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Abstract
Background Decision-makers require knowledge of the strengths and weaknesses of decision-analytic models used to evalu-
ate healthcare interventions to be able to confidently use the results of such models to inform policy. A number of aspects 
of model validity have previously been described, but no systematic approach to assessing the validity of a model has been 
proposed. This study aimed to consolidate the different aspects of model validity into a step-by-step approach to assessing 
the strengths and weaknesses of a decision-analytic model.
Methods A pre-defined set of steps were used to conduct the validation process of an exemplar early decision-analytic-
model-based cost-effectiveness analysis of a risk-stratified national breast cancer screening programme [UK healthcare 
perspective; lifetime horizon; costs (£; 2021)]. Internal validation was assessed in terms of descriptive validity, technical 
validity and face validity. External validation was assessed in terms of operational validation, convergent validity (or cor-
roboration) and predictive validity.
Results The results outline the findings of each step of internal and external validation of the early decision-analytic-model 
and present the validated model (called ‘MANC-RISK-SCREEN’). The positive aspects in terms of meeting internal valida-
tion requirements are shown together with the remaining limitations of MANC-RISK-SCREEN.
Conclusion Following a transparent and structured validation process, MANC-RISK-SCREEN has been shown to have 
satisfactory internal and external validity for use in informing resource allocation decision-making. We suggest that MANC-
RISK-SCREEN can be used to assess the cost-effectiveness of exemplars of risk-stratified national breast cancer screening 
programmes (NBSP) from the UK perspective.
Implications A step-by-step process for conducting the validation of a decision-analytic model was developed for future use 
by health economists. Using this approach may help researchers to fully demonstrate the strengths and limitations of their 
model to decision-makers.

[1–6]. A crucial element in these recommendations is the 
need for validation [7]. Enabling decision-makers’ trust and 
confidence, by conducting a systematic and transparent pro-
cess of validation, is a vital component that decision analysts 
should take seriously so the decision-analytic model has suf-
ficient credibility [6]. A fundamental component supporting 
the process of validation is the need for transparency in the 
decision-analytic model structure and use of data. Simplis-
tically, transparency can be achieved by using open-source 
programming languages, such as R, and making the code 
public [8–10]. This level of transparency is necessary, but 
not sufficient, to enable the informed use of decision-analytic 
models to guide resource allocation decisions. The process 
of validation for a published decision-analytic model should 
also be transparent.
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1 Introduction

A suite of recommendations have been developed in the 
healthcare context which are designed to enable decision 
analysts to have a structured approach to developing, build-
ing and appraising the quality of decision-analytic models 
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Key Points for Decision Makers 

There is emerging interest in the use of risk-stratification 
in the national breast cancer screening programme (risk-
stratified NBSP) in the UK.

There is a key role for the use of decision-analytic-model-
based analysis of healthcare interventions that are difficult 
to evaluate in trials, such as cancer screening programmes.

This study follows structured frameworks to assess the 
internal and external validity of a decision-analytic 
model to assess the cost-effectiveness of exemplar 
approaches to risk-stratified NBSP.

The decision-analytic model is shown to perform to a 
satisfactory level, with possible limitations described 
clearly, to inform resource allocation decisions from the 
perspective of the UK healthcare system.

There are numerous recommendations and guidelines 
suggesting the need for, and approaches to, decision-analytic 
model validation. Such recommendations and guidelines, 
for example, the Technical Verification (TECH-VER) and 
Assessment of the Validation Status of Health-Economic 
Decision Models (AdViSHe) checklists, have been produced 
by small groups of individual researchers (of note, for exam-
ple, McCabe and Dixon) or groups of researchers, reaching 
consensus or making task forces as part of international soci-
eties such as the International Society for Pharmacoeconom-
ics and Outcomes Research [6, 11–13]. There are, however, 
correspondingly few publications that explicitly report the 
steps to completing model validation [14].

A particular clinical area where model validation may 
be valuable is in the evaluation of cancer screening mod-
els. Such models can be very complex, incorporating natu-
ral history models, which explain how cancers grow and 
spread over time. Changes to cancer screening programmes 
can have implications for large numbers of individuals, so 
ensuring that the assumptions and predictions of cancer 
screening models are correct is particularly important for 
decision-makers. In the UK, in 2023, the current national 
breast cancer screening programme (NBSP) invites women, 
via a letter sent to their home address, to have a mammo-
gram that is then repeated every 3 years. The current eligible 
age-range for the UK-NBSP starts within 3 years of a woman 
reaching their 50th birthday up to the age of 70 years (inclu-
sive) [16]. This means that in the UK over 2 million women 
attend breast cancer screening annually.

The aim of breasts cancer screening is to identify can-
cers at an earlier stage, making them more treatable [15]. 

However, there are harms to screening, including the risk 
of false-positive results and overdiagnosis of cancers which 
would never have grown to a size which would have caused 
harm to the woman. Risk-stratified national breast screen-
ing programmes (NBSP) are being suggested as a potential 
adaptation to existing programmes that offer a mammogram 
(X-ray of the breast) to all women in a selected age group. 
The approach to a NBSP can vary in terms of the age at 
which screening is first offered to women in the population 
(NBSP starting age), interval between screenings (NBSP 
screening interval), age at which screening is stopped (NBSP 
stopping age), number of X-rays used (one- or two-view 
mammography), supplementary screening technologies used 
(ultrasound and/or magnetic resonance imaging) and inter-
pretation of the X-ray (manual or digital).

Factors known to influence a women’s 10-year risk of 
developing breast cancer have been used to develop risk pre-
diction models developed in various formats and with crite-
ria to categorise woman into specified risk groups [17–25]. 
For example, the Tyrer–Cuzick risk calculator asks women 
to record their age, weight and height (to calculate body mass 
index), age at menarche, obstetric history, age at menopause (if 
applicable), history of a benign breast condition that increases 
breast cancer risk, history of ovarian cancer, use of hormone 
replacement therapy and family history (including breast and 
ovarian cancer, Ashkenazi inheritance, BRCA 1 and 2 genetic 
testing) [26, 27]. The ‘score’ from this risk-calculator may then 
be used to categorise a women into pre-defined risk categories, 
such as population-average-level risk (10-year risk of 2 to < 
3%); low (below average) risk (10-year risk of < 2%); above-
average risk (10-year risk of 3 to < 5%); moderate risk (10-
year risk of 5 to <8%); high risk (10-year risk of ≥ 8%) [28]. 
When a woman’s risk of breast cancer has been estimated, the 
intensity of screening can be altered for women in different 
risk categories. The frequency of screening can be increased 
for those at higher risk to find more cancers at an earlier stage, 
improving treatment outcomes. For women at low risk of can-
cer, the frequency of screening can potentially be reduced to 
decrease the degree of overdiagnosis and false-positive results 
in this group while also saving healthcare resources. A risk-
stratified breast cancer screening programme may therefore 
be able to improve the balance of the benefits and harms of 
screening while not requiring a significant increase in the 
number of screens. To date, there are no examples of a risk-
stratified NBSP used in practice, but there is consensus about 
the need for different types of evidence to support their intro-
duction [29].

Generating trial-based clinical evidence of the effectiveness 
of a risk-stratified NBSP compared with existing approaches 
to NBSP is neither feasible nor perhaps desirable due to the 
inherent limitations of the necessary follow-up and the chal-
lenges of including women from different risk groups. Within 
this context, and in keeping with the predominant view, 
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economic evidence needed to understand the potential value 
of risk-stratified NBSP should come from decision-analytic-
model-based analyses using appropriate methods that answer 
the specified decision problem [30–33]. Tappenden and Chill-
cott suggest the need to include a process involving cycles of 
model checking and validation [34] mirroring the recommen-
dations for an iterative approach towards a definitive evidence 
base made by Sculpher and colleagues [35].

This study aimed to design a structured process to update 
and then assess the internal and external validity of a deci-
sion-analytic model. This structured approach to model vali-
dation was then applied to update and validate a case study 
model structured to estimate the incremental healthcare 
costs and health consequences of exemplar risk-stratified 
national breast screening programmes (NBSP) in the UK 
[36]. The resulting outputs of the validated model (called 
MANC-RISK-SCREEN) reporting the healthcare costs and 
health consequences of a risk-stratified NBSP compared 
with universal triyearly screening, universal biyearly screen-
ing or no screening in the UK setting will be published sepa-
rately in a follow-up paper.

2  Methods

A pre-defined set of steps were used to conduct the process 
of validation of a published decision-analytic-model-based 
cost-effectiveness analysis [36]. This early economic evalu-
ation sought to estimate the cost-effectiveness of different 
breast cancer screening strategies in the UK, including 
risk-based approaches. This study was reported in detail in 
the original paper, but the model code was not made pub-
licly available, and the predictions of the model were not 
explored. There is growing interest in risk-based breast 
cancer screening in the UK, and as such, a full update and 
validation of this model was conducted to provide decision-
makers with transparent information about the strengths and 
weaknesses of the model.

There are numerous, and inconsistent, definitions of the 
process of decision-analytic model validation [13]. This 
study therefore took a pragmatic approach to describe the 
required steps of validation that are needed (in a normative 
sense) to enable a transparent description of the process. 
The contribution of individual recommendations, identified 
in the extant literature, used to inform the discrete steps of 
the process of decision-analytic model validation are cited 
where relevant in the sections that follow.

2.1  Description of the original decision‑analytic 
model

The original decision-analytic model reported in Gray 
et al. (2015) [36], the focus for this validation process, was 

developed to address the decision problem: “What are the 
key drivers of the incremental costs and benefits of exam-
ple stratified breast screening programs compared with the 
current National Breast Cancer Screening Program?” Gray 
and colleagues conducted an early economic analysis. The 
key characteristics of the ‘Gray’ decision-analytic model, a 
discrete event simulation, are outlined in Table 1. Further 
details regarding the Gray model can be found in Appendix 
1.

2.2  The components of the model validation 
process

The validation process aimed to explore the degree of 
internal and external validity. Internal validation has been 
described in terms of three criteria [6, 37]: descriptive valid-
ity, to assess whether the degree of simplification used in the 
decision-analytic model structure still adequately represents 
the natural history of the specified disease and/or pathways 
of care; technical validity, to assess whether the decision-
analytic model was appropriately programmed to produce 
the intended outputs from the specified inputs; and face 
validity, to assess whether the decision-analytic model pro-
duces outputs consistent with theoretical basis of disease and 
the intervention [12]. External validation can be described 
in terms of three criteria: operational validation, to assess 
whether the outputs produced by the decision-analytic model 
are sufficiently accurate; convergent validity (or corrobo-
ration), to compare the decision-analytic model with other 
published approaches addressing a similar decision prob-
lem; and predictive validity, to assess whether the outputs 
produced by the model sufficiently represent outputs from 
alternative sources. For the purpose of validation, the fol-
lowing six steps, broken down by criterion, were carried out.

2.2.1  Face Validity

Face validity refers to whether the decision-analytic model 
is measuring what is intended—in this case whether the 
model structure and parameter values produce outputs that 
are clinically credible. Face validity is a type of inter-
nal validity that captures first-order validation as defined 
by Haji Ali Afzali and colleagues [38]. The process of 
assessing face validity is often intuitive and subjective in 
that it requires value judgements to be made by the deci-
sion analyst. These value judgements require the decision 
analyst to be explicit about the criteria used when assess-
ing face validity. There are no available published criteria 
to assess the face validity of a decision-analytic model. 
Assessing face validity was, therefore, reliant on the team 
of decision analysts, with input from relevant clinical 
expertise, producing an adequate explicit description of 
whether, and how, the outputs are consistent pre-defined 
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elements (description of the intervention and comparators, 
assignment to risk categories, natural history of cancer, 
treatment of cancer by disease stage) for a decision-maker 
to assess the credibility of the decision-analytic model in 
this regard. We assessed whether sufficient face validity 
had been achieved by presenting the results to a group of 
experts in breast screening [39]. The threshold for face 
validity of the model was the agreement by a consensus 
group of stakeholders involved in the implementation of 
breast cancer screening that the model represented a close 
approximation of reality.

2.2.2  Descriptive Validity

Descriptive validity has been viewed as being synonymous 
with the model conceptualisation process [2] and ensuring 
the model structure and pathways being represented are 
adequate while recognising that all models are a simplifica-
tion of reality. The process of understanding the degree of 
descriptive validity has also been referred to as conceptual 

validation as part of published criteria ‘Assessment of 
the Validation Status of Health-Economic decision mod-
els (AdViSHE)’ for assessing model validation to assess: 
‘whether the theories and assumptions underlying the con-
ceptual model … are correct and the models representation 
of the problem entity and the models’ structure, logic and 
mathematical and causal relationships are ‘reasonable’ for 
the intended purpose of the model’ [11]. Assessing descrip-
tive validity was a subjective process and required ‘expert’ 
input from people with relevant knowledge of the disease 
and intervention being represented by the decision-analytic 
model and supported by people with relevant technical 
expertise in decision-analytic modelling. Similar to the 
application of survey-based consensus methods, such as 
Delphi [40], it is also necessary to have a clear threshold of 
what is a ‘sufficient’ level of ‘descriptive validity’, which 
required taking account of the purpose of the decision-ana-
lytic model (the decision problem). We assessed whether 
sufficient descriptive validity had been achieved when all 

Table 1  Key characteristics of the original  Graya decision-analytic model

NICE National Institute for Health and Care Excellence
a Gray E, Donten A, Karssemeijer N, van Gils C, Evans DG, Astley S, et al. Evaluation of a stratified national breast screening program in the 
United Kingdom: an early model-based cost-effectiveness analysis. Value Health. 2017 Sep 1;20(8):1100–9

Characteristics Descriptions

Interventions Risk-1: a risk-based stratification defined by the Tyrer–Cuzick risk algorithm 
enhanced with density and texture measures. Three strata (with associated 
screening intervals) were defined by 10-year risks of breast cancer of (i) < 3.5% 
(triyearly), (ii) 3.5–8% (biyearly) or (iii) > 8% (annually)

Risk-2: a risk-based stratification defined by the same algorithm as risk-1 but with 
strata defined by dividing the population into thirds based on risk (tertiles): (i) 
the lowest-risk tertile (triyearly), (ii) the middle tertile (biyearly) and (iii) the 
highest-risk tertile (annually)

Masking: current screening approach with supplemental ultrasound offered to 
women with high breast density, defined using Volpara Density Grades. High 
risk was defined as greater than an 8% 10-year risk of breast cancer. Women with 
both high breast density and high risk of breast cancer were offered supplemental 
magnetic resonance imaging instead of ultrasound

Risk-1 with masking: the risk-1 stratification approach together with the strategy 
described in the masking approach

Comparators Two comparators were defined:
Current national breast screening programme: Women between 50 and 70 years 

with screening every three years using mammography
No screening: no use of mammography in the population for screening purposes. 

All cancers would present with clinical signs or symptoms
Model type Discrete event simulation programmed in R
Population Women eligible for a national breast screening programme
Setting and perspective National healthcare service in the UK
Time horizon Lifetime
Costs National currency (£) at 2014 prices
Benefits Life-years and quality-adjusted life-years
Discounting 3.5% for both costs and benefits (base case)

3.5% for costs and 1.5% for benefits (sensitivity analysis)
Cost-effectiveness threshold NICE UK-recommended threshold of £20,000 per quality-adjusted life-year gained
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experts in risk-stratified breast screening involved in provid-
ing input agreed the model structure was appropriate.

2.2.3  Technical Verification

Technical verification is a type of internal validity that cap-
tures second-order validation [38] and involves a debugging 
process and assessment of the accuracy of the decision-ana-
lytic model in terms of inputs creating ‘valid’ outputs. Tech-
nical verification essentially answers the question: does the 
decision-analytic model do the calculations correctly? The 
process of completing technical verification was supported 
by following a published verification checklist designed to 
‘reduce errors in models and improve their credibility’ called 
Technical Verification (TECH-VER) [12]. The TECH-VER 
checklist is a highly detailed list of steps to be used by deci-
sion analysts to reduce the chance of errors in coding the 
model structure and calculating data inputs from external 
data sources (e.g. generating measures of overall survival). 
The TECH-VER checklist does not generate an overall score 
of technical validity but relies on a decision analyst describ-
ing which criteria are relevant and have been met with a 
description of how. A decision analyst external to the core 
research team was employed to complete technical verifica-
tion and produce a TECH-VER report. We assessed whether 
sufficient technical verification had been achieved using the 
TECH-VER report from this independent expert. The model 
was deemed to meet the threshold for technical validity if, 
following technical verification, there were no remaining 
issues which would affect the potential ordering of strategies 
in terms of their cost-effectiveness.

2.2.4  Operational Validation

The process of assessing operational validation is, per-
haps, the one most readily interpreted, using lay terms, 
as assessing ‘external’ validity. Haji Ali Afzali and col-
leagues [38] call this third-order validation. Operational 
validation involves comparing decision-analytic model 
outputs using different sources inputs that may come from 
(i) data that were used in the original model (dependent 
operational validation) or (ii) data identified from alter-
native sources (independent operational validation) [11]. 
The operational validation of MANC-RISK-SCREEN 
involved determining whether the clinical outputs of the 
model aligned with an external data source (independent 
operational validation). Intuitively, independent opera-
tional validation is more robust, in terms of assessing 
operational validation, than dependent operational vali-
dation. However, both independent and dependent vali-
dation have key roles when assessing external validity. 
The threshold for external validity would be deemed to 
have been met if it was not possible to change the input 

parameters to improve the fit of given outputs (for exam-
ple, cancer incidence by age or distribution of cancer 
stages) to external data without worsening the fit of other 
output categories.

2.2.5  Predictive Validity

In the context of decision-analytic models, predictive valida-
tion is about understanding how well the analysis has pre-
dicted future events [38]. We employed the interpretation 
of predictive validity offered by Gray and colleagues as a 
process to test the impact on outputs when more data have 
become available. In this way it was possible to see whether 
the decision-analytic model had predicted future events [41]. 
The degree of congruence between predicted and ‘actual’ 
(future) events was assessed qualitatively.

2.2.6  Cross‑Validation

Cross-validation (our preferred term) is also referred to 
as assessing convergent validity. Cross-validation is used 
to assess whether two different decision-analytic models 
designed to address the same decision problem produce 
similar results. This process requires an alternative decision-
analytic model that addresses a similar decision problem 
to be available. It is most commonly applied for decision-
analytic models that have multiplicative purposes rather than 
in instances when a bespoke structure has been created for 
a single decision problem. A well-established process of 
assessing convergent validity has been set up by the Mount 
Hood challenge for decision-analytic models in the area of 
diabetes [7]. Convergent validity is also a descriptive pro-
cess in which the decision analyst should outline the ways in 
which different decision-analytic models are the same. We 
conducted a rapid review of the PubMed database up to the 
year 2022 to identify relevant alternative models looking at 
risk-based breast screening in the UK. Models were selected 
based on the similarity of their participants, interventions, 
comparators, and outcomes (PICO). Differences between 
different decision-analytic models in terms of the outputs 
produced were identified. Where the degree of convergent 
validity could not be directly compared due to variations in 
the PICO, the results were assessed qualitatively.

2.3  Completing the Model Validation Process

A team of six health economists, supported by an exter-
nal expert in building decision-analytic models for national 
decision-making bodies, conducted the model validation 
process. The first meeting between the six health econo-
mists set the thresholds for when the model validation pro-
cess was sufficient. There were discrete thresholds for each 
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component of model validation, which are described in each 
relevant section. This team of health economists worked 
closely with a national group of experts in breast screen-
ing as part of the process assessing, in particular, face and 
descriptive validity [39]. The process of model validation 
involved going through each component part of validation 
in a stepwise manner. The external expert completed the 
TECH-VER process. At the end of the model validation pro-
cess, two published checklists were completed: TECH-VER 
and AdViSHE.

3  Results

This section describes the results from the validation of 
the Gray model. Following model updates and validation, 
the Gray model was named ‘MANC-RISK-SCREEN’. The 
TECH-VER

checklists and AdViSHE checklists are reported in Sup-
plementary Appendices 2 and 3, respectively. All code 
and documentation relating to MANC-RISK-SCREEN are 
located on GitHub (see https:// github. com/ stuwr ighth ealth 
econ/ MANC- RISK- SCREEN). GitHub is an online site 
designed to share software and model code [42].

3.1  Validation of MANC‑RISK‑SCREEN

The development and validation, together with the inde-
pendent assessment process, of the original model by Gray 
started in February 2021. The version of the decision-ana-
lytic model called MANC-RISK-SCREEN was produced 
in June 2022. The process of updating and validating the 
decision-analytic model took place in discrete steps:

1. Independently reproducing the original Gray decision-
analytic model to check for errors and identify areas for 
improvement;

2. Updating the decision-analytic model to finalise the 
structure of the decision-analytic model;

3. Updating input parameters from the Gray decision-ana-
lytic model to produce MANC-RISK-SCREEN;

4. Checking the face validity of MANC-RISK-SCREEN 
with experts in breast screening;

5. Checking the descriptive validity MANC-RISK-
SCREEN with experts in breast screening;

6. Conducting independent technical verification of 
MANC-RISK-SCREEN;

7. Operational validation of MANC-RISK-SCREEN;
8. Assessing the predictive validity of MANC-RISK-

SCREEN for specified targets;
9. Cross-validation of MANC-RISK-SCREEN.

These steps were performed in sequence. The steps 
addressed each of the components of the model validation 
process.

3.2  Reproducing the Original Model

The decision-analytic model was re-built by a health econo-
mist (Stuart Wright) not involved in the design and conduct 
of the original decision-analytic model built by Gray and 
colleagues. The health economist (SW) first read the origi-
nal R code, including accompanying functions, and wrote a 
text-based algorithm (see the documentation folder of the 
GitHub repository) in Microsoft Word explaining the steps 
taken in each stage of the model to conduct the analysis. This 
text-based algorithm was then checked by the lead modeller 
in the early economic evaluation (EG), who clarified any 
areas of confusion.

The health economist (SW) then used the text-based 
algorithm to reconstruct the model in a new R script, and 
this script was then compared with the original to detect 
potential errors in both model versions. Only two significant 
errors (that could influence the estimated cost-effectiveness) 
were identified in the original Gray model during this pro-
cess. To determine whether a cancer was screen detected, 
a random number was drawn and compared with the value 
of a variable representing the proportion of cancers that are 
screen detected in the health system. In the original code, 
the cancer was assigned to be a screen-detected cancer if 
the random number was greater than the value of the vari-
able. However, this should only have occurred if the random 
number was lower than the value of the variable and was 
changed in the updated model. As the value of this variable 
was set to 0.5 and not varied in the probabilistic sensitivity 
analysis, this error had not had an impact on the published 
early economic analysis results [36]. In addition, the origi-
nal Gray model did not include a cost of follow-up test-
ing for false-positive screening results, thereby potentially 
overestimating the cost-effectiveness of strategies with more 
frequent screening. Therefore, the cost of follow-up test-
ing for false-positive screening was added to the R code for 
MANC-RISK-SCREEN.

During the recoding process, other changes to the origi-
nal Gray model were made for improvements in the speed 
of execution, for example, defining variables before loops 
rather than in them, or, cosmetically, in making the code 
more readable. An example of the latter was the inclusion 
of four required R functions in a single accompanying script 
rather than four individual ones.

3.3  Structural Update

When MANC-RISK-SCREEN was built in R, structural 
changes and additional features were included. A key change 

https://github.com/stuwrighthealthecon/MANC-RISK-SCREEN
https://github.com/stuwrighthealthecon/MANC-RISK-SCREEN
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was that the categorisation of breast tumours was changed 
from Nottingham Prognostic Indicator (NPI)-based classi-
fication to a stage-based classification, as this significantly 
increased the availability of relevant data for key input 
parameters. The start age of the screening was changed to a 
fixed age of 50 years rather than uniformly varying between 
47 and 51 years. This change was made because the vary-
ing start age had only been applied to some of the strategies 
in the early model and was deemed to potentially bias the 
results.

The original Gray model was populated with individual-
level data for a population of women aged between 50 and 
70 years (n = 53,596) recruited to a cohort study in England 
called Predicting Risk of Cancer at Screening (PROCAS) 1 
to provide estimates of the distribution of estimated 10-year 
risk of breast cancer [24]. The MANC-RISK-SCREEN 
model was populated with updated data from a second 
cohort study in England called PROCAS 2 that recruited 
15,613 women aged between 50 and 70 years [25]. These 
estimates were calculated in the original cohort studies using 
an adaptation of the Tyrer–Cuzick risk assessment tool. The 
Tyrer–Cuzick risk calculator was modified into a two-page 
survey to collect the information required to calculate indi-
vidual 10-year breast cancer risk: family history informa-
tion (including number and ages of sisters, current age or 
age at death of mother and details of any relatives affected 
by breast or ovarian cancer), hormonal risk factors (age at 
menarche, menopausal status and hormone replacement 
therapy use and parity) and lifestyle information [current 
body mass index (BMI), BMI at age of 20 years, clothing 
size, alcohol consumption and exercise habits) [24]. The 
calculated risk scores in the cohort study sample were, for 
the purpose of the intervention arm in the decision-analytic 
model, divided into three risk categories: 10-year risk < 
3.5%, directed to triyearly screening; 10-year risk between 
≥ 3.5 and < 8%, directed to biyearly screening; and 10-year 
risk ≥ 8%, directed to annual screening. Changes in the risk 
groups used in recently published clinical research meant 
that in the updated model the risk thresholds used to define 
the different risk groups have changed [25]. In the MANC-
RISK-SCREEN model, moderate risk is defined as 5–8%, 
rather than 3.5–8% as in the PROCAS-based strategies. This 
also means that normal risk is defined as less than 5% in the 
first PROCAS strategy. In the second risk-based strategy 
with less frequent screening for women at lower risk, normal 
risk is now defined as a 10-year risk between 1.5 and 5%.

Parameters relating to three types of imperfect uptake for 
risk-stratified screening were added: uptake for risk predic-
tion (do the clinicians use the risk-prediction tool?), uptake 
for receipt of risk prediction (do women get their individ-
ual risk level?) and uptake for changed screening intervals 
(do women decide to change their screening interval?). A 
number of additional screening strategies were added to the 

model, including reduced (every five or six years) screen-
ing for women at low (below-average) 10-year risk of breast 
cancer, and a fully stratified screening programme with more 
frequent screening for those at higher risk and less frequent 
screening for those at lower risk.

3.4  Update Input Parameters

The original early analysis was published by Gray in 2017, 
and the decision-analytic model validation process was 
started in early 2021. This time period meant it was likely 
that values of the parameters used in the Gray decision-
analytic model were likely to be out of date. A comprehen-
sive update of decision-analytic model inputs for MANC-
RISK-SCREEN was conducted. The process of updating the 
input parameters is provided in detail in the documentation 
folder in the model GitHub repository. Systematic reviews 
were conducted (by AD and RH) to identify more recent 
health utility and cost estimates by breast cancer stage. The 
cost of stratification was updated to incorporate estimates 
from a published micro-costing study [43]. New values for 
screening-related parameters were identified from published 
audits and reports on the status of the National Health Ser-
vice (NHS) breast cancer screening programme [15]. Stud-
ies citing the sources of clinical parameters, including the 
tumour growth model, were searched to determine whether 
any newer appropriate values were available.

Following the search for new parameter values, the fol-
lowing parameters were updated in the final MANC-RISK-
SCREEN model: the proportion of cancers detected by 
screening, all-cause mortality, cancer-stage-specific mor-
tality, breast cancer incidence by age, breast cancer risk, the 
proportion of cancers that are ductal carcinoma in situ, the 
proportion of cancers diagnosed at different stages based 
on their size, mammographic sensitivity by Volpara breast 
density group, screening recall rate, all costs in the model 
and utility values for stage I–III and IV breast cancer.

3.5  Face Validity

Following the reconstruction and parameter update, prelimi-
nary results from MANC-RISK-SCREEN were presented 
at a close-out meeting of the research programme (called 
PROCAS 2) funding the validation process [25, 39]. This 
meeting was attended by 58 individuals (38 face-to-face and 
20 virtual) with relevant expertise in breast screening from 
academic, clinical and/or policy-making perspectives.

Two suggestions from this meeting were to include uptake 
for risk stratification and screening attendance. These two 
parameters were subsequently added to the original Gray 
decision-analytic model. Data on screening uptake, reflect-
ing the correlation between an individual’s previous and 
future attendance, were sourced from the annual UK breast 
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cancer screening report [15]. Parameters relating to an indi-
vidual’s uptake of risk prediction, the feedback of their risk 
information and the changing of their screening intervals 
were added to the MANC-RISK-SCREEN model. In the 
current model iteration, it is assumed that uptake for risk 
prediction is perfect, but the impact of imperfect uptake for 
risk prediction on the cost-effectiveness of a risk-stratified 
NBSP will be explored in future work. Further suggestions 
to extend the decision-analytic model to estimate the cost-
effectiveness of adding single-nucleotide polymorphisms 
(SNPs) to the risk stratification strategy and of adding in 
the impact of starting women at high risk of breast cancer 
on preventive medicines are topics for further development 
of MANC-RISK-SCREEN.

3.6  Descriptive Validity

The descriptive validity of the model was assessed on a 
continual basis by monthly meetings between the six health 
economists involved in the validation of MANC-RISK-
SCREEN. Two of these health economists (SW and KP) 
directly interacted with two clinical experts in risk-based 
breast screening, a statistician involved in generating the 
risk-prediction model underpinning the Tyrer–Cuzick algo-
rithm and a health psychologist involved in assessing uptake 
as part of the PROCAS 2 programme.

These supporting researchers were consulted on key 
changes to the assumptions of the model. These were the 
change of the treatment aspect of the model from Notting-
ham Prognostic Indicator to stage-based treatment and the 
inclusion of uptake which depended on participants’ previ-
ous attendance at screening. The switch to stage-based treat-
ment was deemed to be acceptable, although it was identified 
that there are more granular stages of breast cancer than 
simply stages 1,II,III and IV. As data for treatment costs 
and utilities were not available at this level of detail, it was 
assumed that cancer only fell into these stages. In future 
versions of the model, data will be sought for more granular 
staging of breast cancer.

The researchers approved of the move to using different 
uptake parameters to reflect women’s history of participation 
in screening. It was deemed that this more closely repre-
sented the reality of non-attendance and attendance being 
correlated.

3.7  Technical Verification

To complete technical verification of MANC-RISK-
SCREEN involving an assessment of an error check, an 
independent experienced R user with expertise in produc-
ing decision-analytic models for national decision-making 

body was employed to follow the TECH-VER checklist. This 
analyst also made suggestions about improving analysis time 
and documentation for the model. A number of errors were 
identified in MANC-RISK-SCREEN in this process. The 
duration of quality-adjusted life-years (QALYs) experienced 
was forced to be an integer year, and so sometimes patients 
had higher QALYs than life-years. This problem was solved 
by allowing a fraction of a year to be lived in the last year 
of the vector collecting quality of life values for each year. 
A problem in one of the functions meant that patients diag-
nosed with cancer sometimes lived longer than they would 
have done without the cancer. This was addressed by setting 
the age of death to the minimum of the age of cancer death 
or the age of all-cause mortality. A problem with two of the 
screening strategies was identified whereby a variable was 
being called by an out-of-date name, meaning the model 
would not run. In the updated MANC-RISK-SCREEN 
model, all references to the out-of-date parameter name 
were updated to the current name. In addition, an error was 
identified with the use of supplemental screening, whereby 
in some iterations of an ‘if’ statement, no value was assigned 
to a variable, causing problems further on in the model. 
This problem was solved by setting a baseline value for the 
parameter to take in the absence of supplemental screening 
being used. Following these updates, technical verification 
was performed again by a member of the research team, and 
no further problems were found.

3.8  Operational Validation

Results used in the operational validation were generated 
from the model output using the scenario of the current 
(3-year interval) screening programme targeted at women 
aged between 50 and 70 years. The independent operational 
validation of MANC-RISK-SCREEN involved determin-
ing whether the clinical outputs of the model aligned with 
epidemiological data on breast cancer observed in the UK 
[15, 44–46].

• Operational validation targets were selected based on our 
belief that close correspondence of these model outputs 
to targets may increase confidence in model primary 
cost-effectiveness results (see https:// cisnet. cancer. gov/). 
Target selection was also limited by the availability of 
target data or summary statistics. Selected targets were 
related to incidence and detection rates. Survival by can-
cer stage was also considered as a target, but the authors 
are not aware of any sources of these data for the UK 
other than those used to generate the input parameters for 
the model. During operational validation it was observed 
that estimated age-specific cancer incidence under the 
current screening scenario was close to that reported in 

https://cisnet.cancer.gov/
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national cancer incidence statistics [source: Office for 
National Statistics (ONS) cancer incidence UK 2017 
[44]].

• The estimated proportion of breast cancers detected by 
screening matched the proportion reported in national 
breast cancer screening audits [source: NHS Digital Offi-
cial Statistics [45]].

• The estimated stage/size distribution of cancers detected 
at screening and through all diagnostic routes matched 
that reported in available registry data [Source: Cancer 
Research UK (CRUK) compiled from registries in each 
nation [46] and NHS Digital Official Statistics [45]].

3.9  Predictive Validity

The observed and predicted age-specific breast cancer inci-
dence rates are reported in Table 2 and displayed in Fig. 1. 
The cancer rates were visually similar for women before 
screening age. After the age of 50 years, MANC-RISK-
SCREEN appears to underestimate cancer rates compared 
with the UK registry data from the years 2016–2018. There 
was a larger underestimation for the ≥ 80-year-old age groups. 
A potential explanation for this divergence is the use of all-
cause mortality data from the years 2018–2020, which may 
incorporate higher mortality as age increased due to the begin-
ning of the coronavirus pandemic. The ONS mortality data 
used to derive life expectancy due to all-cause mortality were 
subsequently changed to the data from the years 2016–2018. 
However, when the root mean squared error was calculated to 
compare the cancer incidence predictions of the model with 

those observed in the health system, using the earlier all-cause 
mortality data marginally reduced the fit of the model (90.103 
versus 86.212 deviation in incidence per 100,000 per year).

An alternative explanation for the difference in cancer 
incidence observed is that there is a difference in the prob-
ability a woman will be diagnosed with breast cancer in 
reality (1 in 7 or 14.3%) compared with the value used in 
the model (11.8%). The latter lower figure is driven by the 
average lifetime breast cancer risk for the women who par-
ticipated in the study used to populate the model (PROCAS 
2), which is lower than the population average. To deter-
mine whether the difference in lifetime breast cancer risk 
was likely to be the cause of differences in incidence by age, 
the predicted incidence rates by MANC-RISK-SCREEN 
were inflated by the proportional difference in lifetime risk 
(Fig. 2). In this case the model-predicted rate appears to 
track the actual rate more closely, if at a little higher rate. 
The predicted and observed rates diverge at the age of 70 
years, although to a lesser degree than with the unadjusted 
rates. When comparing the root mean squared error, using 
an inflated rate of lifetime cancer risk improves the fit of 
the model (54.882 versus 86.212 deviation in incidence per 
100,000 per year). This suggests that the differences in the 
lifetime cancer risk between the sample from the BC-PRE-
DICT sample and the general population explain a large part, 
but not all, of the deviation in the cancer incidence by age.

It was not possible to assess whether the risk-prediction 
tool used to assign a risk score in PROCAS 2 had sufficient 
predictive value in the general population. MANC-RISK-
SCREEN was populated using an observed distribution of 

Table 2  Predicted and observed age-specific incidence rates

RMSE represents the average difference in cancer incidence per 100,000 per year. ONS Office for National Statistics, RMSE root mean squared 
error
a Source: Cancer Research UK, 2022[46]

Age band (years) Age-specific breast cancer incidence rates

2016–2018 observed (per 
100,000)a

Predicted using 2018–2020 ONS 
mortality (per 100,000)

Predicted using 2016–2018 ONS 
mortality (per 100,000)

Percentage 
difference 
(%)

40–44 124.6 113.7 113.3 − 8.7
45–49 214.8 220.7 220.9 2.8
50–54 279.8 270.6 268.4 − 3.3
55–59 285.5 275.1 273.5 − 3.6
60–64 337.9 289.3 292.9 − 14.4
65–69 412.3 357.9 361.8 − 13.2
70–74 372.7 348.0 354.1 − 6.6
75–79 403.0 286.9 292.1 − 28.8
80–84 430.4 291.1 298.7 − 32.4
85–89 447.7 296.8 300.2 − 33.7
> 90 448.4 307.6 268.0 − 31.4
RMSE 86.212 90.103
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10-year risk in the women recruited to PROCAS 2. There 
is evidence that the data sources used to develop these risk-
prediction models mean they may perform poorly in ethni-
cally diverse populations [47]. An alternative data source 
would be needed to assess whether the predicted assignment 
to risk categories would be observed in a UK population. It 
was, therefore, not possible to assess the predictive ability 
of the Tyrer–Cuzick risk-prediction tool.

The original Gray model overestimated the propor-
tion of cancer identified by screening, producing a value 
of 50.2% compared with 43% published by NHS England 
[45]. A potential explanation for the higher proportion of 
cancers identified by screening in the Gray model was due 
to the approach taken to code imperfect screening uptake. 
In the Gray model, individuals were assigned a probabil-
ity of 60.5% of attending their first screen. Individuals that 
had attended at least one screen were assigned an 85.2% 
probability of attending further screens. In the UK-NBSP 
it has been observed that women who do not attend their 

first screen have a reduced likelihood of attending subse-
quent screens [45]. As such, MANC-RISK-SCREEN was 
recoded such that women had a 60.5% of attending their 
first screen and, if they did not attend this screen, only a 
19.1% chance of attending subsequent screens. When a 
woman had attended at least one screen, the probability that 
she would attend subsequently was increased to 85.2% in 
MANC-RISK-SCREEN. Following this change, MANC-
RISK-SCREEN predicted that 43% of cancers in the age 
group eligible for screening would be detected by screening, 
and this estimate exactly matched the proportion observed 
in the UK-NBSP.

Table 3 shows the proportions of cancers observed and 
predicted to be of different stages at diagnosis for cancers 
diagnosed clinically or by screening. The observed rates are 
taken form women diagnosed with breast cancer in England 
[46]. Cancers of unknown size have been excluded from 
MANC-RISK-SCREEN. The proportion of cancers have 
been adjusted to incorporate ductal carcinoma in situ that 

Fig. 1  Predicted and observed 
age-specific incidence rate. Data 
source: [46]

Fig. 2  Inflation of predicted 
incidence rates estimated by 
MANC-RISK-SCREEN by the 
proportional difference in life-
time risk. Data source: [46]
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are reported separately. Across all cancers, the Gray model 
generated too many cancers at stage III (18.9% versus 8% 
in UK-NBSP) and too few at stage I (28.6% versus 39.4% 
in UK-NBSP). In addition, the Gray model predicted too 
few ductal carcinoma in situs (DCIS; 5.5% versus 12.9% in 
UK-NBSP) [48].

In the Gray model, it was assumed the DCIS were only 
diagnosed as part of a UK-NBSP and assigned an occurrence 
in 21% of the available cancers regardless of the tumour 
size. This assumption is likely to be why the proportion of 
tumours diagnosed as DCIS were considerably lower in the 
Gray model when compared with the observed data, as in 
reality DCIS can also be diagnosed clinically. In addition, 
the approach of allocating any-sized cancer as DCIS regard-
less of size in MANC-RISK-SCREEN may have affected 
the stage distribution; DCIS are likely to be smaller than 
cancers of other stages. In the Gray model the matrix used 
to determine the probability that a cancer of a given size 
was of stage I, II or III, an assumption had been made using 
data from source studies [49, 50]. One of the source stud-
ies (Kollias et al., 1999 [49]) included estimates in which 
there was lymph node involvement in a cancer, and this was 
equally likely to involve one or more than one node [49]. 
Cancers with more than one lymph node involved are dis-
proportionately likely to be at a higher stage compared with 
one or fewer lymph nodes, and this may have biased cancers 
estimated in the Gray model towards a higher stage of diag-
nosis. To address these issues, MANC-RISK-SCREEN was 
recoded such that cancers were allocated to a stage or as 
DCIS based on their size. Data from a study of DCIS were 
incorporated into the input matrix of the probability of a 
cancer of a given size being diagnosed at different stages 
[51]. In addition, the proportion of cancers with lymph node 
involvement in the study where these data were available 
(Wen et al., 2015 [50]) was used to adjust the distribution of 

cancer from the study where lymph node involvement was 
not available (Kollias et al, 1999) [49].

The predicted proportion of cancers of different stages 
generated by MANC-RISK-SCREEN is shown in Table 4. 
The estimated proportion of cancers diagnosed as DCIS 
are similar to the values observed in data from Cancer 
Research UK, with a maximum deviation of two percent-
age points [52]. The observed values were derived by 
using the size of cancers diagnosed through the UK-NBSP 
applying the cancer stage by size matrix (see the param-
eter update document in the GitHub repository). In some 
cases, the band of cancer size reported in the UK-NBSP 
data spanned two bands of cancer size used in the matrix. 
In these situations, it was assumed that cancer size was 
evenly distributed across the two bands. Tumours greater 
than 5cm were assumed to be stage IV at diagnosis. The 
proportion of DCIS were added from separate data availa-
ble from Cancer Research UK [52]. To compare the close-
ness of the predicted distribution of cancer stages to those 
observed in England, the root mean squared error of the 
predictions were calculated. These values represent the 
average percentage point deviation of the model predic-
tions from those observed in the health service.

The distribution of stages for screen-detected cancers 
estimated in MANC-RISK-SCREEN had low deviation 
(2.706 percentage points) from the values observed in the 
UK-NBSP. However, adjustments subsequently made to the 
cancer stage by size matrix to improve the fit for the distri-
bution of stages of cancer for all diagnosis routes (6.903 
versus 8.616 percentage point deviation) resulted in greater 
deviations from the observed data for screen-detected cancer 
(5.023 versus 2.706 percentage point deviation). Therefore, 
the stage by size matrix in the final MANC-RISK-SCREEN 
model uses a combination of the Wen et al. data, which has 
details of lymph node involvement, and the Kollias et al. data 

Table 3  Predicted proportion of clinical and screen-detected cancers of different stages

RMSE represents the average percentage point deviation of the predicted proportions from the observed proportions. DCIS ductal carcinoma 
in situ, RMSE root mean squared error
a Source: Cancer Research UK, 2022[52]
b Proportions adjusted to incorporate DCIS, which are reported separately
c Gray E, Donten A, Karssemeijer N, van Gils C, Evans DG, Astley S, et al. Evaluation of a stratified national breast screening program in the 
United Kingdom: an early model-based cost-effectiveness analysis. Value Health. 2017 Sep 1;20(8):1100–9

Stage of cancer Observed 
 proportiona,b

Grayc-model-pre-
dicted proportions

MANC-RISK-SCREEN-
predicted proportions post-
validation

MANC-RISK-SCREEN-predicted proportions 
after validation and reversion of cancer by stage 
matrix

I 39.4% 28.6% 27.4% 24.4%
II 35.3% 41.1% 39.6% 39.8%
III 8.0% 18.9% 16.1% 18.8%
IV 4.4% 5.9% 6.5% 6.4%
DCIS 12.9% 5.5% 10.5% 10.6%
RMSE of prediction N/A 8.076 6.903 8.616
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with the likelihood of lymph node involvement for different 
sizes of cancer taken from the Wen et al. data [49, 50]. This 
choice of data sacrifices improved fit in the distribution of 
screen-detected cancers at the expense of a smaller loss of 
fit in the distribution of the stages of all diagnosed cancers.

3.10  Cross‑Validation

There is one alternative decision-analytic-model-based eco-
nomic evaluation of a risk-stratified NBSP published rel-
evant to the UK setting [53]. Pashayan et al. investigated the 
cost-effectiveness of alternative risk-stratified NBSP con-
ceptualised as the addition of a risk threshold to the existing 
age threshold used to determine who is offered screening. 
On face value, the Pashayan model appears to be directly 
comparable to the Gray model and MANC-RISK-SCREEN. 
However, it was not possible to conduct a formal cross-val-
idation of the Pashayan model and MANC-RISK-SCREEN 
in terms of model outputs because the stated decision 
problems, intervention under evaluation, decision-analytic 
model types and structures were not comparable (Table 5). 
Although the original model was shared with two further 
academic groups, the results of the additional models created 
as part of this work were not available for comparison at the 
time of the validation exercise.

4  Discussion

This study reports the development and use of a validation 
process which was then applied to a case study early deci-
sion-analytic-model-based cost-effectiveness analysis (CEA) 
of a risk-stratified NBSP [36]. Existing validation concepts 
were consolidated into a single step-by-step process resulting 

in the transparent presentation of the assumptions, strengths 
and weaknesses of a decision-analytic model.

The application of this validation process aimed to assess 
an existing decision-analytic model structure and under-
stand whether it adequately captures the relevant pathways 
representing the risk stratification process, using a version 
of the Tyrer–Cuzick risk assessment tool with defined risk 
categories and assigned screening intervals, and subsequent 
interventions, the current breast screening programme, the 
natural history of breast cancer and treatment of breast can-
cer. Input parameters were updated as part of this valida-
tion process, but this is likely to be an ongoing process, 
as recommended by Sculpher and colleagues [30], as and 
when new data become available. This study has illustrated 
how the development and use of the validation process is a 
resource-intensive exercise involving the combined skills of 
health economists and experts relevant to the specific deci-
sion problem (evaluation of risk-stratified breast screening 
programmes).

Through the process of model validation, the strengths 
and weaknesses of the MANC-RISK-SCREEN have been 
discussed transparently, allowing decision-makers to gauge 
the quality of the model when using it to inform decisions 
as to the potential introduction of risk-stratified breast can-
cer screening. MANC-RISK-SCREEN is now available as 
an open-source model published on GitHub. A structured 
and transparent validation process was followed to pro-
duce MANC-RISK-SCREEN, which is now proposed to 
be a decision-analytic model with the potential to inform 
whether, and how, healthcare resources should be diverted 
towards risk-stratified NBSP implemented using different 
components. The component parts of a risk-stratified NBSP 
can be varied in terms of the age at which screening is first 
offered to women in the population (NBSP starting age), 
interval between screenings (NBSP screening interval), age 

Table 4  Predicted proportion of screen-detected cancers of different stages

RMSE represents the average percentage point deviation of the predicted proportions from the observed proportions. DCIS ductal carcinoma 
in situ, RMSE Root mean squared error
a Based on reported distribution of cancer size at screening. The probability a cancer is of a certain stage given its size is then calculated using 
combined data from Kollias et al., Wen et al., and Cheng et al. (see GitHub)
b Gray E, Donten A, Karssemeijer N, van Gils C, Evans DG, Astley S, et al. Evaluation of a stratified national breast screening program in the 
United Kingdom: an early model-based cost-effectiveness analysis. Value Health. 2017 Sep 1;20(8):1100–9

Stage of cancer Observed 
 proportiona

Grayb-model-pre-
dicted proportions

MANC-RISK-SCREEN-pre-
dicted proportions post-validation

MANC-RISK-SCREEN-predicted proportions 
after validation and reversion of cancer by stage 
matrix

I 40.2% 43.0% 48.4% 43.8%
II 23.1% 17.3% 17.9% 19.6%
III 13.1% 10.8% 8.3% 12.3%
IV 2.4% 3.9% 5.2% 5%
DCIS 21.2% 21.0% 20.2% 19.2%
RMSE 3.132 5.023 2.706
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at which screening is stopped (NBSP stopping age), num-
ber of X-rays used (one- or two-view mammography), sup-
plementary screening technologies used (ultrasound and/or 
magnetic resonance imaging), interpretation of the X-ray 
(manual or digital), approach used to calculate a women’s 

risk of breast cancer, whether supplementary breast density 
measurements are taken, classification of the risk categories, 
approach taken to feedback risk to the women and strategies 
recommended as a result of identifying a women to be at 
high risk.

Table 5  Comparison of the Pashayan model and MANC-RISK-SCREEN

Notes: GBP British pound stirling, MRI magnetic resonance imaging, NMB net monetary benefit, QALY quality-adjusted life-years
a Pashayan N, Morris S, Gilbert FJ, Pharoah PDP. Cost-effectiveness and benefit-to-harm ratio of risk-stratified screening for breast cancer: a life-
table model. JAMA Oncol. 2018; 4(11):1504–10

Compo-
nent of the 
decision 
problem

Pashayan et al.a MANC-RISK-SCREEN

Patients Women aged 50–85 years Women aged 38–100 years
Intervention Strategy 1: two scenarios

(1) Risk prediction using single-nucleotide polymorphisms for women aged 50 
years; no screening for women below a given risk threshold

(2) Triyearly screening for women aged 50–69 years above a given risk threshold

Risk-1: a risk-based stratification defined by the 
Tyrer–Cuzick risk algorithm enhanced with 
density and texture measures. Three strata 
(with associated screening intervals) were 
defined by 10-year risks of breast cancer of (i) 
< 3.5% (triyearly), (ii) 3.5–8% (biyearly) and 
(iii) > 8% (annually)

Risk-2: a risk-based stratification defined by 
the same algorithm as risk-1 but with strata 
defined by dividing the population into thirds 
based on risk (tertiles): (i) the lowest-risk ter-
tile (triyearly), (ii) the middle tertile (biyearly) 
and (iii) the highest-risk tertile (annually).

Masking: current screening approach with sup-
plemental ultrasound offered to women with 
high breast density, defined using Volpara 
Density Grades. High risk was defined as 
greater than an 8% 10-year risk of breast 
cancer. Women with both high breast density 
and high risk of breast cancer were offered 
supplemental MRI instead of ultrasound.

Risk-1 with masking: the risk-1 stratification 
approach together with the strategy described 
in the masking approach.

Comparator Triyearly screening for all women aged 50–69 years above a given risk threshold
No screening for women at any age

Current national breast screening programme 
(UK-NBSP): women between 50 and 70 years 
with screening every three years using mam-
mography

No screening: no use of mammography in the 
population for screening purposes. All cancers 
would present with clinical signs or symptoms

Outcomes Overdiagnoses
Breast cancer deaths averted QALYs
Costs [GBP (£); price year not stated]
Incremental costs per QALYs gained
NMB

Number of screens
Proportion of cancers detected by screening
Life-years
QALYs
Costs [GBP (£); 2015]
Incremental costs per QALYs gained
NMB

Study 
(decision-
analytic 
model) 
type

Life table Discrete event simulation
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The operational validation, together with the assessment 
of predictive validity, were the main components assess-
ing the external validity of MANC-RISK-SCREEN. It was 
planned to supplement external validation with cross-vali-
dation with a published model. The cross-validation was not 
successful, because the only decision-analytic model avail-
able for comparison did not match in terms of the interven-
tions used for comparison or model structure. The external 
validity of MANC-RISK-SCREEN is not perfect. We sug-
gest that decision analysts or decision-makers wanting to use 
MANC-RISK-SCREEN are aware that it overpredicts clini-
cally diagnosed stage III cancers and underpredicts clinically 
diagnosed stage I. This overprediction is likely to affect the 
results of comparisons of screening programmes compared 
with no screening.

4.1  Limitations

The main limitation as part of this validation process was 
the need to rely on estimating intermediate outcomes gener-
ated by the decision-analytic model against data available 
from a limited range of sources reporting outcomes. These 
data sources only report outcomes from a single scenario: 
the current screening programme. There is, therefore, lim-
ited ability to discriminate between a decision-analytic 
model that performs well or poorly at the task of predict-
ing comparative cost-effectiveness of alternative screen-
ing programmes. The specific targets that were selected for 
assessing predictive ability were based on the available data 
sources, rather than choosing targets that would be most 
informative for decision-making.

When comparing the predicted distribution of can-
cer stages detected at screening, cancers of unknown size 
were omitted from the observed data, as the MANC-RISK-
SCREEN model does not currently produce such cancers. 
Such cancers may be those that occur in individuals who 
die between the detection of the cancer and receiving a full 
diagnosis. This may predominantly include those of lower 
socio-economic status or those who face barriers to access-
ing health system services, such as those from ethnic minor-
ities. Omitting such cancers may therefore mean that the 
results of the model are biased. Including unstaged cancers 
in a future version of the model is therefore a priority along-
side updates identified by the expert group, such as imperfect 
uptake for risk prediction and the addition of preventative 
medicine for those at higher risk of cancer.

Due to the large number of parameters in the decision-
analytic model and paucity of data with which to fit the 
model to, calibration of most of the model was not con-
ducted in the Gray model or MANC-RISK-SCREEN. The 
tumour growth model was calibrated. For the remaining 
parameters in the model, a key focus was to avoid overfitting 

the model to the UK national screening context that is the 
source of the available data for use as input parameters.

A related issue to validation of MANC-RISK-SCREEN 
that needs consideration is the limitations of the risk-predic-
tion models used to allocate a women’s individual risk. The 
data sources used to develop these risk-prediction models 
mean they perform poorly in ethnically diverse populations 
[47]. The impact of this limitation will be most apparent if 
risk-based NBSP are rolled out into practice. In the absence 
of datasets to assess the predictive value of the risk-predic-
tion models, it is impossible to know the extent of the impact 
of poorly performing risk prediction on the cost-effective-
ness of risk-stratified NBSP.

5  Conclusion

This study has reported a structured and transparent vali-
dation process of an early decision-analytic model built 
to assess the potential cost-effectiveness of exemplar risk-
stratified NBSP compared with current NBSP or no screen-
ing. The validation has suggested MANC-RISK-SCREEN 
has sufficient internal validity. There are some concerns 
regarding external validity, but these can only be rectified 
as and when new data sources become available to populate 
MANC-RISK-SCREEN.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s40258- 024- 00887-z.

Acknowledgements We acknowledge the input of D Gareth Evans, 
Sue Astley (The University of Manchester), Nico Karssemeijer (Rad-
boud University), Carla van Gils [University Medical Center (UMC) 
Utrecht, div. Julius Centrum] into the conceptualisation and structure 
of the decision-analytic-model-based cost-effectiveness analysis that 
informed the design of this study. We would also like to thank Tom 
Jones for input into subsequent technical verification of the model and 
Martin Herrerias Azcue for producing the R-Shiny interface for the 
model. We would also like to thank Rob Hainsworth for his contribu-
tion to the updating of the model parameters.

Declarations 

Funding Financial support for this study was provided in part by a 
grant from the National Institute for Health Research Predicting Risk 
of Cancer at Screening (PROCAS) 2 Programme Grant (Ref: RP-PG-
1214-20016) and by the International Alliance for Cancer Early Detec-
tion, an alliance between Cancer Research UK, the Canary Center at 
Stanford University, the University of Cambridge, Oregon Health & 
Science University (OHSU) Knight Cancer Institute, University Col-
lege London and The University of Manchester. The funding agree-
ments ensured the authors’ independence in designing the study, inter-
preting the data, writing and publishing the report.

Author contributions All authors meet International Committee of 
Medical Journal Editors (ICMJE) criteria for authorship. SW formu-
lated the research question, updated the model parameters, ran analyses 
and led the writing of the manuscript. EG formulated the research 
question and contributed to writing the manuscript. GR completed the 

https://doi.org/10.1007/s40258-024-00887-z


Validation of a Decision-Analytic Model

checklists and contributed to writing the manuscript. AD contributed 
to updating the model parameters and writing the manuscript. KP for-
mulated the research question, provided advice on the design for the 
overall study, and produced a first draft of the manuscript. KP acts as 
guarantor for this work. This manuscript has been read and approved 
by all the authors.

Conflict of interest Ewan Gray is an employee of Grail LLC and has 
received consultancy fees from Dxcover Limited and Wobble Genom-
ics Limited. All remaining authors have no conflicts of interest to de-
clare.

Ethics approval and consent to participate Ethical approval was not 
required for this study, which used existing published data and infor-
mation.

Data and code availability The R code for the decision-analytic model 
structure is publicly available in a GitHub repository: https:// github. 
com/ stuwr ighth ealth econ/ MANC- RISK- SCREEN. The repository is 
also archived using Zenodo and can be accessed using the doi:https:// 
doi. org/ 10. 5281/ zenodo. 71052 46.

Open Access This article is licensed under a Creative Commons Attri-
bution-NonCommercial 4.0 International License, which permits any 
non-commercial use, sharing, adaptation, distribution and reproduction 
in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other 
third party material in this article are included in the article’s Creative 
Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons 
licence and your intended use is not permitted by statutory regula-
tion or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit 
http://creativecommons.org/licenses/by-nc/4.0/.

References

 1. Caro JJ, Briggs AH, Siebert U, Kuntz KM. Modeling good 
research practices—overview: a report of the ISPOR-SMDM 
Modeling Good Research Practices Task Force-1 on behalf of the 
ISPOR-SMDM Modeling Good Research Practices Task Force. 
Value Health. 2012;15.

 2. Roberts M, Russell LB, Paltiel AD, Chambers M, McEwan 
P, Krahn M. Conceptualizing a model: a report of the ISPOR-
SMDM Modeling Good Research Practices Task Force—2. Value 
Health [Internet]. 2012 [cited 2019 Sep 17];32. https:// doi. org/ 10. 
1177/ 02729 89X12 454941

 3. Siebert U, Alagoz O, Bayoumi AM, Jahn B, Owens DK, Cohen 
DJ, et al. State-transition modeling: a report of the ISPOR-SMDM 
Modeling Good Research Practices Task Force-3. Value Health. 
2012;15:812–20.

 4. Karnon J, Stahl J, Brennan A, Caro JJ, Mar J, Möller J. Modeling 
using discrete event simulation: a report of the ISPOR-SMDM 
Modeling Good Research Practices Task Force-4. Value Health J 
Int Soc Pharmacoecon Outcomes Res. 2012;15:821–7.

 5. Briggs AH, Weinstein MC, Fenwick EAL, Karnon J, Sculpher MJ, 
Paltiel AD. Model parameter estimation and uncertainty analysis: 
a report of the ISPOR-SMDM Modeling Good Research Practices 
Task Force Working Group-6. Med Decis Mak. 2012;32:722–32.

 6. Eddy DM, Hollingworth W, Caro JJ, Tsevat J, McDonald KM, 
Wong JB. Model transparency and validation: a report of the 
ISPOR-SMDM Modeling Good Research Practices Task Force-
7. Med Decis Mak. 2012;32:733–43.

 7. Kent S, Becker F, Feenstra T, Tran-Duy A, Schlackow I, Tew 
M, et al. The challenge of transparency and validation in health 
economic decision modelling: a view from Mount Hood. Phar-
macoeconomics. 2019;37:1305–12.

 8. Emerson J, Bacon R, Kent A, Neumann PJ, Cohen JT. Publica-
tion of decision model source code: attitudes of health economics 
authors. Pharmacoeconomics. 2019;37:1409.

 9. Sampson CJ, Arnold R, Bryan S, Clarke P, Ekins S, Hatswell A, 
et al. Transparency in decision modelling: what, why, who and 
how? Pharmacoeconomics. 2019;37:1355–69.

 10. Alarid-Escudero F, Krijkamp EM, Pechlivanoglou P, Jalal H, Kao 
SYZ, Yang A, et al. A need for change! A coding framework for 
improving transparency in decision modeling. Pharmacoeconom-
ics. 2019;37:1329–39.

 11. Vemer P, Corro Ramos I, van Voorn GAK, Al MJ, Feenstra TL. 
AdViSHE: a validation-assessment tool of health-economic mod-
els for decision makers and model users. Pharmacoeconomics. 
2016;34:349–61.

 12. Büyükkaramikli NC, Rutten-van Mölken MPMH, Severens JL, 
Al M. TECH-VER: a verification checklist to reduce errors in 
models and improve their credibility. Pharmacoeconomics. 
2019;37:1391–408.

 13. McCabe C, Dixon S. Testing the validity of cost-effectiveness 
models. Pharmacoeconomics. 2000;17:501–13.

 14. Nair V, Auger S, Kochanny S, Howard FM, Ginat D, Pasternak-
Wise O, et al. Development and validation of a decision analytical 
model for posttreatment surveillance for patients with oropharyn-
geal carcinoma. JAMA Netw Open. 2022;5:e227240–e227240.

 15. NHS Digital. Breast Screening Programme, England 2019–20 
[Internet]. NHS Digit. 2021 [cited 2023 Aug 14]. https:// digit al. 
nhs. uk/ data- and- infor mation/ publi catio ns/ stati stical/ breast- scree 
ning- progr amme/ engla nd--- 2019- 20.

 16. Godley KC, Gladwell C, Murray PJ, Denton E. The UK breast 
screening program – what you need to know. Climacteric. 
2017;20:313–20.

 17. Tyrer J, Duuy SW, Cuzick J. A breast cancer prediction model 
incorporating familial and personal risk factors. Stat Med. 
2004;23:1111–30.

 18. Lee A, Mavaddat N, Wilcox AN, Cunningham AP, Carver T, 
Hartley S, et al. BOADICEA: a comprehensive breast cancer risk 
prediction model incorporating genetic and nongenetic risk fac-
tors. Genet Med. 2019;21:1708–18.

 19. Evans DGR, Howell A. Breast cancer risk-assessment models. 
Breast Cancer Res. 2007;9:1–8.

 20. Pashayan N, Antoniou AC, Ivanus U, Esserman LJ, Easton DF, 
French D, et al. Personalized early detection and prevention of 
breast cancer: ENVISION consensus statement. Nat Rev Clin 
Oncol. 2020;17:687–705.

 21. Evans DGR, Warwick J, Astley SM, Stavrinos P, Sahin S, Ing-
ham S, et al. Assessing individual breast cancer risk within the 
U.K. National Health Service Breast Screening Program: a new 
paradigm for cancer prevention. Cancer Prev Res (Phila Pa). 
2012;5:943–51.

 22. Esserman LJ. The WISDOM Study: breaking the deadlock in the 
breast cancer screening debate. NPJ Breast Cancer. 2017;3:1–7.

 23. Roux A, Cholerton R, Sicsic J, Moumjid N, French DP, Giorgi 
Rossi P, et al. Study protocol comparing the ethical, psychological 
and socio-economic impact of personalised breast cancer screen-
ing to that of standard screening in the “My Personal Breast 
Screening” (MyPeBS) randomised clinical trial. BMC Cancer. 
2022. p. 22.

https://github.com/stuwrighthealthecon/MANC-RISK-SCREEN
https://github.com/stuwrighthealthecon/MANC-RISK-SCREEN
https://doi.org/10.5281/zenodo.7105246
https://doi.org/10.5281/zenodo.7105246
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1177/0272989X12454941
https://doi.org/10.1177/0272989X12454941
https://digital.nhs.uk/data-and-information/publications/statistical/breast-screening-programme/england---2019-20
https://digital.nhs.uk/data-and-information/publications/statistical/breast-screening-programme/england---2019-20
https://digital.nhs.uk/data-and-information/publications/statistical/breast-screening-programme/england---2019-20


 S. J. Wright et al.

 24. Evans DG, Astley S, Stavrinos P, Harkness E, Donnelly LS, Dawe 
S, et al. Improvement in risk prediction, early detection and pre-
vention of breast cancer in the NHS Breast Screening Programme 
and family history clinics: a dual cohort study. Programme Grants 
Appl Res. 2016;4:1–210.

 25. French DP, Astley S, Astley S, Brentnall AR, Cuzick J, 
Dobrashian R, et al. What are the benefits and harms of risk strati-
fied screening as part of the NHS breast screening programme? 
Study protocol for a multi-site non-randomised comparison of 
BC-predict versus usual screening (NCT04359420). BMC Cancer. 
2020;20:1–14.

 26. Amir E, Evans DG, Shenton A, Lalloo F, Moran A, Boggis C, 
et al. Evaluation of breast cancer risk assessment packages in the 
family history evaluation and screening programme. J Med Genet. 
2003;40:807–14.

 27. Tyrer-Cuzick Risk Calculator for Breast Cancer Risk Assessment 
| MagView [Internet]. [cited 2023 Oct 16]. https:// ibis- risk- calcu 
lator. magvi ew. com/

 28. Brentnall AR, Harkness EF, Astley SM, Donnelly LS, Stavrinos 
P, Sampson S, et al. Mammographic density adds accuracy to 
both the Tyrer-Cuzick and Gail breast cancer risk models in a pro-
spective UK screening cohort. Breast Cancer Res BCR [Internet]. 
2015 [cited 2022 Feb 24];17. https:// pubmed. ncbi. nlm. nih. gov/ 
26627 479/

 29. Clift AK, Dodwell D, Lord S, Petrou S, Brady SM, Collins GS, 
et al. The current status of risk-stratified breast screening. Br J 
Cancer. 2021;126:533–50.

 30. Sculpher MJ, Claxton K, Drummond M, McCabe C. Whither 
trial-based economic evaluation for health care decision making? 
Health Econ. 2006;15:677–87.

 31. Akehurst R, Anderson P, Brazier J, Brennan A, Briggs A, Buxton 
M, et al. Decision analytic modelling in the economic evaluation 
of health technologies. Pharmacoeconomics. 2000;17:443–4.

 32. McGuire A, Morris S. What is it to be a model? Trials and 
tribulations in economic evaluation. Health Econ Prev Care. 
2000;1:33–6.

 33. Buxton MJ, Drummond MF, Van Hout BA, Prince RL, Sheldon 
TA, Szucs T, et al. Modelling in economic evaluation: an unavoid-
able fact of life. Health Econ. 1997;6:217–27.

 34. Tappenden P, Chilcott JB. Avoiding and identifying errors and 
other threats to the credibility of health economic models. Phar-
macoeconomics. 2014;32:967–79.

 35. Sculpher M, Drummond M, Buxton M. The iterative use of 
economic evaluation as part of the process of health technology 
assessment. J Health Serv Res Policy. 1997;2:26–30.

 36. Gray E, Donten A, Karssemeijer N, van Gils C, Evans DG, Astley 
S, et al. Evaluation of a stratified national breast screening pro-
gram in the United Kingdom: an early model-based cost-effective-
ness analysis. Value Health. 2017;20:1100–9.

 37. Hammerschmidt T, Goertz A, Wagenpfeil S, Neiss A, Wutzler P, 
Banz K. Validation of health economic models: the example of 
EVITA. Value Health. 2003;6:551–9.

 38. Haji Ali Afzali H, Gray J, Karnon J. Model performance evalua-
tion (validation and calibration) in model-based studies of thera-
peutic interventions for cardiovascular diseases. Appl Health Econ 
Health Policy. 2013;11:85–93.

 39. Mcwilliams L, Gareth Evans D, Payne K, Harrison F, Howell A, 
Howell SJ, et al. Implementing risk-stratified breast screening in 
England: an agenda setting meeting. Cancers. 2022;14:4636.

 40. Jones J, Hunter D. Consensus methods for medical and health 
services research. Br Med J. 1995;311:376–80.

 41. Gray AM, Clarke PM, Wolstenholme JL, Wordsworth S. Applied 
Methods of Cost-effectiveness Analysis in Healthcare [Internet]. 
Oxford University Press; 2010 [cited 2022 Aug 19]. https:// books. 
google. com/ books/ about/ Appli ed_ Metho ds_ of_ Cost_ effec tiven 
ess_ An. html? id= wUJd0 qYTIb 8C.

 42. Build software better, together [Internet]. GitHub. [cited 2023 Oct 
16]. https:// github. com.

 43. Wright SJ, Eden M, Ruane H, Byers H, Evans DG, Harvie M, 
et al. Estimating the cost of 3 risk prediction strategies for poten-
tial use in the United Kingdom National Breast Screening Pro-
gram. Med Decis Mak Policy Pract. 2023;8:238146832311713.

 44. Office for National Statistics. Cancer registration statistics, Eng-
land [Internet]. 2019 [cited 2022 Aug 19]. https:// www. ons. gov. 
uk/ peopl epopu latio nandc ommun ity/ healt hands ocial care/ condi 
tions anddi seases/ bulle tins/ cance rregi strat ionst atist icsen gland/ 
2017.

 45. NHS Digital Screening and Immunisations Team. Breast Screen-
ing Programme. NHS Digital; 2021.

 46. Cancer Research UK. Breast cancer incidence (invasive) statis-
tics [Internet]. 2022 [cited 2022 Apr 14]. https:// www. cance rrese 
archuk. org/ health- profe ssion al/ cancer- stati stics/ stati stics- by- can-
cer- type/ breast- cancer/ incid ence- invas ive# headi ng- One.

 47. Evans DG, van Veen EM, Byers H, Roberts E, Howell A, Howell 
SJ, et al. The importance of ethnicity: are breast cancer polygenic 
risk scores ready for women who are not of white European ori-
gin? Int J Cancer. 2022;150:73–9.

 48. Cancer Research UK. Early Diagnosis Data Hub [Internet]. 2022 
[cited 2022 Apr 14]. https:// crukc ancer intel ligen ce. shiny apps. io/ 
Early Diagn osis/.

 49. Kollias J, Murphy CA, Elston CW, Ellis IO, Robertson JFR, Blar-
ney RW. The prognosis of small primary breast cancers. Eur J 
Cancer. 1999;35:908–12.

 50. Wen J, Ye F, Li S, Huang X, Yang L, Xiao X, et al. The practi-
cability of a novel prognostic index (PI) model and comparison 
with Nottingham Prognostic Index (NPI) in stage I-III breast can-
cer patients undergoing surgical treatment. PLoS ONE. 2015;10: 
e0143537.

 51. Cheng L, Al-Kaisi NK, Gordon NH, Liu AY, Gebrail F, Shenk 
RR. Relationship between the size and margin status of ductal 
carcinoma in situ of the breast and residual disease. JNCI J Natl 
Cancer Inst. 1997;89:1356–60.

 52. Cancer Research UK. In situ breast carcinoma incidence statis-
tics [Internet]. 2022 [cited 2022 Nov 3]. https:// www. cance rrese 
archuk. org/ health- profe ssion al/ cancer- stati stics/ stati stics- by- can-
cer- type/ breast- cancer/ incid ence- in- situ.

 53. Pashayan N, Morris S, Gilbert FJ, Pharoah PDP. Cost-effective-
ness and benefit-to-harm ratio of risk-stratified screening for 
breast cancer: a life-table model. JAMA Oncol. 2018;4:1504–10.

https://ibis-risk-calculator.magview.com/
https://ibis-risk-calculator.magview.com/
https://pubmed.ncbi.nlm.nih.gov/26627479/
https://pubmed.ncbi.nlm.nih.gov/26627479/
https://books.google.com/books/about/Applied_Methods_of_Cost_effectiveness_An.html?id=wUJd0qYTIb8C
https://books.google.com/books/about/Applied_Methods_of_Cost_effectiveness_An.html?id=wUJd0qYTIb8C
https://books.google.com/books/about/Applied_Methods_of_Cost_effectiveness_An.html?id=wUJd0qYTIb8C
https://github.com
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/bulletins/cancerregistrationstatisticsengland/2017
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/bulletins/cancerregistrationstatisticsengland/2017
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/bulletins/cancerregistrationstatisticsengland/2017
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/bulletins/cancerregistrationstatisticsengland/2017
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/breast-cancer/incidence-invasive#heading-One
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/breast-cancer/incidence-invasive#heading-One
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/breast-cancer/incidence-invasive#heading-One
https://crukcancerintelligence.shinyapps.io/EarlyDiagnosis/
https://crukcancerintelligence.shinyapps.io/EarlyDiagnosis/
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/breast-cancer/incidence-in-situ
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/breast-cancer/incidence-in-situ
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/breast-cancer/incidence-in-situ

	A structured process for the validation of a decision-analytic model: application to a cost-effectiveness model for risk-stratified national breast screening
	Abstract
	Background 
	Methods 
	Results 
	Conclusion 
	Implications 

	1 Introduction
	2 Methods
	2.1 Description of the original decision-analytic model
	2.2 The components of the model validation process
	2.2.1 Face Validity
	2.2.2 Descriptive Validity
	2.2.3 Technical Verification
	2.2.4 Operational Validation
	2.2.5 Predictive Validity
	2.2.6 Cross-Validation

	2.3 Completing the Model Validation Process

	3 Results
	3.1 Validation of MANC-RISK-SCREEN
	3.2 Reproducing the Original Model
	3.3 Structural Update
	3.4 Update Input Parameters
	3.5 Face Validity
	3.6 Descriptive Validity
	3.7 Technical Verification
	3.8 Operational Validation
	3.9 Predictive Validity
	3.10 Cross-Validation

	4 Discussion
	4.1 Limitations

	5 Conclusion
	Acknowledgements 
	References


