methodology, identity of analytes, and the timing of 
method application are critical considerations contributing 
to the formation of bioanalytical strategy. Bioanalytical sup-
port for novel bioconjugates and inhaled/oral biotherapeutic 
drugs can be very broad, including pharmacokinetic assess-
ment, biomarker discovery, immunogenicity assessment, 
metabolite identification and quantification, tissue biodis-
tribution, and co-medication quantification, among others. 
The scope of this article is limited to the analysis of active 
pharmaceutical ingredients (APIs), excipients, and their 
catabolites/metabolites in biological matrices. The first part 
of this article focuses on the discussion of bioanalysis for 
novel bioconjugates. We discuss general bioanalytical meth-
ods and strategies for ADC and antibody–oligonucleotide 
conjugate (AOC) quantification and cover applications of 
high-resolution mass spectrometry (HRMS) in biotransfor-
mation for bioconjugates. Method validation/qualification 
considerations are discussed in the context of current regula-
tory expectations. The second part focuses on bioanalytical 
considerations of biotherapeutics by novel routes of admin-
istration. Potential bioanalytical impacts from excipients 
on API quantification are included. Finally, bioanalytical 
considerations for various biological matrices, as well as 
ADME (absorption, distribution, metabolism, and excre-
tion), are applicable to both novel bioconjugates and bio-
logics delivered via novel routes. The structural complexity 
and potential in vivo biotransformations for bioconjugates 
and novel routes of administration for biotherapeutics create 
unique challenges for bioanalysis and call for sophisticated 
bioanalytical support.



183Bioanalysis of Complex Novel Bioconjugates and Delivery Routes for Biotherapeutics

2 � Novel Bioconjugates

The promise of delivering therapeutic agents in a targeted 
fashion to increase their TI underpins the bioconjugate drug 
modality field. Therapeutic conjugates include diverse mol-
ecules, such as ADCs, fusion proteins, proteolysis-targeting 
chimeras, and others [20]. The recently approved moxetu-
momab pasudotox is an example of an immunotoxin that 
emerged conceptually decades ago as an early prototype for 
delivering a toxin selectively to tumor cells using a fusion 
protein [21, 22]. In 2021, the US FDA granted accelerated 
approval of melphalan flufenamide for heavily pretreated 
myeloma, resulting in the first peptide–drug conjugate 
approved for medical use [23, 24]. Although most ADCs are 
directed towards oncology indications, several applications 
have emerged outside the field of oncology [25–27]. Non-
cytotoxic payload conjugates have been drawing increased 
interest [28–30]. One recent example is ABBV-3373, which 
is currently being investigated for the treatment of rheuma-
toid arthritis [31]. It is an ADC designed to target activated 
immune cells instead of tumor cells. ABBV-3373 consists of 
a glucocorticoid payload modulating tumor necrosis factor-
mediated inflammatory pathways conjugated to adalimumab 
[32].

New technologies that modify molecular structures to 
increase the TI are being applied to bioconjugate design. 
Probody® drug conjugate employs a masking peptide pro-
tecting the antibody complementarity determining region to 
limit the binding to healthy tissues. Proteases present in the 
tumor environment could cleave the masking peptide, which 
allows the drug to bind to tumor cells [33]. Bioanalytical 
methods for Probody® analyses should quantitatively moni-
tor the masking peptide in the circulation [34]. One potential 
LC-MS method development challenge for Probody® ADCs 
could emerge if the surrogate analyte peptide employed to 
monitor the masking peptide has poor ionization efficiency 
or chromatographic characteristics. Although this issue is 
fairly common for protein/peptide bioanalysis, it can be 
particularly difficult in this instance as the choice is lim-
ited by the sequence of the masking peptide. Another effort 
involving noncytotoxic payload ADCs is using proprietary 
monodisperse polysarcosine (PSAR) link technology. It uses 
a synthetic PSAR unit that is highly hydrophilic to provide 
“hydrophilic shielding” for the drug payload. This approach 
increases the stability, homogeneity, and drug–antibody 
ratio (DAR) [35]. In addition, ADC molecules containing a 
bispecific antibody backbone or dual payloads have attracted 
more attention in recent years [36–38]. The structure of an 
antibody with two different arms can complicate biotrans-
formation analyses because of the impact from potentially 
different conjugation sites on each antibody arm. Dual pay-
load ADCs require bioanalytical methods that can quantify 

both payloads individually, which adds to the bioanalytical 
complexity.

We focus on bioconjugates that consist of an antibody 
covalently connected with various therapeutic molecules 
(e.g., warhead, oligonucleotide) through a chemical linker. 
Bioconjugates are designed to employ a vehicle (e.g., anti-
body) to deliver the passenger (therapeutic molecule drug) 
to the destination (target cell) in a targeted manner. The het-
erogeneous nature of bioconjugates leads to an increased 
complexity of the analytes that must be measured to fully 
understand their pharmacokinetics, metabolism, efficacy, 
and safety. Bioanalytical strategies must be designed to 
address comprehensive characterization of the pharmacoki-
netic/toxicokinetic and pharmacodynamic properties of the 
drug candidates. Thus, methods with increasing sensitivity 
and specificity as well as the ability to quantify various het-
erogenous forms of the drug substance and biotransforma-
tions, while taking advantage of multiplexing, are highly 
desirable for novel biotherapeutics (Fig. 1).

To address the emerging complexity of bioconjugate 
bioanalysis, multiple methods may be required to support a 
single study. However, it is helpful to apply consistent bio-
analytical strategies and methods to projects with drug can-
didates that share similar structural characteristics, enabling 
data comparability and thereby contributing to the establish-
ment of a bioanalytical platform strategy for a given modal-
ity. The data generated for various molecules could then be 
compared and analyzed to guide future drug discovery and 
development.

2.1 � Antibody–Drug Conjugates (ADCs)

Recently, ADCs have seen steady increases in regulatory 
approvals, with three approvals in 2019 (polatuzumab 
vedotin, trastuzumab deruxtecan, and enfortumab vedo-
tin), two approvals in 2020 (sacituzumab govitecan and 
belantamab mafodotin), and two approvals in 2021 (lon-
castuximab tesirine-lpyl and tisotumab vedotin-tftv). So 
far, the FDA has approved 11 ADCs in the past two dec-
ades [39–60]. Additionally, clinical trials are at various 
stages of evaluating the therapeutic potential of ADCs 
[27]. Table 1 summarizes the bioanalytical methods sup-
porting regulatory submissions for selected FDA-approved 
ADC drugs.

The three fundamental assays used to assess the exposure 
and catabolism of ADCs are total antibody, total conjugated 
warhead (ADC assay), and unconjugated warhead. Depend-
ing on the structure of the ADC molecule and the character-
istics of the warhead, additional assays may provide a better 
understanding of the pharmacokinetics and ADME of the 
molecule. LC-MS/MS is usually utilized for small-molecule 
unconjugated warhead analysis. Total antibody and ADC 
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could be quantified using either ligand-binding assay (LBA) 
or LC-MS methods.

Early-stage projects typically focus on lead selection 
and optimization. Therefore, rapid, high-throughput, and 
efficient pharmacokinetic characterization is typically 
desired. For humanized monoclonal antibodies (mAbs) or 

ADCs in animal studies, generic quantification methods 
can be achieved using either an LBA or an LC-MS assay 
format. A universal LBA method for total antibody is often 
used for the initial pharmacokinetic evaluation, with gen-
eral antihuman immunoglobulin antibodies or ligands 
as the capture and/or detection reagents. Applying LBA 

Fig. 1   Structural complexity of modalities and bioanalytical techniques. LC-MS liquid chromatograph mass spectrometry, mAb monoclonal anti-
body, qPCR quantitative polymerase chain reaction, RT-PCR reverse transcription polymerase chain reaction

Table 1   Bioanalytical methods supporting regulatory filing for selected FDA-approved antibody–drug conjugatesa [142–150]

ADC antibody–drug conjugate, LC-MS/MS liquid chromatography-tandem mass spectrometry, LBA ligand-binding assay, N/A not available
a Gemtuzumab ozogamicin and brentuximab vedotin are not included in the table because the bioanalytical methods information is not available 
from the US FDA
b ADC concentration was calculated based on the measured concentration of unconjugated, conjugated and glucuronidated warhead, assuming an 
average drug–antibody ratio of 8
c ADC assay measuring conjugated warhead

Name FDA approval 
year

ADC assay format Total antibody assay 
format

Unconjugated 
warhead assay 
format

Tisotumab vedotin-tftv 2021 LBA LBA LC-MS/MS
Loncastuximab tesirine‐lpyl 2021 LBA LBA LC-MS/MS
Sacituzumab govitecan-hziy 2020 Derivedb LBA LC-MS/MS
Belantamab mafodotin-blmf 2020 LBA LBA LC-MS/MS
Fam-trastuzumab deruxtecan-nxki 2019 LBA LBA LC-MS/MS
Polatuzumab vedotin-piiq 2019 Hybrid LBA LC-MS/MSc N/A LC-MS/MS
Enfortumab vedotin-ejfv 2019 LBA LBA LC-MS/MS
Inotuzumab ozogamicin 2017 LC-MS/MSc N/A LC-MS/MS
Trastuzumab emtansine 2013 LBA LBA LC-MS/MS
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methods to quantify ADCs requires the use of a selective 
reagent against the specific warhead. The generation of 
antipayload antibody is time consuming and may be dif-
ficult during payload optimization where multiple different 
warhead/linker variants are being assessed simultaneously. 
Alternatively, for ADCs with cleavable linkers, a hybrid 
LBA–LC-MS/MS method measures both total antibody 
and conjugated warhead concentration with only one cap-
ture reagent. It utilizes enzymes to release peptides or 
warheads that can be separated by LC and detected by MS 
using a multiple reaction monitoring mode. Unlike LBA, 
the requirement for capture reagent selectivity/specificity 
is frequently less stringent for mass spectrometry-based 
methods, which in turn rely on surrogate detection pep-
tides. Several fragment crystallizable (Fc) region common 
peptides unique to the human immunoglobulin framework 
are often selected as detection peptides for animal studies. 
The qualification of a bioanalytical method in support of 
discovery and early development work can follow a fit-for-
purpose design, generally to minimally evaluate accuracy, 
precision, and selectivity for any quantification method 
prior to sample analysis.

For drug candidates being evaluated in good laboratory 
practice toxicology or clinical studies, a validated, robust, 
and high-throughput bioanalytical method that meets the 
expectations of relevant regulatory authorities is neces-
sary to support such studies and long-term sample testing 
[61–63]. In support of clinical studies, methods employ-
ing highly selective capture antibodies are often required 
to achieve the necessary sensitivity and selectivity in the 
human matrix for ADCs employing human or humanized 
antibody scaffolds. For LBA, a pair of anti-idiotype anti-
bodies are typically needed. Alternatively, LBA–LC-MS 
methods require only one capture antibody with a proteo-
typic peptide (typically from the complementarity determin-
ing region) to achieve the selectivity required. The reagent 
acquisition should happen sufficiently early to enable clinical 
assay development. Although multiple methods/approaches 
can frequently address bioanalytical challenges, the choice 
should be carefully considered for each phase of the project 
lifecycle and within the larger context of an overall bioana-
lytical strategy.

The inherent structural complexity and heterogeneity of 
ADCs could result in a plethora of drug catabolites/metabo-
lites. To more comprehensively study candidate ADCs, bio-
analytical methods that can address this challenge are critical 
for appropriate characterization of ADC pharmacokinetics. 
HRMS enables identification of ADC biotransformation 
[64–66].

In summary, bioanalytical methods for ADC quantifica-
tion fall into two categories: LBA and hybrid LBA–LC-MS. 
The advantages and challenges with both platforms have 
been summarized previously. Briefly, LBA offers high 

throughput and low equipment cost and has played a critical 
role in the pharmacokinetic assessments of several approved 
ADCs [67–70]. However, when there is more interest in the 
structural and biotransformation information, or critical 
reagents are not available, LBA–LC-MS methods have the 
advantage and therefore have been frequently used for ADC 
bioanalysis.

A hybrid LBA–LC-MS/MS method detecting surrogate 
peptide and conjugated warhead provides unique advan-
tages. This approach offers a DAR-sensitive bioanalytical 
method, generating pharmacokinetic data that can inform 
the deconjugation of the ADC. When the interchain disulfide 
bonds are disrupted because of payload conjugation employ-
ing cysteines, the heavy–light chain dissociation could affect 
the stability, safety, and efficacy of an ADC [71]. Informa-
tion regarding antibody integrity can be obtained by measur-
ing surrogate analyte heavy and light chain peptides. Bio-
transformations such as payload de-acetylation and antibody 
deamidation that may impact drug efficacy or safety have 
been reported to be quantitatively monitored by validated 
LC-MS methods [72, 73].

2.2 � Antibody–Oligonucleotide Conjugates

Compared with ADCs, the development of AOCs as drug 
candidates is still in the early stages. Although several pre-
clinical studies have been reported, AOCs are yet to enter 
clinical development [9, 74–76]. Additional bioanalytical 
challenges exist for AOC drug development. ADCs and 
AOCs share conceptually similar designs and contain three 
components: antibody, linker, and an active moiety (warhead 
or oligonucleotide chain). Learning from the experience of 
ADC bioanalysis, quantification of total antibody and total 
AOC (conjugated oligonucleotide) in the circulation of the 
drug candidate would be recommended. Data from total 
antibody and total AOC assays could provide information 
about oligonucleotide–antibody ratio changes in vivo. A 
more rapid decrease in total AOC concentrations than the 
total antibody concentrations has been observed in mouse 
studies, suggesting deconjugation of small interfering RNA 
(siRNA) from the antibody [77]. Because free oligonucleo-
tides accumulate in highly perfused tissues, the detection of 
free oligonucleotides in circulation is challenging. Thus, it is 
important to assess oligonucleotide concentrations in typical 
accumulation sites (e.g., liver, kidney, and spleen) in preclin-
ical studies to establish a comprehensive drug toxicokinetic 
profile and to inform on the overall safety profile of the AOC 
[78]. In addition, it would be very helpful to understand the 
potential efficacy and toxicity of AOCs by studying their 
biotransformation and catabolism using HRMS in preclini-
cal and early clinical phases. From a regulatory perspective, 
full method validation should be required for total antibody 
and total AOC measurements in circulation. Fit-for-purpose, 
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qualified assays would be appropriate for tissue-based analy-
ses. Appropriate method performance evaluation should be 
conducted, encompassing accuracy, precision, and selectiv-
ity for AOC and free oligonucleotide measurements prior to 
sample analysis [79–81].

So far, AOC bioanalytical literature has been limited. 
Tan et al. [77] developed a real-time antigen capture reverse 
transcription PCR (RT-PCR) assay that can quantitatively 
detect intact antibody–siRNA conjugates in mouse serum 
with a lower limit of quantification (LLOQ) of 580 pg/mL. 
The study evaluated the potential interference from the 
presence of unconjugated antibody resulting from siRNA 
degradation in vivo [77]. Humphreys et al. [82] described a 
triplex-forming oligonucleotide ELISA method using locked 
nucleic acid containing oligonucleotide probes for quantifi-
cation of antibody–siRNA conjugates in mouse serum and 
mouse liver homogenate. They achieved a sensitivity of 120 
pg/mL, which can be further improved with proper charac-
terization and optimization of the locked nucleic acid probe. 
They also demonstrated antibody–siRNA duplex and triplex 
conjugates using a native MS approach [82]. Both methods 
can achieve pg/mL level sensitivity, but their robustness still 
needs to be demonstrated by method validation prior to their 
application in studies supporting regulatory submissions.

Despite the limited information available to date on AOC 
bioanalytical methods, numerous ADC and oligonucleotide 
bioanalysis publications shed light on the direction of future 
method development [69, 83–85]. As with ADCs, total anti-
body can be quantified with LBA or hybrid LBA–LC-MS/
MS methods. Historically, higher sensitivity can be achieved 
with an LBA approach, whereas the LC-MS platform can 
offer the flexibility of a generic capture approach [71, 86]. 
This is contingent upon assay requirements and available 
reagents. However, recent advances in mass spectrometry 
instrumentation have been challenging this paradigm [87]. 
In addition to the two aforementioned methods for total AOC 
quantification, native MS could be a choice but would be 
limited by sensitivity [82]. Denaturing intact MS methods 
could provide oligonucleotide–antibody ratio, biotransfor-
mation, and catabolism information with improved sensi-
tivity over native MS. Alternatively, conjugated oligonu-
cleotide could be released from antibody backbone using 
enzymatic digestion, followed by LBA, quantitative PCR, 
or LC-MS-based methods.

2.3 � Applications of High‑Resolution Mass 
Spectrometry for Biotransformation Analyses 
of ADCs

Recent progress in HRMS instrumentation and applica-
tions has enabled advanced characterization of a multitude 
of diverse biotherapeutics. As mentioned, ADCs, with their 
inherently complex structure, present significant challenges 

because of their numerous biotransformations. This is par-
ticularly true for ADCs that employ noncleavable linkers or 
non-site-specific conjugation and/or possess inhomogene-
ous DAR profiles. Intact HRMS methods can provide com-
plementary information to surrogate analyte methods, thus 
informing drug discovery and development. Compared with 
the bottom-up surrogate peptide approach, intact analysis 
methods detect a macromolecule as a whole or components 
(e.g., released fragment antigen-binding region in the partial 
proteolysis approach). The sensitivity of intact HRMS quan-
tification has increased significantly. Qiu et al. [88] reported 
an intact protein assay that could achieve an LLOQ of 50 ng/
mL for mAB in mouse plasma. This level of sensitivity is 
close to that achieved by a typical surrogate peptide LC-MS 
method. This work also demonstrated that an intact analy-
sis approach can provide equivalent quantification results 
(within ± 25%) when compared with a surrogate peptide 
method in an in vivo monkey pharmacokinetics study [88]. 
Zhang et al. [89] compared data generated by intact HRMS 
quantification and LBA assay of an mAb in a cynomol-
gus monkey pharmacokinetic study. Although both meth-
ods measured the entire antibody, the intact HRMS assay 
resulted in slightly higher concentrations than the LBA 
assay, thus indicating systematic bias in this case [89]. The 
cause of this discrepancy remains unknown but could be 
attributed to sample preparation procedure, instrumentation, 
or data processing.

In contrast to mAbs, intact mass quantification of ADCs 
presents additional challenges. Although Jin et al. [90] dem-
onstrated that the quantification range with the intact HRMS 
method can be 5–100 μg/mL, intact quantification to ADCs 
faces some challenges. Heterogeneity of the drug substance 
itself is a significant challenge for both ADC manufacturing 
and bioanalysis. The ADC reference/dosing material may 
contain species with various DAR and additional modifica-
tions to the linker-warhead. The complex conjugation and 
linker–warhead structure of ADCs can present additional 
opportunities for in vivo biotransformation. One major bio-
transformation of interest is the deconjugation of the war-
head over time, which, in some cases, can lead to additional 
catabolites, further increasing the heterogeneity. Huang 
et al. [91] recently presented a novel intact HRMS method 
applied to trastuzumab and trastuzumab-based ADCs with 
various DARs from a rat pharmacokinetic study. LLOQ 
at 1 μg/mL was achieved with 25 μL of rat plasma sam-
ple. Concentrations measured through intact and surrogate 
analyte approaches for the same sample were compared in 
this work. When applied to mAb (DAR = 0), the resulting 
concentration–time profiles were overlapping. However, a 
substantial difference was found when ADCs were analyzed, 
mainly originating from the biotransformations modify-
ing the dominant species in the reference/dosing material. 
Although the surrogate analyte assay measured the total 
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conjugated warhead that can be released enzymatically, the 
intact HRMS assay unveiled structural changes over time 
in dominant ADC species [91]. Thus, quantification using 
intact HRMS enables further assessment of previously 
missed individual analytes and serves as a complementary 
tool for a more thorough characterization of the ADC phar-
macokinetics and metabolism.

3 � Novel Delivery of Biologics

Besides novel bioconjugates, novel delivery routes such 
as inhalation or oral delivery can improve drug delivery 
to certain organs or benefit patient experience and thus are 
of increasing interest to the biopharmaceutical commu-
nity. Because of its direct access to target tissues, inhala-
tion has become an increasingly attractive route of admin-
istration of biological drugs for the treatment of respiratory 
diseases. Oral delivery, another noninvasive drug adminis-
tration route, can significantly improve patient experience, 
especially in those with chronic diseases. Therefore, biop-
harmaceutical companies are advancing the development of 
biotherapeutics via nonparenteral delivery routes. For exam-
ple, dornase alfa is a synthetic protein drug for patients with 
cystic fibrosis that aims to reduce lung infection risk and is 
administered via a nebulizer [92]. Cyclosporine is an oral 
cyclic polypeptide drug for the prevention of organ rejection 
[93]. Inhaled human insulin (Afrezza®) and oral semaglu-
tide (RYBELSUS®) have been approved for the treatment of 
diabetes [94, 95]. Additional candidates are also in clinical 
development, such as AZD1402/PRS-060 and ORMD-0801 
[14, 17, 96, 97].

Biotherapeutics are subject to degradation and cannot 
easily cross absorption barriers at physiological conditions. 
To address these challenges, the API properties may be mod-
ified and well-thought-out design of formulation and drug 
delivery devices can be applied. Excipients are ubiquitously 
applied to drug formulations to enhance stability, perme-
ability, solubility, and many other properties and are crucial 

for the delivery of biotherapeutics via novel routes. Further-
more, sophisticated approaches such as multiunit particulate 
systems can also be employed to achieve controlled release 
of the API at given physiological conditions [98].

3.1 � Excipients

Excipients are the substances in the medication other than 
the API or prodrug, as defined by The International Phar-
maceutical Excipients Council [99]. Various excipients with 
a wide range of molecular mass have been utilized in drug 
formulations, including small molecules, macromolecules, 
particles (e.g., micelles, nanofibers) and even macroscopic 
materials (e.g., polymeric scaffolds, hydrogels). Excipients 
can be classified according to their various functions in for-
mulations (Table 2) [17, 100, 101]. In addition to the excipi-
ents listed in Table 2, other types of excipients are available 
to improve specific drug dosage properties. For example, 
propyl gallate and sodium metabisulfite are commonly added 
to avoid oxidation. Ethylenediaminetetraacetic acid is widely 
used as a chelating reagent.

Excipients can also be classified as compendial and non-
compendial. Compendial excipients are better character-
ized and are often preferred for formulation development. 
Information on compendial excipients used in existing 
FDA-approved drugs can be found in the FDA’s Inactive 
Ingredient Database [20]. The US Pharmacopeia-National 
Formulary also includes more than 5000 API and excipi-
ent standards. The FDA’s Generally Recognized as Safe 
notification program is another source of information about 
compounds that are generally considered as safe in food but 
that cannot be directly applied to substances that are used in 
new drug delivery routes at higher doses or higher frequen-
cies [102].

On the other hand, noncompendial excipients are novel 
materials or materials for which the pharmacopeia mono-
graphs have not been established or have not been previously 
approved in a drug product. Novel noncompendial excipi-
ents are new chemical entities that are used in a medica-
tion for the first time, given via a previously unexplored 

Table 2   Common excipients in drug formulations [17, 100, 101]

API active pharmaceutical ingredient, HPMC hydroxypropyl methylcellulose, SDS sodium dodecyl sulfate

Type Function Examples

Diluents Make up the weight, improve component uniformity Lactose, sorbitol, mannitol
Coating agents Avoid moisture or control breakdown in certain organs HPMC
Binders Maintain ingredients in tablets together Sucrose, gelatin, cellulose, starch, polyethylene glycol
pH modifiers Maintain API stability, work as preservatives Tartaric acid, adipic acid, citric acid
Surfactants Modify API solubility and bioavailability, enhance API stabil-

ity, decrease aggregation or dissociation
SDS, polysorbate

Disintegrants Facilitate solids dissolution with moisture Crospovidone, croscarmellose sodium, modified 
starch sodium starch glycolate
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route, or given at higher doses or higher frequencies than 
in hitherto approved drugs [25]. For example, Captisol® is 
a modified polyanionic beta-cyclodextrin sodium sulfonate 
salt employed to modulate drug solubility and stability [103, 
104]. Soluplus®, a polymeric solubilizer, was introduced to 
the market aiming to improve the solubility and bioavail-
ability of compounds [105]. Recombumin® is a recombinant 
human albumin used to stabilize therapeutic proteins and is 
considered a novel excipient [106].

Oral and inhaled delivery routes for biotherapeutics typi-
cally employ novel excipients in the formulation to over-
come absorption challenges inherent in the novel delivery 
route. Following the most recent FDA guidance in Nonclini-
cal Studies for the Safety Evaluation of Pharmaceutical 
Excipients [107], a safety database for proposed excipients 
employed in new formulations needs to be established. To 
perform exposure–safety assessments on novel excipients 
and to establish exposure-based safety margins, the toxicoki-
netic measurements of the novel excipient and its potential 
metabolites in relevant biological matrices is required.

Excipients are generally considered “inactive ingredients” 
that are stable, and are typically nontargeting. However, 
whether or not certain novel excipients are truly inert com-
pounds requires investigation before definitive conclusion. 
Pottel et al. [108] demonstrated that a small portion of the 
excipients examined may be acting on molecular targets. For 
example, propyl gallate, an excipient widely used in drugs, 
foods, and cosmetics, can inhibit 5-lipoxygenase [108]. For 
novel delivery, the investigation of the activity of a new 
excipient is critical, as excipients may perturb the pharma-
cology of the API. Thus, the interaction between excipients 
and APIs may also need careful investigation. There are 
multiple considerations when selecting API and excipient 
solutions, including charge interactions, hydrogen-donating 
interactions, and the reactions with lactose or silicon dioxide 
[109–111]. These reactions may potentially affect the effec-
tiveness of APIs and the quality of the formulations. For 
instance, lactose can react with primary or secondary amines 
and facilitate the degradation of a drug through hydrolysis 
reaction on ester and amidine groups in vitro [112].

Even though some excipients are added to modulate API 
stability, they themselves may experience physical, chemi-
cal, and microbiological instability. For example, polyethyl-
ene glycol generates peroxide, which could damage proteins 
containing reducing functional groups [111]. Some com-
pendial excipients are subject to changes even before dos-
ing. Hydrolysis, oxidation, isomerization, photolysis, and 
polymerization are common causes of excipient degradation. 
For example, lactose is a widely used diluent in oral solid 
dosage forms. However, it is a reducing agent, which cannot 
coexist with strong oxidizers [100]. The impacts of excipient 
instability on bioanalysis are discussed in greater detail in 
the next section.

3.2 � Bioanalytical Strategies and Considerations 
for Excipients and Biotherapeutics 
Administered via Novel Delivery Routes

Depending on the target pharmacology, adequate systemic 
exposure may be required for biotherapeutics delivered via 
a novel route of administration (Fig 2). In this case, bio-
analytical assays for the quantification of biotherapeutics in 
circulation and at the target organ/tissue may require highly 
sensitive methods with a broad dynamic range that can cap-
ture low and sometimes highly variable exposures resulting 
from intrinsic intersubject and interoccasion variability, as 
well as other factors such as food effect for oral medications 
or history of smoking for inhaled drugs [113]. This is par-
ticularly true during the early stages of drug development, 
where formulations may encounter low bioavailability. Fur-
thermore, when comparing systemic exposure from a novel 
delivery route with direct intravenous administration of the 
same compound, the potential metabolic differences need to 
be considered, as the compound would be exposed to differ-
ent tissues, organs, and metabolic mechanisms before enter-
ing circulation [114]. Thus, additional metabolism studies 
may be needed for new routes of administration.

Bioanalysis of excipients is usually not conducted if well-
studied components are added to the formulation. However, 
for novel excipients, in the context of preclinical and clinical 
evaluations, assessment of their pharmacokinetic profiles is 
necessary to properly evaluate any potential safety liability 
and to establish safety margins [40, 83, 115]. Introducing a 
novel excipient without having an independent regulatory 
pathway can present some risk [84].

Excipients bioanalysis largely depends on their molecular 
size and physicochemical properties. For instance, LC-MS/
MS, as the most common tool for small-molecule bioanaly-
sis, can be considered for excipients with lower molecular 
weight (e.g., small molecules, short peptides). For macro-
molecules, LBA approaches may be appropriate [116]. If 
excipients are to be evaluated in regulated studies, the bio-
analytical method validation should follow the guidance set 
forth by the appropriate regulatory agencies [61–63].

In cases where excipient molecules are not inert or stable, 
these molecules may change because of biotransformation, 
oxidation, and cross reactivity. For instance, a small amount 
of trileucine in the formulation of an inhaled biotherapeu-
tic can improve aerosol performance and the stability of 
spray-dried powder [117]. This tripeptide and its metabo-
lite—dileucine—undergo rapid degradation in various sera 
matrices, suggesting that it is not logistically feasible to 
measure trileucine or dileucine in preclinical and clinical 
studies [118]. If the excipient metabolites are of potential 
risk, they may need to be carefully evaluated during safety 
studies, especially if toxicity is observed [119]. Some excip-
ient by-products can be effectively predicted by carefully 
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considering their structure and common biotransformation 
pathways. For example, a strong reducing reagent can eas-
ily become oxidized. Literature can also guide bioanalysis 
by providing potential metabolism information. Alongside 
guided predictions, untargeted analyses using HRMS can 
identify unexplored metabolites of excipients.

Biological drugs are frequently modified to enhance their 
stability and achieve optimal bioavailability. These modifica-
tions may add complexity to bioanalysis. One such approach 
is rational drug design. Some examples include cyclization 
of peptides to increase stability and the introduction of 
unnatural amino acids such as α,α-disubstituted amino acids 
to protect vulnerable proteolytic sites [120, 121]. Lipidation 
or use of nonproteinogenic amino acid may also contribute 
to the stability of the molecule [122, 123]. While increas-
ing the stability of the compound, these modifications may 
affect the physicochemical properties of the compound and 
thus require novel bioanalytical approaches. For instance, 
it may be necessary to adjust the digestion conditions or to 
modify chromatographic methods to achieve a more suitable 
method. Selective antibodies may be needed to differentiate 
the drug product from endogenous counterparts.

Many therapeutic areas can benefit from the novel routes 
of administration for biotherapeutics. Nonetheless, the major 
focus is on chronically administered drug candidates that 
require self-administration. Therefore, evaluations of the 
pairing of biotherapeutics and excipient(s) must consider 
repeated dosing regimens. Additionally, analytical inter-
ference between the biotherapeutic and the excipient(s) 
should be assessed when co-administered. To support the 
bioanalysis of such drug candidates, it is good practice to 
demonstrate that the novel excipients at the highest expected 
concentration present in the biological matrix being ana-
lyzed would not affect the performance of the bioanalytical 
method. A common method to evaluate the potential for such 
an impact on recovery is to spike the excipient(s) at the high-
est expected concentration.

For biotherapeutics with novel delivery routes, samples 
in matrices other than plasma or serum are often of interest, 
for example tissue, feces, urine, and nasal lining fluid (NLF). 
Other technical bioanalytical considerations in terms of sam-
ple collection and surrogate matrix selection are discussed 
in detail in the following section.

Fig. 2   Bioanalytical consideration for novel routes of administration. API active pharmaceutical ingredient
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4 � Emerging Challenges in the Bioanalysis 
of Both Novel Bioconjugates 
and Biotherapeutics Delivered via Novel 
Routes

4.1 � Bioanalytical Considerations for Various 
Biological Matrices

Relatively routine methods are established for sample pro-
cessing and testing in well-characterized matrices such as 
plasma, serum, and urine. For biological drugs, the conven-
tional delivery routes are subcutaneous, intramuscular, and 
intravenous. However, pursuit of novel administration routes 
and novel bioconjugates entails the integration and analysis 
of different biological matrices, which presents unique bio-
analytical challenges.

Bioanalysis in biological matrices other than plasma, 
serum, or urine can offer important information on the dis-
tribution of biological drugs, which can inform mechanism 
of action, ADME, and/or safety considerations. For biothera-
peutics with a novel route of administration, bioanalysis may 
be needed for the tissue(s) from corresponding absorption 
site(s). For ADCs, tumor distribution of ADC and released 
warhead can establish the exposure–efficacy relationship and 
may contribute to pharmacokinetic/pharmacodynamic mod-
eling. Tissue bioanalysis is conducted mostly in preclinical 
studies, especially during the lead selection and lead opti-
mization. Depending on the specific project needs, assays 
supporting tissue bioanalysis may vary. For most cases, a 
quantification assay for the drug candidate is needed. Occa-
sionally, additional assays of major metabolites may be of 
more interest.

For biological drugs, the main challenge with tissue bio-
analysis comes from the analyte itself. In small-molecule 
bioanalysis, the tissue can be disrupted in a thorough man-
ner followed by direct precipitation or further extraction 
procedures using organic solvents. However, biotherapeu-
tics typically cannot withstand such rough sample prepara-
tion procedures and maintain the capability to selectively 
bind to the capture reagent, which is frequently required 
for bioanalysis of biologic drugs. Special buffers known to 
retain the structural integrity of the biological drug, such 
as radioimmunoprecipitation assay buffer or tissue protein 
extraction reagent, are often used in the extraction of the 
analyte [124, 125]. These buffers, although gentle enough 
to preserve the structural integrity of the macromolecule, 
may result in incomplete tissue disruption and affect the 
extraction recovery. Therefore, in addition to tissue weight, 
normalization against total protein concentration may also 
be considered when developing methods for extracting bio-
logical analytes from tissues. On the other hand, the small-
molecule format of tissue preparation can still be utilized if 

the analyte of interest is a small molecule, such as free war-
head for bioconjugates, or a structurally modified peptide. 
In some cases, capture of the biotherapeutic analyte is not 
always necessary, as has been shown for the direct digestion 
approach for a cocktail of co-dosed antibodies administered 
at very high doses for the prevention of coronavirus disease 
2019 (COVID-19) [126] and post-pellet digestion followed 
by solid-phase extraction (SPE) clean-up [127] of mAbs. 
Both of these methods have been applied to serum samples. 
It would be interesting to consider the application of such 
approaches to the bioanalysis of therapeutics from tissues 
that can benefit from harsher extraction conditions. Such 
approaches would require very careful evaluation of highly 
selective surrogate analyte peptides and/or extensive sample 
clean-up procedures.

In addition to tissue bioanalysis, NLF has been gaining 
more attention during the COVID-19 pandemic. Nasosorp-
tion™ FX·i is an example of a device that absorbs the bio-
fluid from the nasal mucosa [128]. During bioanalysis, an 
elution solution and a device strip are added to a tube. Ana-
lytes are extracted by vortexing and centrifugation of the 
device stripe. This extraction process must be well charac-
terized to establish adequate and consistent recovery [129].

Although bioconjugate analysis in unique matrices pre-
sents a clear challenge, past success in both small- and large-
molecule sample preparation for pharmacokinetic/pharma-
codynamic analyses can help guide bioconjugate analytical 
efforts. An appropriate sample preparation technique is 
essential to ensure the analytical performance of the method. 
Saliva and sputum are heterogeneous viscous matrices. This 
challenge has been addressed with the use of reducing agents 
such as dithiothreitol, which reduce protein disulfide bonds, 
making the matrix more homogeneous and reducing viscos-
ity, enabling standard liquid-handling procedures [130]. Tis-
sues such as lung or skin present difficulties because of the 
elastic connective tissue. Physical disruption methods, such 
as rotor stator homogenizers or grinding with a mortar and 
pestle in liquid nitrogen, are established methods that can 
potentially benefit bioconjugate analysis, but they are inher-
ently limited because of throughput. Cryogenic ball mills 
offer a viable solution with higher throughput [131, 132]. 
Ultimately, it may be necessary to refine such procedures 
based on actual method performance.

In certain cases, bioanalysis of analytes present in bio-
logical matrices at very low quantities is required. Some 
examples are NLF, sputum, bronchoalveolar lavage, bone 
marrow aspirate, tears, and cerebrospinal fluid. When work-
ing with matrices that are difficult to obtain, a surrogate 
matrix approach may be warranted. Common matrices for 
analysis are typically readily available from commercial sup-
pliers. However, some of the already mentioned rare matri-
ces can be difficult or expensive to obtain. In such cases, 
a surrogate matrix should be employed [133]. Wakamatsu 
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et al. [134] proposed a strategy for surrogate matrix selec-
tion for ligand-binding and LC-MS assays. For a surrogate 
matrix to be deemed appropriate to support quantification of 
a given analyte, acceptable precision, accuracy, and paral-
lelism must be demonstrated. Matrix effect and extraction 
recovery evaluations in original and surrogate matrices are 
also required for validation. For exploratory studies where 
the original matrix is unavailable, full validation may be 
unnecessary and/or infeasible [135].

4.2 � Absorption, Distribution, Metabolism, 
and Excretion

In contrast to small molecules, bioconjugates are structur-
ally complex. This complexity increases for ADME stud-
ies and demands more bioanalytical methodologies neces-
sary to support them. Mechanisms of small-molecule drug 
metabolism have been well established through decades of 
research, and the utility of this knowledge is not lost for bio-
conjugates, particularly for ADCs that contain a therapeutic 
warhead, which, as a free entity, adheres to small-molecule 
clearance mechanisms with similar toxicology potential 
[136]. However, an intact bioconjugate behaves more like a 
large molecule and adheres to proteolytic degradation path-
ways recycling the peptide structure into amino acids [137, 
138]. The end result is an assortment of metabolic products 
ranging from small-molecule warhead metabolites to an 
intact bioconjugate requiring analytical support to establish 
therapeutic stability and a toxicology profile [139, 140]. 
Distribution creates analytical challenges because of the 
targeted nature of many bioconjugate structures. Biocon-
jugate structures are usually highly targeted as the antibody 
structure enables the therapeutic to bind to specific proteins 
[139]. As a consequence, bioconjugate distribution will be 
much higher in target than in off-target tissues. Bioanalyti-
cal strategies designed to assess tissue distribution must be 
able to function across multiple matrices and cover a greater 
range of concentrations to quantify bioconjugates across 
target and off-target tissues. Positron emission tomogra-
phy approaches can be highly complementary to traditional 
bioanalytical approaches in assessing the biodistribution of 
bioconjugates, enabling richer temporal sampling of their 
distribution because of the inherently noninvasive imaging 
approach [141].

Bioconjugates also create unique absorption considera-
tions. The majority of bioconjugate therapeutics on the mar-
ket and in development are injected to overcome absorption 
challenges associated with oral or inhaled delivery routes 
and to mitigate expected toxicities in case of ADCs. How-
ever, as discussed, excipients themselves should be evaluated 
for toxicity liability, and the excipient itself may interact 

chemically with the bioconjugate, creating further structural 
complexity that bioanalytical methodology must encompass 
for effective quantification.

5 � Future Perspectives

Bioanalysis for bioconjugates or novel routes of delivery is 
complex and challenging compared with traditional large- 
or small-molecule drugs or traditional delivery routes such 
as subcutaneous, intramuscular, or intravenous routes. The 
bioanalytical field is evolving to meet these new challenges. 
The importance of increasing the TI of bioconjugates such 
as ADCs or AOCs has driven significant improvements in 
optimizing the toxicity of warheads employed and/or by 
increasing target selectivity. As discussed, well-established 
bioanalytical strategies are of paramount importance for the 
clinical success of novel bioconjugates. With evolving tech-
nologies and instrumentation, bioanalytical methods such 
as LBA or hybrid LBA–LC-MS continue to serve as robust 
and reliable tools to better understand the pharmacokinetics, 
metabolism, and biodistribution of complex bioconjugates 
from the early stage of drug development to good laboratory 
practice toxicology and clinical studies. Knowledge of expo-
sure of bioconjugates, in vivo catabolism, and biotransfor-
mation is particularly important to drive a full understanding 
of the efficacy and toxicity of novel bioconjugate drugs.

Patient centricity is critical for drug administration. Novel 
drug administration through noninvasive routes such as oral 
or inhaled ones are of increasing interest, and the drugs often 
contain novel excipients in the formulation to enhance their 
absorption and improve stability. Risk–benefit assessments 
and appropriate bioanalytical support for pharmacokinetic 
and safety evaluations are important when studying novel 
excipients. Demand is growing for highly sensitive and mul-
tiplex bioanalytical assays to address the challenges of novel 
route delivery, such as systemic exposure, bioavailability, or 
co-administered compound analytical interference.

The anticipated scholarship and improvements in drug 
development for novel bioconjugates or delivery routes will 
require innovative bioanalytical technologies to improve 
insights and overcome challenges in biotransformation, 
ADME, and tissue sample analysis, among others. Moving 
forward, an increased diversity of existing and novel bio-
analytical methodologies will be a key factor in providing 
comprehensive information to help answer key questions 
for understanding safety and efficacy across a variety of bio-
conjugates and novel drug administration routes in clinical 
trials.
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