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Abstract
Chimeric antigen receptor-T cells (CAR-Ts) are an exciting new cancer treatment modality exemplified by the recent regulatory 
approval of two CD19-targeted CAR-T therapies for certain B cell malignancies. However, this success in the hematological set-
ting has yet to translate to a significant level of objective clinical responses in the solid tumor setting. The reason for this lack of 
translation undoubtedly lies in the substantial challenges raised by solid tumors to all therapies, including CAR-T, that differ from 
B cell malignancies. For instance, intravenously infused CAR-Ts are likely to make rapid contact with cancerous B cells since both 
tend to reside in the same vascular compartments within the body. By contrast, solid cancers tend to form discrete tumor masses 
with an immune-suppressive tumor microenvironment composed of tumor cells and non-tumor stromal cells served by abnormal 
vasculature that restricts lymphocyte infiltration and suppresses immune function, expansion, and persistence. Moreover, the 
paucity of uniquely and homogeneously expressed tumor antigens and inherent plasticity of cancer cells provide major challenges 
to the specificity, potency, and overall effectiveness of CAR-T therapies. This review focuses on the major preclinical and clinical 
strategies currently being pursued to tackle these challenges in order to drive the success of CAR-T therapy against solid tumors.

Key Points 

Chimeric antigen receptor-T cell (CAR-T) therapy for the 
treatment of solid tumors is currently being evaluated in 
approximately one-third of all CAR-T clinical trials.

CAR-T therapies targeting solid cancers have yet to dem-
onstrate similar levels of clinical response as those being 
achieved in hematological indications.

Developing methods and technologies to overcome the 
immune-suppressive tumor environment, tumor acces-
sibility and infiltration, as well as optimization of CAR-T 
function are the current focus of the CAR-T field in order 
to improve therapy for solid tumors.

1  Introduction to the Chimeric Antigen 
Receptor‑T Cell (CAR‑T) Field

Chimeric antigen receptors (CARs) are artificial fusion 
proteins that, when expressed on the cell surface, endow 
the engineered T cell with a pre-defined target specificity 
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[1]. The CAR itself has developed through several genera-
tions, albeit generally based on the same configuration: an 
extracellular antigen-binding domain, usually employing 
an antibody-derived single-chain variable Fragment (scFv), 
linked through an extracellular spacer to a transmembrane 
domain and an intracellular T cell activation tail comprising 
different functional units. The core component of the CAR 
endodomain typically consists of the intracellular domain 
of the T cell co-receptor CD3ζ containing three immunore-
ceptor tyrosine-based activation motifs (ITAMs) in tandem 
with, depending on the generation, none, one, or two co-
stimulatory domains. Upon expression in a T cell, the CAR 
can engage its target antigen and thereby enable the lympho-
cyte to activate a plethora of effector responses resulting in 
targeted cell killing [2].

Whilst T cells use their endogenous T cell receptor (TCR) 
to bind specific proteins on target cells called the major his-
tocompatibility complex (MHC), the expression of the CAR 
avoids this restriction and provides the real power to the 
approach in which the T cell can be directed to virtually 
any tumor target without MHC restriction. Consequently, 
while tumors evolve to avoid immune elimination through 
utilizing mechanisms that subvert the activity of the TCR, 
the CAR employs a targeting approach that in turn ‘avoids 
the avoidance mechanism’, making tumors again susceptible 
to T cell-mediated attack. Together, the breadth of targeting 
combined with the generic nature of the approach for any 
patient, given the lack of reliance on MHC, makes the CAR 
approach a potentially highly attractive therapy.

The reason why the approach is ‘potentially’ attractive 
relates to the target and the barriers that the CAR-T cell 
(CAR-T) has to overcome to engage and eliminate tumor 
cells. An ideal target is one that is highly expressed on trans-
formed cells as compared to low or undetectable levels of 
expression on non-malignant healthy tissues. Yet, for the 
most part, such perfect targets do not exist due to the lack 
of truly tumor-specific targets. The targets most commonly 
available are typically over-expressed on transformed cells 
but also expressed at low levels on non-malignant tissues 
meaning that ‘on-target, off-tissue’ toxicity becomes a lim-
iting factor. In the B cell situation, the CD19 target anti-
gen is expressed solely on B cells meaning that the CAR-Ts 
will eliminate malignant and non-malignant B cells. Whilst 
clearly not ideal, the lack of B cells is not considered to be 
life-threatening, with patients receiving immunoglobulin 
infusions to counter the lack of B cells in the treated patient.

To date, the most clinically investigated indications 
for CAR-T therapy are hematological malignancies [3, 4] 
(Fig. 1). CD19-directed CAR-T therapy has demonstrated 
impressive clinical responses in patients with advanced, 
chemotherapy-resistant leukemia and lymphoma, reaching 
up to 70–90% of minimum residual disease-negative com-
plete remissions in some studies [5–8]. Two CD19-specific 
CAR-T treatments were recently approved by the US Food 
and Drug Administration (FDA) and the European Medi-
cines Agency (EMA), namely Yescarta™ (axicabtagene 
ciloleucel) [9, 10] for patients with relapsed or refractory 
aggressive non-Hodgkin lymphoma and Kymriah™ (tisa-
genlecleucel) [11, 12] for patients with acute lymphoblastic 

Fig. 1  Estimated proportion of new cancer cases in the USA in 2019 
(left) and CAR-T clinical trials per organ class (right). Based on Can-
cer Facts and Figures, 2019 (American Cancer Society) [129] and 

the U.S. National Library of Medicine (ClinicalTrials.gov; excluding 
long-term follow-up and retrospective studies). CAR-T chimeric anti-
gen receptor T cell
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leukemia and diffuse large B cell lymphoma [13, 14]. The 
success story of CAR-T therapies in hematological malig-
nancies has nurtured the hope of extending the use of these 
‘living drugs’ to further cancer indications, including solid 
tumors, especially considering the proportion of new cases 
of patients with solid tumors per year as compared with 
hematological tumors (Fig. 1).

When considering the majority of solid tumors, much 
effort is ongoing worldwide to determine patient-spe-
cific antigens (neo-antigens) that can be targeted, but this 
approach is not well-suited to the generic CAR-T approach 
where a single CAR can be used in the majority of patients 
with a specific tumor indication. Consequently, many of the 
targets in current use for solid tumor CAR-T therapy have 
been identified through antibody-directed therapies and are 
usually expressed to some degree on non-malignant tissue. 
As discussed later, this means either titrating the CAR-T 
therapy to achieve a window of therapy without toxicity or 
the development of methods that can more directly control 
the CAR itself to negate the possibility of on-target, off-
tissue toxicity.

Beyond the question of target, there is increasing clarity 
concerning the specific challenges raised by solid tumors to 
CAR-T therapy. This review discusses these major obstacles 
and explores preclinical and clinical efforts aiming to over-
come these hurdles and drive the success of CAR-T therapy 
in the solid cancer area where, to date, substantive levels of 
clinical response are still lacking (see Sect. 3).

2  Overcoming the Barriers Raised by Solid 
Tumors Against T Cells

The impressive clinical response of CD19-specific CAR-T 
likely relies on the high-level expression of the targeted 
antigen on the tumor cells as well as the peripheral distribu-
tion of the lymphoid cancer cells enabling accessibility and 
susceptibility to T cell-mediated elimination. Unlike B cell 
malignancies, solid cancers sculpt a tumor microenviron-
ment (TME) that not only restricts lymphocyte trafficking 
and access to the entire mass of the solid tumor [15] but 
also downregulates their activity, expansion, and persistence 
at the tumor site [16, 17]. The TME represents an intricate 
cellular and molecular immunosuppressive network formed 
by aberrant vasculature, stromal cells, immune cells (includ-
ing regulatory T cells [Tregs]/myeloid-derived suppressor 
cells [MDSCs]/tumor-associated macrophages [TAMs]), 
and extracellular matrix-containing inhibitory factors, and 
is characterized by oxidative stress, nutritional depletion, 
acidic pH, and hypoxia [18]. Beyond the immunosuppres-
sive TME and the paucity of uniquely and homogeneously 
expressed tumor antigens, the inherent plasticity of can-
cer cell populations and the selective outgrowth of target 

antigen-loss variants add an additional layer of complexity, 
providing further challenges to the effectiveness of CAR-T 
therapies.

To face those challenges, additional engineering of CAR-
Ts and the use of combination therapies hold the potential to 
endow therapeutic cell products with novel attributes neces-
sary to overcome immunosuppressive aspects of the TME. 
However, since solid tumors are protected from immune 
attack by cumulative defenses, the abrogation of only one 
factor may not produce a significant change in the effective-
ness of the overall cellular immunotherapy. Moreover, it is 
crucial that efforts to enhance the functionality of CAR-Ts 
do not compromise safety and should ideally be coupled 
with stringent tools that allow for spatial and temporal con-
trol of their activity and persistence after deployment into 
the patient [19].

The following sections describe some of the approaches 
that are being considered to surmount challenges faced when 
treating solid tumors with CAR-T therapies, with a focus on 
strategies that concurrently resolve more than one evasion 
mechanism and that are widely applicable to different solid 
tumor indications.

2.1  Increasing the Homing of CAR‑Ts at the Tumor 
Site

Following infusion into the systemic circulation, CAR-Ts 
are faced with the immediate obstacle of localizing to and 
infiltrating into the tumor parenchyma. Homing and tissue 
infiltrating is a multistep process governed by the expres-
sion and pairing of adhesion molecules present on both 
the T cells and the inflamed vasculature that act sequen-
tially to mediate attachment, rolling, and extravasation of 
circulating lymphocytes towards a chemokine gradient 
produced by tumor cells. However, aberrant expression of 
adhesion molecules on the tumor endothelium as well as 
T cell chemokine receptor/tumor-associated chemokine 
incompatibility and hydrostatic pressure result in inef-
ficient intratumoral T cell infiltration potentially causing 
treatment-related toxicities due to the accumulation of 
transferred cells in inflamed normal tissues, such as in the 
case of injury or autoimmune disease [20].

Several preclinical models demonstrated that the forced 
expression of a chemokine receptor complementary to 
tumor-associated chemokines enhanced the ability of CAR-
Ts to traffic to and expand at the tumor site, consequently 
improving their antitumor efficacy [21, 22]. However, appli-
cability of this approach is restricted by the fact that the 
chemokine landscape can be extremely heterogeneous both 
across disease entities and patients, underscoring the need 
to identify specific receptor candidates to enhance T cell 
infiltration into different cancer types [23]. Furthermore, 
chemokines are not restricted to the tumors, suggesting there 
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could be diversion of the cells to other anatomical locations 
where the specific chemokine is present.

Although not always technically achievable, loco-regional 
delivery of CAR-Ts reduces trafficking restrictions without 
additional engineering while circumventing the transient 
pulmonary sequestration of intravenously administered 
T cells [24, 25]. In mouse models, intraperitoneal or intra-
pleural administration of CAR-Ts outperformed systemic 
infusion and, surprisingly, also impacted disseminated 
tumor sites attributed to a benefit of T cell activation shortly 
after delivery [26, 27]. Accordingly, several clinical trials 
are examining the safety of administration of loco-regional 
CAR-T therapies (discussed in Sect. 3), even though infil-
tration within solid tumor masses is not always improved 
by loco-regional delivery. Finally, nanoparticles expressing 
CARs, which bind to and re-program peripherally circulat-
ing T cells in vivo, were also recently developed to increase 
selectivity and distribution to distant organs [28].

2.2  Neutralization of Immunosuppressive 
Mediators within the Tumor Microenvironment

Once they have successfully invaded the tumor parenchyma, 
CAR-Ts then have to contend with a highly hostile milieu for 
T cell antitumor effector function, replete with suppressive 
mediators (transforming growth factor [TGF]-β, interleukin 
[IL]-10, IL-4) and inhibitory molecules (programmed death-
ligand 1 [PD-L1], cytotoxic T lymphocyte antigen 4 [CTLA-
4], Fas-ligand [FASL]). Apart from TME remodeling, which 
should be induced by the combination with chemotherapy 
agents, a more specific combination strategy with pro-
grammed death 1 (PD-1)/PD-L1 or CTLA-4-blocking anti-
bodies (the so-called checkpoint inhibitors commonly used 
in clinical studies with excellent outcomes [29]) and CAR-Ts 
can therefore potentially augment antitumor effects against 
solid tumors [17, 30, 31]. CAR-Ts can also be shielded to 
intrinsically resist immunosuppressive signaling by disrupt-
ing endogenous expression of inhibitory receptors through 
gene editing or transgenic expression of a dominant-negative 
form of those receptors or inhibitory antibodies [32–36]. 
However, the abrogation of immunosuppressive signaling 
may be insufficient, prompting additional investigations into 
alternative approaches that can turn TME limitations into 
advantages for the transferred CAR-Ts. Co-expression of a 
chimeric receptor that converts an immunosuppressive sig-
nal into an immunostimulatory one could also extend CAR-T 
engineering beyond neutralization of inhibitory ligands to 
the active reversal of their effects. Exchanging the endo-
domain of inhibitory receptors such as IL-4 receptor (IL-
4R) or PD-1 with signaling domains derived from stimu-
latory receptors (IL-7 receptor [IL-7R], CD28, or 4-1BB) 
improved in  vivo antitumor efficacy of tumor-directed 
T cells [37–39]. Importantly, CAR-T activation could be 

confined to the tumor site since triggering would require 
exposure to both the specific antigen and the tumor-derived 
factor. In addition to promoting function and survival of the 
modified T cells, the use of inhibitory-to-stimulatory switch 
receptors might present the advantage of depriving the TME 
of an immunosuppressive factor, potentially providing col-
lateral benefits to endogenous exhausted tumor-infiltrating 
lymphocytes (TILs) [39, 40]. Although those additional 
engineering strategies proved effective in murine models, 
selective neutralization of a single immunosuppressive path-
way might render a functional, albeit transient, antitumor 
state and fall short of preventing long-term relapse due to 
the upregulation of multiple inhibitory receptors by activated 
T cells, thus limiting the window of time that the CAR-Ts 
exert their function. On the other hand, as those receptors 
are important regulators of T cell homeostasis, the impact 
of such modifications on T cell effector function in humans 
remains to be determined, as well as any potential impact of 
the leverage of immune brake that could lead to uncontrolled 
lymphoproliferation or other immune-related adverse events.

Another methodology addresses the unfavorable TME 
by using CAR-Ts as production vehicles that secrete pro-
inflammatory cytokines, such as IL-12 or IL-18, into the 
targeted tumor tissue, tuning the T cell response into a more 
acute one [41]. Beyond auto-stimulation of the transferred 
cells [42], release of effector cytokines by those so-called 
‘TRUCKs’ (T cells Redirected for Universal Cytokine Kill-
ing) was shown to reshape the TME through multiple parac-
rine mechanisms including recruitment of additional tumor-
reactive cells from the innate and adaptive immune systems 
[43–45]. As tumor cell lysis by TRUCKs can generate new 
antigen-specific lymphocytes via epitope spreading, the con-
comitant local release of effector cytokines will support the 
effector function of these host immune cells and also recruit 
and activate innate immune cells [46, 47]. Despite all the 
expected benefits, the systematic delivery of proinflamma-
tory cytokines may lead to significant toxicities [48], under-
scoring the critical need to restrict cytokine production to 
the lesion site by using a promoter that becomes active only 
upon CAR engagement. In addition, inducible expression 
systems are more likely to constrain cytokine levels within a 
therapeutic range as overactivation of T cells by supra-thera-
peutic cytokine levels will foster counterproductive exhaus-
tion. However, in early-phase clinical trials, adoptive transfer 
of TILs genetically engineered to secrete IL-12 at the tumor 
site resulted in severe toxicities [49]. Therefore, the use of 
less stimulatory cytokines such as IL-18 might present a 
safer option as this cytokine was given intravenously at high 
biologically active doses to cancer patients with no occur-
rence of dose-limiting toxicities [50]. In addition, integra-
tion of suicide genes or safety switches is another option to 
mitigate toxicity potentially induced by such strategies (see 
Sect. 2.5).
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Since emerging nanoscale-targeted drug carriers are able 
to remodel the TME without giving rise to the systemic tox-
icity, CAR-engineered T cells were also employed as active 
chaperones to successfully deliver adenosine receptor antag-
onist-loaded cross-linked multilamellar liposomal vesicles 
to TILs deep in the immunosuppressive TME, in order to 
prevent or rescue the emergence of hypofunctional CAR-Ts 
within the TME [51].

2.3  Boosting In Vivo CAR‑T Expansion 
and Persistence Capacities

While the in vivo cell expansion and effectiveness of CD19 
CAR-Ts seem to correlate in certain studies using CAR-T 
in hematological malignancies [52, 53], it is generally con-
sidered that the intrinsic qualities of infused lymphocytes 
are some of the determinants of success in CAR-T thera-
pies. The ex vivo manipulation of T cells provides a unique 
opportunity to select for cellular subsets with enhanced 
potential for mounting durable antitumor responses [54]. 
Selection of  CD8+ cytotoxic cellular subsets, ratios of 
CD4:CD8, or use of natural killer cells may increase broad 
effector activity [46, 55]. Although the ‘seed’ population 
optimally suited for the production of long-lived CAR-Ts is 
still a matter of debate, an emerging consensus postulates 
that less-differentiated phenotypes such as cells presenting 
naïve and central memory phenotypes have superior pro-
liferative capacity and sustained survival and, as such, are 
more effective at regressing established tumors than late-
differentiated effector memory and effector T cells [56]. 
Building on this concept, there is growing interest in devel-
oping protocols to conduct large-scale T cell amplification, 
while simultaneously preserving the functional features of 
early-memory T cells [57]. It was shown that reducing the 
duration of ex vivo culture to 3–5 days yielded less-differ-
entiated cells with enhanced therapeutic potential compared 
with cells expanded using standard 9- to 12-day protocols 
[58]. An alternative strategy to limit cell differentiation dur-
ing CAR-T manufacturing is the pharmaceutical blockade of 
the phosphoinositide 3-kinase (PI3 K)/AKT axis playing an 
integral role in T cell activation downstream of the TCR and 
co-stimulatory molecules [59, 60]. Another option would 
be to substitute IL-7 and IL-15 for IL-2 as the growth factor 
support during ex vivo generation of CAR-T products as this 
cytokine combination was shown to enrich for T memory 
stem cells [61]. In preclinical models, CAR-Ts expanded in 
IL-7 and IL-15 showed superior persistence and antitumor 
activity compared with counterparts grown in IL-2 [62].

Holding back the acquisition of full effector capacity 
ex vivo by the reduction of culture duration or modulation 
of T cell differentiation represents relatively easily translat-
able and widely applicable ways for the generation of early-
memory CAR-Ts. The question is whether these cells have 

the therapeutic potential to be effective at lower infusion 
doses, potentially mitigating acute toxicity and commensu-
rately trimming production costs [60].

The evolution of CAR design, to date, has focused pre-
dominantly on increasing signaling outputs through combi-
natorial modules of co-stimulatory domains fused in series 
to ITAM-bearing CD3ζ activation domain [63]. However, 
there is now a growing appreciation that functional tun-
ing of CAR signaling has an upper limit. Above this limit, 
gains in the magnitude of effector outputs are negated by 
augmentation of T  cell differentiation, exhaustion, and 
activation-induced cell death (AICD) [20, 21]. Accord-
ingly, the next challenge for future CAR generations will be 
to calibrate CAR activation in order to achieve an optimal 
balance between effector and memory programs in T cells. 
Optimized configurations of CARs are being investigated 
to better recapitulate the dynamic process of natural T cell 
activation and co-stimulation, sharply differing from the 
1:1 stoichiometry constraint within CAR designs currently 
under clinical investigation. For example, the expression of 
a CD28-based CAR along with 4-1BB ligand resulted in 
higher therapeutic efficacy, reconciling tumoricidal func-
tion afforded by CD28 co-stimulation with increased T cell 
persistence afforded by 4-1BB engagement [64]. Recently, 
a CD28-based CAR containing a single functional ITAM 
was shown to favor in vivo persistence of highly functional 
CAR-Ts, balancing the replicative capacity of long-lived 
memory cells with the acquisition of strong antitumor effec-
tor functions [65]. However, the optimal construct will likely 
depend on several factors, including affinity (avidity) for tar-
get, tumor access, and the type of TME.

Therefore, while several options to improve both per-
sistence and expansion capacities of CAR-Ts are currently 
being investigated, no universal solution has yet been iden-
tified. To this end, the empirical testing of CARs remains 
the only option to evaluate the different potential schema 
of CAR/T cell phenotype/additional functionality such as 
TRUCKs.

2.4  Improving Targeting of Heterogeneous Tumors

Although not specific to solid tumors, due to the paucity of 
truly tumor-restricted antigens in solid tumor tissues, CAR-
Ts will need to become capable of recognizing patterns of 
gene expression that are different between normal and malig-
nant cells, rather than relying on single—though highly 
specific—antigenic markers. One approach that was inves-
tigated is to engineer CAR-Ts with dual specificity, whereby 
two receptors targeting distinct antigens act as ‘AND/NOT’ 
Boolean logic gates [66, 67] in order to prevent toxicity 
while maintaining efficacy, rather than irreversibly delet-
ing CAR-Ts that are toxic against both tumor and host. The 
‘AND’ gates require the successful recognition of a set of 
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pairwise upregulated tumor antigens by two different CARs 
to initiate full immune cell functions [68, 69], whereas 
‘NOT’ gates employ receptors that prevent T cell activa-
tion when engaging antigens found on healthy tissues [70]. 
While Boolean logical sensing may enhance the specificity 
of CAR-Ts towards tumors, this approach is still limited by 
the fixed antigen specificity of conventional CAR design, 
and by the fact that the therapeutic window will require an 
optimal expression pattern of multiple targets while a single 
target antigen loss could severely disable the system.

An alternative to this classical antibody-based CAR 
limitation would be to harness the multiple ligand-binding 
ability of physiological immune receptors such as NKG2D 
(natural killer group 2 member D). NKG2D recognizes sev-
eral stress-induced ligands expressed within the TME of 
cancers from diverse origins, not only on the tumor cells 
themselves but also on tumor neovasculature and tumor-
associated immune cells. Thus, a CAR bearing NKG2D as 
the targeting moiety holds the potential to eliminate a broad 
array of cancers, simultaneously altering the tumor and its 
supportive framework [71–73]. A second ligand-based CAR 
approach targets the ErbB receptor family, for which at least 
one member is expressed in 88% of solid tumors [74–77].

Another possibility is to target the CAR-Ts towards anti-
gens expressed on tumor stroma and vasculature, which are 
expressed by multiple tumor types and would increase the 
homing into the TME [78, 79].

2.5  Mitigating Toxicity

A first option to mitigate the potential on-target, off-tissue 
toxicity of CAR-Ts is the use of CAR-Ts with reduced per-
sistence capacities such as transiently expressed CARs using 
non-viral approaches including messenger RNA (mRNA) 
electroporation [80], sleeping beauty transposition [81], and/
or a multiple-dose schedule of short persisting CAR-Ts to 
control engraftment [80, 82]. Furthermore, the hypofunc-
tionality of CAR-Ts within the TME may also be overcome 
by a multiple-dosing approach [16, 17, 83].

Equipping CAR-Ts with properties aimed at enhancing 
their potency or their infiltration into tissues should ide-
ally be coupled with stringent safety attributes that allow 
for temporal regulation of activity or persistence of infused 
cells in the patients. Co-expression of suicide genes encod-
ing surface molecules or enzymes conferring susceptibility 
to antibody- or drug-mediated cell death allows for selec-
tive and irreversible depletion of the transduced T cells after 
infusion into the patients [84–86].

To avoid the irrevocable elimination of potentially ther-
apeutic cells, several platforms have been developed to 
repeatedly turn on and off CAR-T activity at will after re-
infusion into the patients (called ‘safety switch’ or ‘advanced 
cell programming technology’) to prevent and/or limit the 

likelihood of toxicity. These ‘switchable’ CAR-Ts are not 
directed to a cell surface target antigen and are per se inert 
but become operative strictly in the presence of a bispecific 
adaptor molecule that mediates formation of the immuno-
logical synapse between the target cancer cell and the lym-
phocyte [87–92]. After rapid elimination of the adaptor mol-
ecule from the peripheral blood, CAR-Ts automatically turn 
off, thus providing a self-limiting safety switch. Moreover, 
the modularity of the switchable CAR-T approach provides 
options for altering specificity post-adoptive transfer by 
delivery of adaptor molecules targeting different antigens 
together with one single cellular product, which may be an 
effective strategy for addressing antigen loss relapse and het-
erogeneity of tumor populations. Furthermore, the ability 
to titrate CAR-T activity in vivo through adaptor molecule 
dosing paradigms offers the opportunity to achieve a gradual 
clearance of cancer cells, minimizing acute toxicity in high 
tumor burden patients. Finally, low-dose treatment with an 
adaptor molecule maintained a larger central memory com-
partment within CAR-Ts than did high-dose regimens, with 
the potential to boost in vivo cell endurance, as discussed 
earlier. However, the potential drawback of this approach 
lies in the need for multiple costly reagents and the chal-
lenge of ensuring that the engager and CAR-T meet in the 
correct location at a concentration of each entity sufficient 
to drive a therapeutic response. Within the parenchyma of a 
solid tumor, this would likely be a major dosing challenge.

2.6  Combination of Approaches into One Cellular 
Product

The future of CAR-T cellular therapies for solid tumors 
resides in the alliance of wisely selected complemen-
tary approaches that will generate a cellular product with 
enhanced tissue penetration and homing, well-balanced 
effector and memory outputs, enhanced specificity/safety, 
and the ability to resist TME immunosuppression while 
concurrently reviving the endogenous host immune system 
(see Table 1). Using healthy donor cells instead of each 
patient’s cells, i.e., development of allogeneic approaches 
with a decreased risk of graft-versus-host disease (GvHD) 
and management of host-versus-graft disease (HvGD), may 
provide answers to some of these issues. The use of a single 
donor should provide a greater degree of product consist-
ency, while the likely youthful healthy donor would poten-
tially provide a T cell product that has not been skewed by 
the long-term exposure to tumor cells as would be the case 
for an autologous product. From a practical perspective, allo-
geneic CAR-T therapy may also provide economic benefits 
through reduced per patient costs and the fact that patients 
would not need to wait for the length of the manufactur-
ing period before receiving the product. Earlier treatment of 
patients with acute disease could be of critical importance 
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with respect to therapeutic readouts. One approach being 
pursued to generate an allogeneic CAR-T product is the 
complete elimination of TCR and human leukocyte antigen 
(HLA) molecules usually performed by gene-editing tech-
niques [93, 94].

Yet, a major task is the transition from proof-of-concept 
studies employing human tumor cell line xenografts into 
immunocompromised mice to the development of clinically 
implementable technologies. Indeed, the clinical predictive 
power of such experimental systems is challenged by the 
fact that they imperfectly reflect the structural complex-
ity and heterogeneity of established solid human tumors, 
poorly inform about potential cross-reactivity against 
healthy human tissues, and provide limited insights about 
how CAR-Ts interface with the host immune components. 
Patient-derived xenografts may represent more clinically 
relevant models but suffer from a variable engraftment rate 
and poor availability [95]. In addition, stromal cells from 
the original human tumor cannot proliferate continuously 
and are replaced by cells derived from the recipient mouse 
[96], thereby preventing investigations into the impact of 
therapy on TME. Ultimate validation of which combinato-
rial approaches or defined T cell subsets composition will 
achieve sustainable effective responses in the human con-
text will only come from future clinical trials carried out to 
evaluate the resulting conclusion.

3  Current Treatment of Solid Tumors 
in the Clinic

Based on the first successes obtained with hematologic 
indications, and apart from the optimizations of the co-
stimulatory domains and overall CAR vector construct and 
viral vector selection, the majority of clinical studies tar-
geting solid tumors did not further modify the construct, 
the ex vivo cell culture conditions, or the administration 
procedures, nor did they use combinations to specifically 
counteract the hurdles raised by solid tumors. Early studies 
targeting solid tumors with a single intravenous infusion of 
first- or second-generation CAR-Ts reported little evidence 
of clinical effectiveness, while there was some evidence of 
on-target, off-tumor toxicity seen using CAR-Ts targeting 
carbonic anhydrase-IX [97, 98] in renal cell carcinoma or 
HER2 (human epidermal growth factor receptor 2)/neu in 
colorectal cancer [99], which further limited the develop-
ment of CAR-Ts in the solid tumor field.

As of May 2019, around 160 completed or ongo-
ing CAR-T clinical trials registered with the US National 
Library of Medicine (ClinicalTrials.gov) are targeting solid 
tumors (Fig. 1) (64% of them in phase I, 30% in phase I/
II, 3% in phase II, 2% in long-term follow-up, and 1% ret-
rospective studies) over a total of ~ 510 clinical trials in 

the CAR-T field. The most investigated targets are meso-
thelin, GD2 (disialoganglioside), HER2, MUC1 (mucin 
1), CEA (carcinoembryonic antigen), GPC3 (glypican 3), 
and EGFRvIII (variant III of the epidermal growth factor 
receptor [EGFR]) (Fig. 2) and several companies that are 
currently developing CAR-T approaches for solid tumor 
indications have reported some preliminary clinical data 
(Tables 2, 3).  

In total, only 61 trials (of which 51 are still ongoing) are 
evaluating one or two strategies specific to targeting solid 
tumors, with loco-regional administration being the most 
represented option, followed by TME neutralization (Fig. 2).

Loco-regional delivery (detailed in Sect. 2.1) is being 
or was investigated in 22 trials and is the only option that, 
to date, has demonstrated clinical activity and, in addition, 
provides a way to circumvent the potential on-target, off-
tumor toxicities by confining transferred cells within their 
targeted organs. Glioblastoma is, by far, the indication where 
the results were the most encouraging. Multiple intracra-
nial infusions (to bypass the blood–brain barrier and target 
tumor cells throughout the entire central nervous system) 
of first-generation IL-13Rα2-specific CAR-Ts led to tran-
sient anti-glioma responses and an encouraging duration 
of overall survival in the first three patients with recurrent 
glioblastoma multiforme (GBM) treated in the trial [100]. A 
recent case report demonstrated that repeated intracavitary 
infusions of second-generation IL-13Rα2-specific CAR-Ts 
further demonstrated regression of all intracranial and spinal 
tumors, lasting for 7.5 months in one 50-year-old patient 
with recurrent multifocal GBM [101]. Of 16 evaluable 
patients with GBM treated with HER2-specific CARs, one 
had a partial response lasting for more than 9 months and 
seven had stable disease (SD) ranging in duration between 
8 weeks and 29 months [102] (sponsored by Mustang Bio).

The next most important strategies being investigated 
are approaches to neutralizing or resisting the effects of 
the TME (18 trials) and/or reverting the TME to a stimula-
tory environment through the intrinsic release of cytokines 
(six trials) (see Sect. 2.2 for both approaches). As an exam-
ple, one trial run by the Memorial Sloan Kettering Cancer 
Center and targeting pleural mesothelioma patients (recently 
licensed by Atara) with intrapleural administrations of mes-
othelin-targeting CAR-Ts observed two complete responses 
(CRs) out of 14 patients after combination with a checkpoint 
inhibitor [103].

A good example of a trial on a CAR-T that can mitigate 
toxicity (approach detailed in Sect. 2.5) is Bellicum Phar-
maceuticals’ autologous prostate stem cell antigen (PSCA)-
targeting CAR-T product (BPX-601). This CAR-T employs 
a rimiducid-inducible myeloid differentiation primary 
response 88 (MyD88)/CD40 co-activation switch to aug-
ment T cell proliferation and persistence, which provides 
control over the degree of activation of the CAR-Ts through 
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adjustments to the schedule of rimiducid administration, but 
still in a tumor-dependent manner. Results from a phase I 
study evaluating BPX-601 in PSCA-positive metastatic pan-
creatic, gastric, or prostate cancer patients with or without 
prior preconditioning were presented at the American Asso-
ciation of Clinical Oncology (ASCO) meeting in 2019 [104] 
and reported rimiducid-dependent cell expansion, persis-
tence, and cytokine secretion with no dose-limiting toxicity 
or cytokine release syndrome. After BPX-601 + rimiducid 
(15 patients treated), the best responses were eight SD and 
three progressive disease (one patient was non-evaluable). 
The trial is still ongoing with a more complete lymphode-
pleting regimen.

Other encouraging results were observed in clinical tri-
als that include a combination of strategies (described in 
Sect. 2.6). A first example is a trial targeting pediatric neu-
roblastoma with single or multiple intravenous infusions 
of CAR-T-specific subpopulations (approach detailed in 
Sects. 2.3 and 2.5). There was one CR in the six patients 
treated with three intravenous infusions of  CD8+ cytotoxic 
T lymphocytes co-expressing a CD171-targeting CAR and 
a selection-suicide expression enzyme, followed by addi-
tional treatment with salvage chemotherapy [105]. Similarly, 
three of 11 high-risk neuroblastoma patients with active 
disease achieved CR following infusions of Epstein Barr 

virus-specific cytotoxic T lymphocytes and CD3-specific 
antibody OKT3-activated T cells expressing GD2-targeting 
CAR-Ts, and persistence of cells beyond 6 weeks was associ-
ated with superior clinical outcome [106, 107].

Kings College, London has developed another combined 
approach with genetically engineered T cells (T4 CAR-Ts 
or LEU-001), which co-express two chimeric receptors: 
one CAR-T specific for ErbB ligands (HER2, HER3, and 
EGFR) and a second chimeric cytokine receptor (4αβ) 
which converts the IL-4 signal into a strong and selective 
growth signal, i.e., a CAR-T product that combines several 
approaches: multiple targeting and reshaping of the TME 
through release of pro-inflammatory cytokines (see Sects. 
2.2, 2.4, and 2.6). A clinical study (ClinicalTrials.gov iden-
tifier NCT01818323) is currently evaluating intratumoral 
administration of T4 CAR-Ts for patients with head and 
neck squamous cell carcinoma without prior lymphodeple-
tion [108, 109]. Results made public at the CAR-T Congress 
EU in January 2019 revealed nine of 15 injected patients 
with SD, with potential survival improvement. One patient 
received further treatment with the anti-PD-1 inhibitor pem-
brolizumab and was in CR 2.5 years after pembrolizumab 
treatment, suggesting a combination of their CAR-T therapy 
and an anti-checkpoint inhibitor might be the way to improve 
efficacy.

Fig. 2  CAR-T clinical trials targeting solid tumors. Based on the US 
National Library of Medicine (ClinicalTrials.gov; excluding long-
term follow-up and retrospective studies). AFP α-fetoprotein,   CAR  
chimeric antigen receptor, CAR-T chimeric antigen receptor T  cell, 
CEA carcinoembryonic antigen, DLL-3 delta-like protein  3, DR5 
death receptor 5, EGFR epidermal growth factor receptor, EGFRvIII 
variant III of the epidermal growth factor receptor, EPCAM epithe-
lial cell adhesion molecule, EpHA2 Ephrin type A receptor 2,  FAP 
fibroblast activation protein, FR-alpha folate receptor-α, GD2 disialo-
ganglioside, gp100 glycoprotein 100, GPC3 glypican 3, HER2 human 

epidermal growth factor receptor 2, IL-13Rα2 interleukin-13 receptor 
α2, LMP1 latent membrane protein  1, MAGE melanoma associated 
antigen,  MMP matrix metalloproteinase, MUC1 mucin 1,  NKG2D 
natural killer group  2 member  D, NY-ESO-1 New York esophageal 
squamous cell carcinoma  1, PD-L1 programmed death-ligand  1, 
PSCA prostate stem cell antigen, PSMA prostate-specific membrane 
antigen, ROR1/2 receptor tyrosine kinase-like orphan receptor  1/2, 
TME tumor microenvironment, VEGFR-2 vascular epidermal growth 
factor receptor-2
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Celyad is also involved in CAR-T development for solid 
tumors. Based on the broad (eight-ligand) targeting capa-
bility of NKG2D CAR-Ts that target cancer cells and also 
stressed stromal cells within the solid tumor environment 
(approach detailed in Sect. 2.4), in 2016 Celyad initiated a 
complete clinical development plan first based on its lead 
product candidate, CYAD-01 (also known as NKR-2), a 
‘first-generation’ CAR (comprising the full-length human 
NKG2D receptor fused to the intracellular domain of CD3ζ) 
functioning rather like a second-generation CAR-T thanks to 
its interaction with the naturally endogenously expressed co-
stimulatory molecule DAP-10 (DNAX-activating protein 10) 
at the T cell surface. Three studies evaluating the CYAD-01 
product are directed against solid tumor indications [110]. 
Preliminary data indicated signs of clinical activity follow-
ing multiple intravenous administrations of CYAD-01 with-
out prior lymphodepletion preconditioning in patients with 
colorectal cancer or ovarian cancer (four SD over the 14 
patients recruited in the solid tumor arm [111]). The sec-
ond trial is SHRINK (NCT03310008), which is evaluating 
CYAD-01 administered concurrently to a standard neoad-
juvant FOLFOX (leucovorin [folinic acid], 5-fluorouracil, 
and oxaliplatin) chemotherapy regimen in metastatic colo-
rectal cancer (mCRC) with the aim of improving CYAD-01 
engraftment in addition to the TME remodeling induced by 
the chemotherapy (approach detailed in Sect. 2.2). Prelimi-
nary data presented at SITC (Society for Immunotherapy of 
Cancer) 2018 indicated encouraging signs of activity with a 
partial response observed in one of three patients [111]. The 
LINK study (NCT03370198) focuses on loco-regional infu-
sion into the hepatic artery of the CYAD-01 cells in patients 
with mCRC (approach detailed in Sect. 2.1).

Importantly, Celyad also developed an allogeneic analog 
of CYAD-01, using a TCR inhibitor molecule (TIM) coded 
within the vector construct to control the risk of GvHD, 
called CYAD-101, which is currently being evaluated in a 
phase I study with a similar study design as the SHRINK 
study—the alloSHRINK study (NCT03692429). At this 
time, this is the only clinical trial with an allogeneic CAR-T 
in a solid tumor, while there are still very limited allogeneic 
programs specifically designed for solid tumors in preclini-
cal development (approach detailed in Sect. 2.6).

4  Methodology

For the pie charts in Figs. 1 and 2, a list of clinical trials 
evaluating CAR-T therapies was compiled from the Clinical-
Trials.gov registry and the number of trials targeting specific 
organ classes or using a specific approach was counted for 
each represented option. Only for the pie chart represent-
ing the target antigens used in trials targeting solid tumors 
(Fig. 2; left chart), the numbers represented consider all 

trials evaluating that specific target antigen, i.e., where a 
trial is evaluating several targets in parallel, it is counted 
individually for each target (as detailed in Table 2).

5  Conclusions

CAR-T therapy for the treatment of solid tumors is currently 
being evaluated in approximately one-third of the clinical 
trials of CAR-T approaches, with several companies now 
moving into the area (Table 3). While the number of patients 
with solid tumors dramatically outnumber those with hema-
tological malignancies (Fig. 1), CAR-T therapies targeting 
solid cancers have yet to demonstrate the clinical activity 
achieved with hematological indications [112].

Considerable efforts have been made in recent years to 
develop new approaches to overcome the hurdles raised by 
solid tumors and optimize the CAR-T therapy for these spe-
cific indications, including strategies to increase the tumor 
accessibility and infiltration of CAR-Ts within the tumor 
site, neutralize and/or modulate the immunosuppressive 
TME, improve the CAR-T functions, and/or mitigate poten-
tial toxicities.

Finally, apart from those strategies to make CAR-Ts 
work in solid tumors, there will also be the need to make 
those technologies more affordable for their clinical usage 
to become widespread. By using healthy donor cells instead 
of each patient’s cells, allogeneic CAR-T could be one way 
of reaching this goal.

Still, to date, despite a few interesting results, there is lit-
tle evidence that CAR-T therapy can advance as a standard 
treatment option for patients with solid tumors. Therefore, a 
key question is whether the current CAR-T structure utiliz-
ing one of the strategies discussed here is able, for example, 
to circumvent all of the mentioned hurdles, or whether those 
CAR-Ts will require additional fundamental changes in their 
architecture to eventually be sufficiently active against solid 
tumors.
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