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Abstract
Proteins are the main source of drug targets and some of them possess therapeutic potential themselves. Among them, 
membrane proteins constitute approximately 50% of the major drug targets. In the drug discovery pipeline, rapid methods 
for producing different classes of proteins in a simple manner with high quality are important for structural and functional 
analysis. Cell-free systems are emerging as an attractive alternative for the production of proteins due to their flexible nature 
without any cell membrane constraints. In a bioproduction context, open systems based on cell lysates derived from different 
sources, and with batch-to-batch consistency, have acted as a catalyst for cell-free synthesis of target proteins. Most impor-
tantly, proteins can be processed for downstream applications like purification and functional analysis without the necessity 
of transfection, selection, and expansion of clones. In the last 5 years, there has been an increased availability of new cell-free 
lysates derived from multiple organisms, and their use for the synthesis of a diverse range of proteins. Despite this progress, 
major challenges still exist in terms of scalability, cost effectiveness, protein folding, and functionality. In this review, we 
present an overview of different cell-free systems derived from diverse sources and their application in the production of a 
wide spectrum of proteins. Further, this article discusses some recent progress in cell-free systems derived from Chinese 
hamster ovary and Sf21 lysates containing endogenous translocationally active microsomes for the synthesis of membrane 
proteins. We particularly highlight the usage of internal ribosomal entry site sequences for more efficient protein production, 
and also the significance of site-specific incorporation of non-canonical amino acids for labeling applications and creation 
of antibody drug conjugates using cell-free systems. We also discuss strategies to overcome the major challenges involved 
in commercializing cell-free platforms from a laboratory level for future drug development.

1  Introduction

Proteins whose functionality is not well characterized form 
a large percentage of entries in many of the currently avail-
able biological databases, including the Protein Data Bank 
(PDB), and there is a constantly growing demand for relia-
ble and fast synthesis and characterization methods. When 
it comes to drug discovery, proteins are key components 
as they can have therapeutic potential themselves (e.g., 

antibodies, coagulation factors, hormones, growth factors, 
enzymes, and antimicrobial peptides), but also because 
they could serve as drug targets for diverse diseases (as ion 
channels, receptors, enzymes, and transporters, for exam-
ple) [1–7]. A large proportion of approved pharmaceutical 
drugs target human proteins. Beyond that, protein-based 
therapeutics, such as antibody–drug conjugates, represent 
a significant percentage of total drug molecules currently 
approved. They are poised to grow further with increased 
gene expression technology, improved protein engineer-
ing, and refined bioinformatics tools. Some proteins are 
very difficult to express in traditional cell-based systems 
and this can hamper our ability to define the mechanism 
of action and structure–function relationship of the indi-
vidual protein, knowledge which aids the development of 
drugs targeting these proteins [1–4].

Generally, to exploit and fine-tune the structural 
and functional characteristics of a protein, it needs to 
be expressed and purified with high quality by using 
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recombinant expression technology. Traditionally, Escher-
ichia coli-based systems were widely used for the produc-
tion of recombinant proteins due to simplicity in prepa-
ration and operation, and cost effectiveness. As a result, 
broad research and standardization from several years was 
performed using E. coli-based expression systems, result-
ing in their often-cited utilization as a state-of-the-art pro-
tein expression system [8]. For complex therapeutic pro-
teins, membrane proteins (MPs) originating from humans, 
and virus-like proteins (VLPs), mammalian expression 
systems fulfill all the requirements like post-translational 
modifications (PTMs), cofactors, and chaperones for cor-
rect folding and efficient production. However, batch-to-
batch variation in cell culture may be a source of process 
variation. Additionally, overexpression of MPs might be 
toxic for the cultivated cells, resulting in cell death or trun-
cated and misfolded proteins [9].

Ideally, synthesized proteins are functionally folded and 
exhibit appropriate PTMs. Due to the lack of extensive 
research and low yields in recombinant protein expres-
sion, many MPs are not yet crystallized, thus limiting the 
computer-aided drug discovery efforts. Due to the growing 
demand for the production of protein biologics and drug 
discovery targeting proteins, alternative strategies for pro-
tein synthesis should be developed. New expression tech-
nologies where proteins can be expressed in a simple way 
and which allow high throughput screening of different 
reaction conditions, different genes, and different supple-
ments in a cost-effective manner are extremely important 
for future drug development. In this review, we give an 
overview of recent advances in cell-free (CF) synthesis 
platforms and their diverse applications. Additionally, we 
focus on human and therapeutic proteins produced by dif-
ferent types of CF systems and how these CF protein syn-
thesis (CFPS) methods can further play a prominent role 
in future drug development.

2 � Cell‑Free Protein Synthesis Systems

CFPS systems use crude cell extracts prepared from cells 
of choice by lysis followed by many steps of washing to 
remove the cell debris and genomic DNA [10, 11]. These 
cell extracts can be stored at − 80 °C for years and can be 
used by thawing just before the reaction. Such extracts con-
tain all the principal components necessary for transcription 
and translation, such as aminoacyl-tRNA synthetase (AAS), 
ribosomes, and factors necessary for elongation, initiation, 
and transcription. Protein synthesis can be realized by com-
bining cell extracts with necessary substrates like amino 
acids, energy substrates, DNA, cofactors, salts, and nucleo-
tides. Depending on the biochemical properties of the pro-
tein and its end application, the appropriate CF system can 
be selected. CFPS is a fast protein production system since 
it does not require transfection or cell culture and lacks cell 
viability constraints. Due to its openness, CFPS platforms 
offer additional advantages when compared with cell-based 
expression methods. A comparative analysis of CF and cell-
based approaches is shown in Table 1.

For complex proteins, eukaryotic CF systems are ideal 
as they contain the endogenous microsomes derived from 
the endoplasmic reticulum (ER), enabling co-translational 
translocation of proteins and ER-based PTMs [10, 11, 18, 
19]. There has been a constant improvement in the quality 
of lysate preparation, system optimization, linear template-
based protein synthesis, and reduction of process costs, 
which has led to the preparation of cost-effective systems 
suitable for commercial purposes.

3 � Cell‑Free Systems

A general scheme of CF protein production is depicted 
in Fig. 1. CFPS platforms are based on either prokaryotic 
or eukaryotic origin. Among the prokaryotic CF systems, 
extracts based on E. coli are regularly used and are avail-
able commercially for CFPS of a diverse range of proteins. 
Very recently, CF systems based on Bacillus subtilis [32], 
Pseudomonas putida [33], Streptomyces [34], and Vibrio 
[12] have been optimized well at the laboratory level due 
to the ease of preparation of CF lysates. A wide range of 
detailed protocols is currently available for the preparation 
of E. coli-based lysates. Among the eukaryotic CF sys-
tems, extracts based on rabbit reticulocyte lysate (RRL), 
wheat germ, insect Spodoptera frugiperda 21 (Sf21), Chi-
nese hamster ovary (CHO), and cultured human cells are 
regularly used. An increasing number of eukaryotic CF 
systems have so far reached technical maturity and become 
commercially available.

Key Points 

Cell-free protein synthesis has the potential to become 
an alternative method for the rapid and highly parallel 
expression of a diverse range of proteins.

Cell-free systems utilize the translation machinery of the 
cells, bypassing the constraints of the cell membrane and 
thus offer openness and configurational flexibility even 
for the synthesis of difficult-to-express proteins.

In comparison to traditional approaches, cell-free 
systems can be time-saving, from initial synthesis to 
downstream applications.
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Recently, several eukaryotic CF extracts based on 
Tobacco [35], Leishmania [36], Neurospora [37], yeast cells 
[38], and human blood cells [39] were characterized and 
optimized for a limited number of proteins at the laboratory 
level. There is a growing trend in the development of novel 
CF platforms for taking advantage of the genetic tools avail-
able in the literature and the abundant literature available on 
the in vivo expression of proteins.

3.1 � Prokaryotic Cell‑Free Platforms

Prokaryotic CF systems based on E. coli are most commonly 
used for protein production towards drug development due to 
their simplicity and a vast literature available on the utiliza-
tion of these cells. Protein synthesis starts with crude cell 
extracts prepared from E. coli cells that contain the trans-
lation machinery along with all the essential components 
required for translation. A modified and reconstituted CF 
synthesis system known as the PURE system (protein syn-
thesis using recombinant elements), where all the compo-
nents of the translation machinery are purified and added 
individually along with the DNA template to produce the 
protein, has been reported [40]. This is a highly controlled 
system compared with crude extract methods. A major 
advantage of the PURE system is that protein factors par-
ticipating in the initiation, elongation, and termination of the 
protein synthesis process are identified and can be adapted 
individually to the CF system’s requirements. Although the 
naturally occurring PTM machinery is not available in the 
E. coli lysates, recently proteins with N-glycosylation were 
synthesized by using E. coli extracts enriched with glyco-
sylation components, including oligosaccharyltransferases 
(OSTs) and lipid-linked oligosaccharides (LLOs) [41]. 
Using release factor (RF1) deficient E. coli lysates, proteins 
were phosphorylated by incorporation of non-canonical 
amino acids, which will be addressed in a later part of this 
review [42].

3.2 � Eukaryotic Cell‑Free Platforms

Due to a constantly growing demand for more complex 
proteins of pharmaceutical value, CF systems based on 

eukaryotic lysates have been developed to produce high-
quality proteins. CF systems based on wheat germ lysates 
(WGL) are among the most popular eukaryotic platforms 
due to their capacity to produce eukaryotic proteins with 
high yields [43]. CFPS based on WGL have been used fre-
quently for the discovery of novel vaccine candidates as 
well as for producing several proteins of high quality for 
structural analysis. Despite the high yields and quality of the 
lysate, this system does not offer all the PTMs like glyco-
sylation and does not support the solubilization of complex 
MPs [13]. In the case of wheat germ and RRL, there are 
no translationally active endogenous microsomes present in 
the system. In the case of RRL, exogenous microsomes are 
typically supplied from the canine pancreas for protein trans-
lation [13, 44]. It is quite laborious and difficult to enrich 
RRLs with heterologous microsomes.

CF systems derived from cultured insect (Sf21) cells 
represent the most popular eukaryotic-based approach for 
synthesizing a wide variety of proteins. Sf21 lysates contain 
translationally active endogenous ER membranes, thereby 
supporting the signal peptide-mediated translocation of pro-
teins across the membrane, and further provides functions 
such as signal peptide cleavage, post-translational modifica-
tions like N-glycosylation, and lipid modification [13, 14, 
45].

CHO cell-based expression is well established and is 
approved for the large-scale synthesis of several biologics 
by the FDA because it undergoes human-compatible PTMs. 
Nearly 70% of the approved mammalian therapeutic proteins 
are currently expressed in CHO cells. However, these cells 
have limitations when it comes to difficult-to-express pro-
teins like overexpression of complex MPs, toxic proteins, 
and multi-subunit proteins as discussed above. CF systems 
based on CHO lysates are evolving as an alternative strategy 
for the expression of difficult-to-express proteins [13, 17–19, 
46]. Apart from many general advantages of CF systems, 
CHO-based CF systems retain most of the features of CHO 
cells while being more flexible due to the lack of cell mem-
brane boundaries. CHO-based lysates harbor endogenous 
microsomal vesicles enabling translocation of transmem-
brane proteins and secretory proteins. Furthermore, PTMs 
of de novo synthesized MPs, such as glycosylation, are pos-
sible using CHO lysate. Thus, using CHO cell lysate for 
CFPS has a potential value and enables new opportunities, 
in particular, the high-yield production of pharmaceutically 
relevant MPs [13, 17–19]. There is a significant increase in 
the number of publications based on CHO lysates for CFPS. 
Table 2 compares different CF systems and their advantages 
and limitations with some selected examples.

Fig. 1   General scheme depicting the overall process of cell-free pro-
tein production. aatRNA aminoacyl-tRNA, AAS aminoacyl-tRNA 
synthetase, ATP adenosine triphosphate, EF elongation factor, GSH 
glutathione, GSSG glutathione-disulfide, GTP guanosine-5’-triphos-
phate, IF initiation factor, IRES internal ribosome entry site, MP 
membrane protein, nCAA​ non-canonical amino acid, PDI protein 
disulfide isomerase, PEG polyethylene glycol, PTM post-translational 
modification, R ribosomes, t-RNA transfer RNA, TF transcription fac-
tor, UTR​ untranslated region, VLP virus like particle

◂
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4 � Cell‑Free Protein Synthesis Reaction 
Formats

CFPS can be performed in different formats. The batch-
based format is the most commonly used method both in 
the prokaryotic and eukaryotic systems. This method is 
relatively fast and cheap, and synthesis can be performed 
within 1.5–3 hours depending on the system. E. coli-based 
systems can provide protein yields ranging from 100 µg/
mL to 2–3 mg/mL. Although the yields from batch-based 
eukaryotic systems are comparatively low, MPs are auto-
matically incorporated into microsomal membranes and the 
functionality can be addressed immediately after the syn-
thesis [62]. For researchers who would like to further scale 
up the protein yields via batch-based eukaryotic systems, a 
repetitive batch-based synthesis format has been proposed 
where the microsomes incorporating the MP of interest 
generated in an initial synthesis reaction can be added to 
a fresh CF synthesis reaction that has been depleted of its 
microsomes [19, 45].

Another popular CF synthesis format that has been used 
for a rapid increase in the protein yields is the so-called 
continuous exchange cell-free synthesis platform (CECF). 
In this format, a semi-permeable dialysis membrane sepa-
rates the reaction chamber and a feed chamber and thereby 
a feed chamber provides the fresh reaction components and 
enriches the reaction chamber. In exchange, the inhibitory 
components accumulated during the reaction are removed 
[14, 17, 18, 46]. Typically, the CECF format prolongs the 
reaction time and increases the protein yields. Until now, the 
CECF format has been used to increase the protein yield by 
multiple fold, and is widely used as CF platforms (Table 2).

5 � Parameters Influencing Cell‑Free Protein 
Production

This section highlights some of the key parameters that 
might influence the protein production using CF lysates.

5.1 � Gene Design

Designing synthetic DNA and sequence manipulation for 
CF synthesis by adding regulatory elements plays a signifi-
cant role in high-yield protein production. In eukaryotic 
CF systems, initiation factors (IFs) in particular limit the 
initiation of protein synthesis, thereby leading to low pro-
tein yields. One alternative is to use internal ribosome entry 
site (IRES) elements found in the 5′-untranslated region 
(5′UTR) of the different viral genomes upstream of the start 
codon for cap-independent translation initiation [14, 18, 
62]. IRES elements from three different viral sources were 

compared for their translational efficiency in Sf21, CHO, 
and human leukemia K562 CF lysates. The IRES from the 
cricket paralysis virus (CrPV) typically increased protein 
yields by a factor of 3–5 [62]. Inserting the CrPV-IRES into 
the corresponding vector upstream of the epidermal growth 
factor receptor (EGFR) gene, and using the CECF reaction 
format, EGFR yields were significantly increased to more 
than 100-fold compared with batch reaction format without 
CrPV-IRES [14]. Additionally, replacement of the initia-
tor codon (ATG) to a GCU-codon in combination with the 
CrPV-IRES resulted in a further improvement of protein 
expression levels in CHO and K562 CF systems [62]. The 
vector backbone also plays an important role in CFPS. A 
detailed study comparing commercially available vectors 
harboring the luciferase gene in combination with CrPV-
IRES showed that there is a significant 5-fold increase in 
protein yield with a change in the vector backbone [19].

Species-independent translational sequences (SITS) 
are another group of synthetic 5′UTRs capable of initiat-
ing cap-independent translation in multiple prokaryotic and 
eukaryotic CF systems [66]. Typically, polymerase chain 
reaction (PCR) products are generated with SITS down-
stream of the T7 promoter and upstream of the start codon 
ATG [66]. The 3′ hairpin region of the SITS increases the 
residence time of the preinitiation complex in the vicinity 
of the start codon [66]. Using L. tarentolae CFPS in the 
presence of genes encoding 58 Rab encoding variable frag-
ments in combination with a universal SITS, nearly a full 
complement of human Rab GTPases were produced with 
a yield of around 30 µg/mL [36]. Similarly, EGFP with a 
yield of around 300 µg/mL [66], and an active multisubunit 
enzyme heterodimeric farnesyl transferase (FTase) [36] were 
synthesized using the L. tarentolae CFPS [36].

Codon optimization is another important parameter that 
plays a crucial role in increasing the expression yields of 
proteins. Codon optimization has been shown to influence 
the translation efficiency of several proteins [71]. By tak-
ing advantage of the CF lysates derived from N. crassa and 
S. cerevisiae, transcription and translation reactions were 
uncoupled for ribosome profiling, which provided strong 
biochemical evidence that codon optimization enhances the 
rate of translational elongation, thereby affecting the ribo-
some traffic on the mRNA [72]. On the one hand, codon 
optimization usually improves protein yields, but on the 
other hand, it was shown that faster translation rates might 
negatively affect the protein folding and function of the indi-
vidual protein [72, 73]. This problem often cannot be solved 
even by altering the tRNA population in the case of CFPS.

The addition of anti-spliced leader oligonucleotide to L. 
tarentolae cell extracts suppressed the translation of endog-
enous L. tarentolae mRNAs, thus increasing the translation 
efficiency of exogenously supplied mRNA [65]. Using the 
ER-specific signal sequence of honeybee melittin (melittin 
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signal peptide) instead of the native signal peptide increased 
the translocation of synthesized proteins such as WNT pro-
teins, single-chain antibody variable fragments, and the 
hTLR9-ectodomain into microsomes in the case of Sf21 and 
CHO-based CF systems [18, 59, 74, 75].

5.2 � Reaction Conditions

Iterative optimization processes are required to develop high-
yield CFPS. Factors that influence both protein quality and 
quantity include reaction temperature, reaction time, plasmid 
concentration, salt concentration, T7 polymerase, and other 
supplements. The influence of these factors on the synthesis 
rates is also protein specific. Very recently, CFPS of human 
toll-like receptor protein (hTLR9) in CHO-based lysates has 
been reported by using a CECF method with high yields of 
around 0.9 mg/mL. By increasing the temperature from 27 to 
30 °C, the protein yields were increased by almost 50%. Stable 
monitoring and maintenance of pH throughout the entire CF 
reaction along with sufficient adenosine triphosphate (ATP) 
supply are essential for efficient and maximum yield protein 
production. By using amino acid decarboxylase, the pH is con-
trolled throughout the CF reaction [76].

5.3 � Influence of External Supplements

Supplementation of chaperones influences the functional 
folding of many proteins. Supplementation of chaperones 
such as GroES/EL and DnaK/DnaJ/GrpE in prokaryotic 
CF systems was used to increase the yield and solubility 
of colicin M from 16 to 100%, resulting in enhanced cell-
killing activity [77]. Li et al. demonstrated that by using 
CFPS based on wheat germ extracts, expression of J-domain 
containing chaperone proteins (DNAJB12 and DNAJB14) 
along with potassium channels plays a critical role in the 
folding, stabilization, and tetramerization of K+ channels 
[78]. Ion concentrations (potassium and magnesium) in the 
CF reaction have a significant effect on protein production. 
In the case of CHO-based CECF reactions, an increase in the 
magnesium ion (Mg2+) concentration from 3.9 to 22.5 mM 
led to a 3.9-fold increase in EGFR yield [46].

For efficient regeneration of ATP, several methods have 
been developed in CF systems. In prokaryotic systems, 
compounds like phosphoenolpyruvate (PEP), glucose + glu-
tamate decarboxylase, glucose-6-phosphate, fructose-
1,6-biphosphate, acetyl phosphate, maltodextrin, and cre-
atine phosphate are widely used as energy sources [79]. In 
eukaryotic CF systems, a combination of creatine phosphate 
and creatine kinase is typically used for energy regenera-
tion. Apart from these, phosphoglycerate (B. subtilis), and 
polyphosphate are used in CF systems [80, 81].

6 � Applications of Cell‑Free Systems

CF systems have evolved over the last decade from their use 
as a prototype method in research laboratories to commercial 
and large-scale applications. In this section, the utility of 
CF systems in MP synthesis, antibody production, vaccine 
development, protein labeling, and antimicrobial peptide 
synthesis are addressed.

6.1 � Cell‑Free Systems for the Synthesis 
of Membrane Proteins

MPs are structurally and functionally diverse, and constitute 
30% of the proteins encoded in the human genome. Drugs 
targeting MPs such as ion channels, transporters, and G-pro-
tein coupled receptors (GPCRs) represent 12 out of the top 
20 global revenues in the pharmaceutical industry [3]. Due to 
the presence of transmembrane domains, ranging from 1 to 
24, these proteins are highly hydrophobic and are very chal-
lenging to express by traditional cell-based systems. Expres-
sion of human proteins in heterologous cellular hosts is very 
much limited due to the difference in their lipid composi-
tion, which can prevent the MPs from attaining maximum 
functionality [9]. Synthesis of MPs by cell-based methods 
often leads to cytotoxicity, aggregation, and improper fold-
ing [9]. To analyze MP functionality, the protein needs to 
be folded properly and in the appropriate hydrophobic envi-
ronment. CF systems derived from prokaryotic, as well as 
eukaryotic lysates lacking endogenous microsomes, require 
specific supplements for the solubilization of MPs in the 
form of detergents, nanodiscs, or liposomes. Non-ionic and 
zwitterionic detergents are commonly used as supplements 
in the majority of CFPS reactions for the solubilization of 
MPs during their production. Detergent-solubilized MPs 
can be either used directly for functional analysis or may be 
reconstituted into liposomes by mixing with artificial lipids 
followed by detergent removal [9, 82, 83].

Alternatively, nanodiscs (NDs) and liposome-based 
reconstitution are detergent-free strategies where NDs and 
liposomes, prepared and characterized externally, could 
be supplemented directly into the reaction mixture for the 
reconstitution [9, 84]. A detailed review of the CF synthesis 
of MPs and the usage of solubilization supplements for iso-
lation and functional analysis is presented in the literature 
[9]. Some of the advantages of NDs are easy purification and 
flexibility in using different lipids and membrane scaffold 
proteins for creating different sizes, and their availability 
as monodisperse and homogenous NDs. Nonetheless, NDs 
have their limitations, particularly when working with a pro-
tein whose functionality depends on its orientation and also 
working with transporter proteins. Liposome-based reconsti-
tution covers the limitations of the NDs, but the separation 
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of liposomes after the CF reaction is quite challenging and 
often suffers from disruption due to osmotic instability. Fur-
ther, such passive reconstitution strategies do not offer the 
advantages of post-translational modifications within native 
membranes and are limited for MPs whose function does not 
depend on active translocon-based translation.

CF systems derived from eukaryotic lysates equipped 
with endogenous microsomes (e.g., Sf21, CHO, cultured 
human cells, and Tobacco-BY2) satisfy all the necessary 
requirements for proper folding of MPs. The microsomes 
offer a native environment and intact translocon machinery 
for a proper embedment and folding of MPs [13, 18, 19, 45, 
46, 51, 59]. There are continuing efforts in analyzing the 
functionality of microsomal reconstituted MPs, indicated by 
a good number of publications reporting on this reconstitu-
tion strategy, which should help the pharmaceutical industry 
to develop more dynamic drug screening assays involving 
MPs [9, 46, 83]. Here we present recent works on ion chan-
nels, transporters, and GPCRs, which constitute more than 
40% of the major drug targets in the pharma industry [85].

6.1.1 � Ion Channels and Transporters

Ion channels constitute approximately 19% of all currently 
existing human drug targets and play a crucial role in diverse 
physiological processes involving cell excitability, neuronal 
transmission, metabolism, sensory transduction, cognition, 
and electrolyte homeostasis. Transporters mediate the trans-
location of a variety of substrates across biological mem-
branes [86]. The solute carrier (SLC) family is the largest 
class of transporters and is implicated in metabolic condi-
tions and diseases, and in the transport of drugs. These pro-
teins typically have 9–12 transmembrane domains and are 
difficult to express by traditional methods [2, 9, 50, 87]. SLC 
transporters are an emerging drug target class and the molec-
ular target of several approved inhibitor drugs [2]. Despite 
this, these classes of proteins remain largely unexplored 
in recent years due to the high costs involved and lack of 
proper expression methods [9, 53]. Table 3 highlights some 
of the selected publications using CF methods for synthesis, 
reconstitution, and functional analysis of ion channels and 
transporters.

The most widely used method of reconstitution for 
functional analysis is detergent-based reconstitution into 
liposomes or passive integration of MPs into liposomes and 
NDs. The majority of the functional assays were performed 
with PLBE in the case of ion channels and substrate uptake 
assays in the case of transporters.

6.1.2 � G‑Protein Coupled Receptors (GPCRs) and Drug 
Discovery in Cell‑Free Systems

GPCRs transduce extracellular stimuli to the inside of cells, 
after activation by a variety of different molecules such 
as neurotransmitters, hormones, odorants, and peptides, 
thereby triggering several signal transduction cascades. The 
involvement of GPCRs in almost all processes in living cells 
has resulted in significant pharmaceutical interest in this pro-
tein class, and the development of robust and high-through-
put-suitable assays for the discovery of novel ligands and 
drugs targeting these proteins. In principle, the screening of 
ligands can be performed in whole-cell assays by measuring 
a downstream signaling event, or in CF assays, which are 
decoupled from the living organism. Usually, these decou-
pled methods are preferable for high-throughput screen-
ings, as they are easy to handle and therefore amenable for 
automation and downsizing. These parameters can be well 
combined with CFPS. An automated CF synthesis procedure 
for the production of different MPs is already reported [97]. 
This procedure might be further expanded for the parallel 
analysis and identification of molecules that target different 
GPCRs. To date, only a few studies have analyzed in detail 
the activity of receptors produced by CF systems. The main 
reason for this is that there are limited well established activ-
ity assays. This section addresses possible activity assays 
that might be transferred to CF systems in the future.

Radioligand binding assays, the gold standard for iden-
tifying binding molecules, are already adapted for GPCRs 
that have been synthesized in eukaryotic and prokaryotic CF 
systems, and demonstrate similar binding affinities in com-
parison with in vivo produced GPCRs [20, 98–100]. Alter-
natively, fluorescently labeled ligands can be analyzed by an 
optical read-out system using eukaryotic CF systems har-
boring endogenous membrane structures [101]. Neverthe-
less, for these systems, radiolabeled or fluorescently labeled 
ligands are required, thereby limiting the analysis mainly 
to GPCRs with already known ligands. In addition, simple 
ligand binding assays usually do not differentiate between an 
agonistic and an antagonistic effect of the bound substance.

In this context, measuring downstream signaling to distin-
guish between an activating and inhibitory ligand is prefer-
able. One possible method of choice is the receptor-mediated 
coupling of G proteins [102]. This early event immediately 
follows after GPCR activation and is detected by the binding 
of [35S]GTPγS to Gα subunits. This method is not yet estab-
lished in CF systems but might be transferable assuming the 
presence of Gα proteins in the eukaryotic lysate. Alterna-
tively, the Gα proteins can be additionally co-synthesized 
to the target GPCR or directly applied to the reaction based 
on the open nature of CF systems. After GPCR activation, 
GTP binding and hydrolysis should be detectable.
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In addition to ligand binding and G protein coupling, 
intra- and intermolecular interactions can be visualized 
by Förster and bioluminescence resonance energy transfer 
techniques. Different sensor models are known in living 
cells [103]. The monitoring of intermolecular interactions 
can be performed as well in CF systems using the already 
established in vivo models. One model includes the tagging 
of the C-terminus of a GPCR of interest to a fluorophore 
(GFP/YFP) and fusing a binding partner such as β-arrestin 
to luciferase or a second fluorophore [104]. Upon activa-
tion of the GPCR, β-arrestin binds to the receptor and both 

tags are in close proximity, resulting in a measurable energy 
transfer. This model requires active G protein-coupled recep-
tor kinases for the phosphorylation of the C terminus of the 
synthesized GPCR to get recognized by β-arrestins. This 
requirement has to be analyzed in detail in the individual 
CF systems. The second known in vivo model visualized 
intramolecular changes after agonist and antagonist bind-
ing by introducing fluorophores into the third extracellular 
loop and the C terminus of different GPCRs. Upon activa-
tion, the distance between both fluorophores changes and an 
alteration in the energy transfer can be measured [105, 106]. 

Table 3   Functional ion channels and transporters synthesized using CF systems

Ant1p adenine nucleotide transporter, AqpZ aquaporin Z, CHO Chinese hamster ovary, ATP adenosine triphosphate, E. coli Escherichia coli, 
hVDAC1 human voltage-dependent anionic channel, KcSA pH-gated potassium channel, KvAP voltage-gated potassium channel, Kv1.1, Kv1.3, 
and Kv7 voltage gated potassium channels, LacY lactose transporter, LeuT leucine transporter, MscL mechanosensitive ion channel, MVP a 
methanococcal voltage-gated potassium channel, nAChR nicotinic acetylcholine receptor, NavSp1p Silicibacter pomeroyi voltage-gated 
sodium channel, NDs nanodiscs, PfFNT plasmodium lactate transporter, PLBE planar lipid bilayer electrophysiology, RRL rabbit reticulocyte 
lysate, Sf21 Spodoptera frugiperda 21, TDH thermostable direct hemolysin

Protein Cell-free system Solubilization/reconstitution Assessment of functionality

LacY E. coli (PURE) Liposome reconstitution through Droplet 
interface [88]

Fluorescence substrate uptake

Kv 1.1 and Kv 1.3 E. coli Detergent-based reconstitution [89] Electrophysiology at the droplet interface
Kv 1.3 E. coli Detergent-based reconstitution into 

liposomes [52]
Voltage-sensitive fluorescent dye recording

Kv 7 channels E. coli Detergent-based reconstitution [90] Electrophysiology at the droplet interface
TDH E. coli Direct insertion [51] PLBE
Voltage gated ion channel MVP E. coli Detergent-based reconstitution into 

liposomes [82]
PLBE

LeuT E. coli Detergent-based reconstitution into 
liposomes [82]

Radioactive substrate uptake assay

PfFNT E. coli Detergent-based reconstitution into 
liposomes [50]

Dynamic light scattering based transport 
assay

SLC22 protein family (organic 
cation and anion transporter 1)

E. coli Detergent-based reconstitution into 
liposomes [91]

Radioactive substrate uptake assay

MscL E. coli Detergent-based reconstitution into 
liposomes [92]

Patch-clamp electrophysiology on liposomes

AqpZ E. coli Detergent-based reconstitution into 
liposomes [49, 93]

Light scattering measurement of water 
transport activity

NavSp1p (Only pore region) E. coli Detergent-based reconstitution into 
liposomes [49]

PLBE

Connexin 43
Hemichannels

E. coli Detergent-based reconstitution into 
liposomes [94]

PLBE

Viral potassium channel Kmpv1 E. coli NDs [95] PLBE
KcSA Sf21

E. coli
Microsomes [56]
Detergent-based reconstitution into 

liposomes/NDs incorporation [82, 84]

PLBE

Aspartate transporter Sf21 Microsomes/proteoliposomes [87] Radioactive substrate uptake assay
KvAP CHO Microsomes/proteoliposomes [46] PLBE
Ant1p Wheat germ Detergent-based reconstitution into the lipo-

some [96]
ATP dependent transport activity

hVDAC1 Wheat germ Detergent-based reconstitution into 
liposomes [53]

PLBE

nAChR RRL Microsomes [44] PLBE
ß Connexins RRL Microsomes [94] PLBE
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Initial experiments to transfer these energy transfer-based 
sensors were recently performed in CF systems [107]. Both 
models can be applied to high-throughput analyses.

In summary, the successful CF synthesis of a variety of 
GPCRs has been demonstrated in recent years and a trans-
fer of these GPCR production systems to a drug discovery 
format in a high-throughput manner has recently started. In 
the near future, we might see novel technologies for ligand 
screenings, thereby utilizing the advantage of the automati-
zation and downsizing capacity of CF systems.

6.2 � From Antibody Discovery to Production

The gold standard for synthesis, development, and produc-
tion of antibody-based drugs (based on full-length antibod-
ies) is mammalian cell culture-based expression systems. 
Although cultivation of mammalian cells is well established 
and widely used, the development of monoclonal antibod-
ies (mAbs) and antibody-drug conjugates (ADCs) remains 
time-consuming and challenging. Thus, methods for high-
throughput screenings, especially in the early-stage evalua-
tion of antibody candidates, are valuable. In view of this, the 
use of the CF technology constitutes a promising strategy 
to shorten the time from antibody discovery to production.

6.2.1 � Antibody Discovery

Using CF technology, antibodies can be produced in a flex-
ible scale within a couple of hours. Besides the synthesis 
of individual antibodies, CF technology can be used to dis-
play libraries of antibodies. In contrast to phage and yeast 
display, in vitro CF systems such as ribosome and mRNA 
display are open, and thus result in higher library sizes. In 
theory, the size of the library is only limited by the quan-
tity of supplemented mRNA/DNA, the volume of the CF 
reaction, and the number of ribosomes within the system, 
resulting in library sizes of ~ 1012−15/mL CF reaction [108]. 
In comparison, phage and yeast display exhibit library diver-
sities of ~ 106–1010. Selection technologies such as ribosome 
display [109], mRNA display [110], and CIS display [111] 
have been developed based on reticulocyte lysate [110] and 
E. coli CF systems [109]. These systems focused on smaller 
antibody fragments because their functionality does not rely 
on the assembly of multiple polypeptide chains. Nonethe-
less, recently two groups have succeeded in developing com-
pletely CF display technologies that allow the selection of 
Fab fragments [112]. The challenge to assemble the heavy 
and light polypeptide chain (HC/LC) of the Fab fragment 
was approached in different ways. While Sumida et al. suc-
ceeded by combining mRNA display based on two mRNA 
sub-libraries, one encoding HC, the other one encoding 
LC, with in vitro compartmentalization PCR to link and 
then amplify HC and LC gene pairs [112], Stafford et al. 

developed a ribosome display method where they displayed 
only one of the two Fab chains, while the other one was not 
presented in display format [113].

6.2.2 � Antibody Production

Successful synthesis of different antibody formats, including 
single-chain variable fragments (scFvs), Fab fragments, as 
well as complete IgGs, has already been shown in E. coli 
[114, 115], Sf21 [10, 116], reticulocyte [110], wheat germ 
[117], and CHO CF systems [46, 75, 118]. Furthermore, 
the upscaling of CF reactions to the liter-scale [25, 115] as 
well as downscaling [119] and high-throughput applications 
[120] have been demonstrated.

In addition, advances in bioorthogonal reaction chemis-
tries have paved the way to expand the possibilities for ADC 
development. The site-specific introduction of non-canonical 
amino acids into a genetically engineered sequence can be 
used to create site-specifically labeled ADCs [121]. Cur-
rently, seven ADCs are approved for therapy. To date, all of 
these ADCs have been generated by coupling of mAbs to 
the cytotoxic linker-payload via surface-exposed lysines, or 
partial disulfide reduction and conjugation to free cysteines, 
which typically results in a controlled but heterogeneous 
ADC population with varying numbers and positions of drug 
molecules attached to the mAb [122]. Homogeneous ADC 
populations can be achieved by introducing the payload at 
one or more defined positions. By developing a bioorthogo-
nal tRNA/synthetase pair, Zimmerman et al. have shown that 
the optimized non-canonical amino acid para-azidomethyl-
l-phenylalanine (pAMF) can be site-specifically incorpo-
rated into the tumor-specific, Her2-binding IgG trastuzumab 
[123]. Subsequently, the cytotoxic linker payload DBCO-
PEG-monomethyl auristatin (DBCO-PEG-MMAF) was con-
jugated to pAMF via strain-promoted azide–alkyne cycload-
dition (SPAAC) copper-free click chemistry.

In the context of dual-functioning molecules, bispecific 
antibodies have also emerged as promising anti-cancer 
agents. One of the advantages of these proteins is their 
capability to target two different epitopes simultaneously, 
thereby increasing target engagement, where mono-specific 
antibodies might fail [124]. Due to their open design, CFPS 
reactions can easily be manipulated, for example by varying 
the template ratios and concentrations of HC and LC. For 
example, Xu et al. showed the successful assembly of bispe-
cific ‘knobs-into-holes’ antibodies in multiple scaffolds by 
using an E. coli-based CF expression platform [125].

Taken together, antibody evolution, selection, and engi-
neering can dramatically benefit from the technological 
advances in the field of CFPS. (1) Novel display technolo-
gies based on CF methods enable the in vitro evolution of 
multimeric proteins and allow for more sophisticated pro-
tein engineering. (2) Due to the very short time frame from 
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synthesis to functional testing, CF systems can accelerate 
antibody construct evaluation by a repetitive (one after one) 
and/or parallel screening. (3) The introduction of non-canon-
ical amino acids expands the chemical repertoire and thus 
the possibilities to modify and improve antibody-based ther-
apeutics. Advanced labeling technologies allow for a very 
fast qualitative analysis of drug-to-antibody ratio (DAR), 
linker, linker/position, drug, drug/position (research applica-
tion), and allow full control of the ADC design (commercial 
application).

6.3 � Application of Cell‑Free Synthesis in Vaccine 
Development

CF systems are becoming a potential option for synthesiz-
ing vaccine antigens. Most of the vaccine antigens pro-
duced by CF systems to date have used E. coli and WGL. 
Recent progress on eukaryotic CF systems may offer addi-
tional advantages. In this context, eukaryotic CF systems 
are endotoxin free and lack the complex plasma membrane 
that makes the protein purification simple. Some of the 
antigens synthesized by using CF systems are highlighted 
in Table  4. They are able to induce a strong immune 
response in experimental animals and could serve as a 
proof of concept for future vaccine development. Using 
recent advances in CFPS technology, a freeze-dried, 
cell-free (FD-CF) expression system was created based 
on E. coli CF lysates [31]. Using this FD-CF technique, 
diphtheria toxoid antigen variants (DT5 and DT6) were 
produced following rehydration with water and functional 
characterization of the synthesized proteins was veri-
fied following administration in mice and measuring the 
immune response [31]. The FD-CF method could enable 
the production of on-demand, point-of-care biologics 
requiring just the simple addition of water for activation 
and synthesis.

Recently, CF-based expression has proven successful 
in producing difficult-to-express proteins like major outer 
membrane protein (mMOMP) of Chlamydia spp., a major 
vaccine antigen. Using E. coli-based CFPS, mMOMP was 
synthesized in a native trimeric form in the presence of 
nanolipoproteins (NLPs) with a yield of around 1.5 mg/mL. 
When injected into mice in the presence of an adjuvant, 
the protein elicited an enhanced humoral immune response 

[126]. This method of synthesizing and simultaneous incor-
poration of antigens into NLPs using a CF approach is a 
promising method for future vaccine development.

Conjugate vaccines are one of the safest and most effec-
tive biologics [127]. Bioconjugate vaccines are produced 
using protein glycan coupling technology (PGCT). How-
ever, PGCT has its own limitations such as time-consuming 
in vivo processes. Additionally, FDA-approved carrier pro-
teins, such as toxins derived from Clostridium tetani and 
Corynebacterium diphtheria, have not yet been demon-
strated to be compatible with an E. coli-based production 
process. Relevant PTMs are often difficult to synthesize in 
E. coli CF systems.

Meanwhile, there have been further advances in using 
bacterial glycoengineering combined with CFPS for produc-
ing bioconjugate vaccines. This CF glycoprotein synthesis 
(CFGpS) used glycooptimized E. coli extracts integrating 
both N-linked glycosylation and protein synthesis. Using 
CFGpS, two bioconjugate vaccines were synthesized against 
F. tularensis and E. coli O78 [146, 147]. Besides post-
translational modification, the assembly of macromolecular 
structures in CF systems is highly ambitious. Virus-like par-
ticles (VLPs), for example, are nanoscale structures that are 
formed from the self-assembly of viral proteins without the 
viral genome responsible for the infection. Usually, VLPs 
mimic the capsid structure of the real virus. VLP antigens 
are vaccine candidates for several diseases [148]. One of 
the vaccine candidates, which is currently in clinical trials, 
contains VLP antigens addressing noroviruses responsible 
for gastroenteritis in humans [149]. CF synthesized VLPs 
were structurally confirmed by electron microscopy [150].

6.4 � Antimicrobial Compounds

Using E. coli CF systems, antimicrobial colicins (Colicin 
M, La, E1, and E2) have been synthesized with high yields 
(around 300 µg/mL) and solubility. The synthesized colicins 
are able to effectively kill the target cells without any puri-
fication [151]. Antimicrobial peptides (AMPs) are another 
class of defense molecules that have a wide spectrum of tar-
gets; for example, bacteria, viruses, fungi, parasites, and can-
cer. AMPs are evolving as alternatives to antibiotics [152]. 
Using lyophilized E. coli CF lysates, ten different AMPs 
have been synthesized successfully and the functionality of 
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Table 4   Vaccine antigens synthesized by using cell-free systems

Protein/antigen Source/disease Cell-free system Immune response

mMOMP Chlamydia muridarum E. coli ELISA results showed mMOMP–tNLP with CpG adjuvant, 
when injected into mice, produced significant levels of 
antigen-specific antibody [126]

DT5 & DT6 Diphtheria E. coli ELISA quantification showed a strong induction of anti-DT 
IgG Ab production in DT5-immunized mice [31]

Trivalent vaccine based on  
HcA, HcB and HcE

Botulism E. coli Immunization with trivalent (HcA, HcB and HcE) vaccine-
protected mice against the high-dose botulinum A,B and E 
multitoxin challenge [128]

Trimeric hemagglutinin (HA)  
head and stem domains

Influenza E. coli ELISA results confirmed the immunogenic conformation of 
HA stem trimer by using antibodies specific for neutralizing 
epitopes located in the HA stem domain [48]

αCD19-Id B cells of tumors E. coli αCD19-Id induced a robust Id-specific IgG response and 
protection to the vaccinated mice [131]

Lymphoma vaccine B cells of tumors E. coli Mice injected with 38C13-scFv fusion protein-induced anti-
bodies that recognize native 38C13 protein [132]

Plasmodium rhoptry proteins Plasmodium falciparum HeLa/wheat germ Rhoptry-specific animal antisera [129, 130]
Malaria antigens (PfMSA180,  

LSA3, MSP11, PfRON12,  
PfRipr, EXP1, Pfs-GPI, etc)

Plasmodium falciparum Wheat germ Interaction of PfMSA180 with CD47 was confirmed by 
erythrocyte binding assay [133]. Antigen-specific IgG 
responses to LSA3-C were profiled by an alphaScreen assay 
[134]. Western blotting and ELISA confirmed the interac-
tion of purified recombinant MSP11 with human sera [135]. 
Immunization of purified PfRON12 with Freund’s complete 
adjuvant into Japanese white rabbits generated PfRON12 
antisera [136]. Rabbits immunized with expressed PfRipr 
produced specific antibodies [137]. Anti-EXP1 antibod-
ies were generated by immunization of recombinant EXP1 
[138]. Mice immunization with purified Pfs25 induced 
antiserum [139]

Pfs25-GPI Plasmodium falciparum E. coli Immunogenicity was confirmed by ELISA after immuniz-
ing the mice with Pfs25-GPI. SMFA was used to verify the 
functionality of induced antiPfs25-GPI antibodies [142]

FhSAP2 Fasciola hepatica RRL ELISA was used to confirm the antigenicity by reacting with 
antibody and animal serum [67]

Recombinant PV32 Plasmodium vivax Wheat germ Humoral immune response of serum against the PV32 was 
confirmed by MFI measurements using PV32 protein arrays 
[140]

PvGAMA Plasmodium vivax Wheat germ ELISA results presented that humoral immune response from 
the patients injected with PvGAMA showed a significant 
increase in the anti-PvGAMA antibody response [143]

HbC-VLP Hepatitis B virus E. coli Antigenicity of HBc VLPs was confirmed by ELISA against 
mAb C1-5 [141]

HPIV3-HN Human parainfluenza 
virus 3

Wheat germ ELISA-based screening of Hybridomas created from the sple-
nocytes of Balb/c mice immunized with purified full-length 
HPIV3-HN showed higher absorbance corresponding to 
higher specificity [144]

CLDN-5 Tight junctions extracel-
lular regions (ECR)

Wheat germ Proteoliposomal engineered CLDN-5 antigens induced anti-
CLDN5-5-ECR antibodies in mice [145]

αCD19-Id small diabody (Db) molecule containing both a B-cell–targeting moiety (anti-CD19) and a lymphoma Id, 38C13-scFv idiotype-spe-
cific single-chain variable fragment of the immunoglobulin from the 38C13 mouse B-cell lymphoma, CLDN-5 claudin-5, CpG 5’–C–phosphate–
G–3’, DT5 and DT6 diphtheria toxoid antigen variants, E. coli Escherichia coli, ELISA enzyme-linked immunosorbent assay, EXP1 Plasmodium 
falciparum exported protein, FhSAP2 Fasciola hepatica saposin-like protein-2, HbC-VLP hepatitis B core protein virus-like particle, HcA, HcB, 
and HcE heavy-chain fragment of botulinum toxins A, B, and C, LSA3 liver stage antigen-3, HPIV3-HN human parainfluenza virus 3 hemagglu-
tinin-neuraminidase, mMOMP major outer membrane protein, MSP11 merozoite surface protein 11, PfMSA180 P. falciparum merozoite surface 
antigen 180, PfRipr P. falciparum Rh5 interacting protein, PfRON12 P. falciparum rhoptry neck protein, Pfs25-GPI glycosylphosphatidylino-
sitol anchored post-fertilization stage parasite surface antigen 25, PV32 P. vivax 32, PvGAMA P. vivax glycosylphosphatidylinositol-anchored 
micronemal antigen, RRL rabbit reticulocyte lysate, SMFA standard membrane feeding assay, tNLP telodendrimer nanolipoprotein particle
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BP100, Cecropin B, and Cecropin P1 was demonstrated by 
E. coli inhibition assay [31].

6.5 � Site‑Directed Labeling of Proteins

When non-canonical amino acids (ncAAs) are incorpo-
rated into proteins, novel functional, structural, and imaging 
properties can be generated. This synthetic biology appli-
cation is fast emerging and has wide applications such as 
incorporating precise PTMs and adding novel functions to 
proteins [23, 24, 42, 45]. By taking advantage of the open-
ness of the CFPS, one can add the machinery responsible 
for the co-translational incorporation of ncAAs directly to 
the standard reaction components. One possible method 
to incorporate ncAA is to use precharged tRNAs harbor-
ing the ncAA. One of the most commonly used methods is 
the amber suppression technology using an orthogonal pair 
of aminoacyl-tRNA synthetase/tRNA (O-tRNA/aaRS pairs 
from distinct organisms), which functions independent of 
endogenous AARSs and tRNAs in the host and is used to 
direct the incorporation of ncAAs to specific positions such 
as the amber stop codon (UAG). After incorporation of an 
ncAA with a reactive group, bioorthogonal click reactions 
can be performed to conjugate a molecule of interest.

The most general biorthogonal click reactions for conjugat-
ing molecular probes or polymers are the copper-catalyzed 
azide-alkyne cycloaddition (CuAAC), Staudinger-ligation, 
photo click cycloaddition, strain-promoted azide-alkyne 
cycloaddition (SPAAC) and inverse electron-demand Diels-
Alder cycloadditions (IEDDA + SPIEDAC). Using E. coli-
based CF systems, Cui et al. showed the incorporation of 
two fluorescent labels, BODIPY fluorophore and TAMRA-
DIBO, by using a precharged tRNA + orthogonal system for 
FRET measurements [153]. Using Sf21-based CF systems, 
Quast et al. demonstrated the incorporation of p-azido-l-phe-
nylalanine at defined amber positions in parallel in the two 
subunits of the human EGFR protein dimer. Later, the azido 
group of the incorporated AzFs was coupled by photoaffin-
ity cross-linking using a bis-COMBO linker to create a stable 
synthetic dimer of EGFR [14]. The dimerized protein shows 
autophosphorylation in the presence of tyrosine kinase. In gen-
eral, release factor 1 (RF1) competes with orthogonal ncAA-
tRNA for the amber codon, which results in truncated products 
along with successfully suppressed products. So, CF lysates 
derived from genetically modified E. coli lacking release factor 
1 (RF1) can be used to enhance the incorporation efficiency of 
ncAAs. Using the orthogonal system and E. coli-based CFPS, 
human MEK1 kinase with PTMs was synthesized up to milli-
gram quantities by site-specific, co-translational incorporation 
of phosphoserine at specific positions [154].

Various polyethylene glycol (PEG) moieties have been 
widely used to decorate therapeutic proteins. The PEG moiety 
usually offers high stability and extends the half-life of proteins 

while in circulation inside the body. The Food and Drug 
Administration (FDA) has recognized PEG moieties as safe due 
to their structural flexibility, hydrophilicity, and minimal toxic-
ity, and several PEGylated drugs have been approved by the 
FDA. Using Sf21-based CF systems, a site-specific PEGylated 
human EPO was produced and characterized by autoradiog-
raphy [45]. Apart from the amber suppression strategy, there 
are other strategies like frameshift suppression, sense codon 
reassignment, and unnatural base pairing. A detailed review of 
prominent methods for the incorporation of ncAAs into pro-
teins using CFPS has been recently published [23].

7 � Commercial Cell‑Free Systems

A wide range of commercial CF systems is available in the 
market based on lysates derived from diverse sources. As 
well, a few companies provide services for CF synthesis 
of proteins. Some of the products derived from the CF 
systems based on E. coli lysates are already in clinical 
trials, such as ADCs targeting CD74 and folate receptor 
alpha highly expressed in myeloma and cancer cells (Sutro 
Biopharma, Inc, USA). Table 5 lists commercial systems 
currently available for the CF production of proteins.

8 � Outlook and Future Directions

Evolving CF systems from a laboratory level to a robust 
production platform is necessary to fulfill their potential. 
Prior to full realization of CF systems as emerging tools 
for drug discovery and evaluation, several factors need to 
be addressed, like synthesis of the high-quality functional 
protein with proper folding and PTM, cost of production, 
scalability, and safety issues. A more detailed understand-
ing of the components in the CF lysates will substantially 
improve the quality and stability of the extract prepara-
tion. The quantity of the protein depends on the translation 
efficiency of the CF system. The most important factors 
that influence the protein yields are quality of the cell-
lysate, reaction conditions, and template optimization as 
addressed in section 3.2. To increase the translation effi-
ciency, further efforts are required to increase the quality 
of lysate production. This can be achieved by using genetic 
engineering tools to remove the factors responsible for 
nucleic acid degradation, ribosome inactivation, and pro-
tein degradation. Brodiazhenko et al. showed that genomic 
disruption of genes encoding ribosome-inactivating fac-
tors (HPF in B. subtilis and Stm1 in S. cerevisiae) has 
improved the activities of bacterial and yeast translation 
systems [54]. In this context, advanced engineering tools 
like CRISPR Cas could help to improve the translation 
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efficiency of the CF systems [155]. Activation and enrich-
ment of translation-relevant factors could also increase 
translation efficiency [63].

When it comes to eukaryotic CFPS platforms, trans-
location through microsomes currently remains a black 
box. Optimizing the efficiency of coupling translation and 
translocation needs to be addressed. The most important 
issue with CF systems, especially when working with 
CECF systems, is to maintain the balance between the 
amount of protein synthesized and the stability and qual-
ity of the protein. Although CECF has been capable of 
producing 0.6–1 mg protein per mL, especially with the 
mammalian expression systems, only a small fraction of 
the produced protein was subject to detailed functional 
analysis [15, 155]. This is one of the reasons why the func-
tional assays are limited to binding assays (GPCR, TLR, 
antibody), PLBE (ion channels), and colorimetric assays 
(enzymes). By optimizing the redox conditions, the prob-
lem of Ab translocation into the lumen of microsomes 
is addressed already [75, 155]. However, when it comes 
to the synthesis of complex transmembrane proteins in 

mammalian systems, the insertion efficiency might be 
already saturated at the low synthesis rates due to restric-
tions on the level of the translocon’s functionality. A more 
detailed analysis of lipid composition and proteins con-
stituting the microsomes present in the insect, CHO, and 
human-derived lysates will help to improve the quality of 
synthesized membrane proteins. One could use alterna-
tive supplements like nanodiscs or liposomes reconstituted 
from microsomal membranes to support MP integration 
[156]. Intense efforts on designing novel and improved 
mammalian CF systems should be maintained as the 
majority of the drug targets are related to complex eukary-
otic proteins. Optimizing CF reactions in order to decrease 
protein aggregation during the purification processes and 
increasing the quality of the protein purification, espe-
cially when using the CECF method, is strongly required.

Another point to address in the field of CFPS is to 
decrease the costs of production, especially in the prepara-
tion of CF lysates and the individual reaction components. 
Substantial costs arise from the usage of phosphorylated 
energy systems, cofactors, nucleotides, amino acids, and 

Table 5   List of commercially available cell-free synthesis kits in the market

CHO Chinese hamster ovary, E. coli Escherichia coli, IVT in vitro translation, PURE Protein synthesis Using Recombinant Elements, RRL rab-
bit reticulocyte lysate, RTS rapid translation systems, Sf21 Spodoptera frugiperda 21

Commercial kit Cell-free lysate Company

PURExpress In Vitro Protein Synthesis Kit PURE/E. coli New England Biolabs, USA
TnT Quick Coupled Transcription/Translation System RRL Promega, USA
Flexi Rabbit Reticulocyte Lysate System RRL Promega, USA
TnT Coupled Wheat Germ Extract System Wheat germ Promega, USA
TnT SP6 High-Yield Wheat Germ Protein Expression System Wheat germ Promega, USA
TnT T7 Insect Cell Extract Protein Expression System Sf21 system Promega, USA
E. coli S30 Extract System E. coli Promega, USA
XpressCF+™ E. coli Sutro Biopharma, USA
myTXTL E. coli Arbor Biosciences, USA
Retic Lysate IVT Kit RRL Thermo Fisher Scientific, USA
MembraneMax E. coli Thermo Fisher Scientific, USA
Expressway Mini/Maxi E. coli Thermo Fisher Scientific, USA
1-Step CHO High-Yield IVT Kit CHO Thermo Fisher Scientific, USA
1-Step Human coupled/High-yield IVT Kit HeLa Thermo Fisher Scientific, USA
In Vitro (cell-free) LEXSY Leishmania tarentolae Jena Bioscience, Germany
AccuRapid E. coli BIONEER, South Korea
RTS 100/500 wheat germ Wheat Germ biotechrabbit, Germany
RTS 100/500/9000 E. coli HY E. coli biotechrabbit, Germany
RTS 100 Sf21 biotechrabbit, Germany
PUREfrexTM PURE/ E. coli Eurogentec, Belgium
Next Generation Cell Free Protein Expression Kit Wheat germ Sigma-Aldrich, USA
iPE-Quick Kit E. coli Sigma-Aldrich, USA
WEPRO TT Premium ONE/PLUS Expression Kit Wheat germ CellFree Sciences Co., Ltd, Japan
ALiCE Cell-Free Protein Expression Tobacco BY-2 Leniobio, Germany
Human Cell-Free Protein Expression Maxi System Cultured human cells Takara Bio, Japan
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DNA. Alternative energy regeneration systems are avail-
able in the place of phosphorylated substrates (e.g., glu-
cose, maltodextrin, etc.) for sustainable ATP regenera-
tion throughout the synthesis reaction [157–159]. Use of 
nucleoside monophosphates instead of nucleoside triphos-
phates as the nucleotide source in the CF systems could be 
another cost-effective parameter [159]. Avoiding the use 
of exogenous tRNAs and cyclic AMPs and reducing the 
concentration of amino acids and nucleotides are some 
of the cost-effective parameters one could optimize dur-
ing protein synthesis. Additionally, new high-cell-density 
cultivation strategies and improvement in the quality of 
cell lines by genetic engineering could help to produce 
cost-effective high-quality CF systems. Costs can also be 
decreased by engineering and optimization of eukaryotic 
lysates to extend the lifetime of these systems, thereby 
increasing the yield of the produced protein.

There has been considerable progress in the point-of-
care production devices for on-demand biologic synthe-
sis of small quantities of therapeutic proteins using CHO 
lysates and E. coli lysates through on-site good manu-
facturing practice (GMP) [30]. This type of miniaturized 
device could be useful for quick testing of proteins and 
thus help in treating common and rare diseases, and CFPS 
could help solve the challenges associated with in vivo 
expression.

Due to the open nature of the CF systems, proteins can 
be modified with chemically synthesized glycans by bio-
conjugate chemistries. This will help to increase the qual-
ity and therapeutic efficiency of the synthesized proteins. 
There is an exponential increase in the number of publica-
tions from the last 5 years using CF lysates for producing a 
wide range of proteins [160]. Due to the increased aware-
ness of the biosynthetic potential of the CF systems, proto-
cols becoming simpler, improvement in the lysate quality, 
and its applicability in the preparation of a diverse range 
of proteins, there will be unexpected outcomes in the field 
of protein production towards future drug development.
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