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Abstract
Background  High adiposity is associated with higher risks for a variety of adverse health outcomes, including higher rates 
of age-adjusted mortality and increased morbidity. This has important implications for the management of healthcare sys-
tems, since the endocrinal, cardiometabolic and other changes associated with increased adiposity may be associated with 
substantial healthcare costs.
Methods  We studied the association between various measures of adiposity and inpatient hospital costs through record linkage 
between UK Biobank and records of inpatient care in England and Wales. UK Biobank is a large prospective cohort study that 
aimed to recruit men and women aged between 40 and 69 from 2006 to 2010. We applied generalised linear models to cost 
per person year to estimate the marginal effect of adiposity, and average adjusted predicted costs of adiposity.
Results  Valid cost and body mass index (BMI) data from 457,689 participants were available for inferential analysis. Some 54.4% 
of individuals included in the analysis sample had positive inpatient healthcare costs over the period of follow-up. Median hospital 
costs per person-year of follow-up were £89, compared to mean costs of £481. Mean BMI overall was 27.4 kg/m2 (standard deviation 
4.8). The marginal effect of a unit increase in BMI was £13.61 (99% confidence interval £12.60–£14.63) per person-year of follow 
up. The marginal effect of a standard deviation increase in BMI was £69.20 (99% confidence interval £64.98–£73.42). The marginal 
effect of becoming obese was £136.35 (99% confidence interval £124.62–£148.08). Average adjusted predicted inpatient hospital 
costs increased almost linearly when modelled using continuous measure of adiposity. Sensitivity analysis of different scenarios 
did not substantially change these conclusions, although there was some evidence of attenuation of the effects of adiposity when 
controlling for waist-hip ratios, and when individuals who self-reported any pre-existing conditions were excluded from analysis.
Conclusions  Higher adiposity is associated with higher inpatient hospital costs. Further scrutiny using causal inferential 
methods is warranted to establish if further public health investments are required to manage the large healthcare costs 
observationally associated with overweight and obesity.

Electronic supplementary material  The online version of this 
article (https​://doi.org/10.1007/s4025​8-018-0450-2) contains 
supplementary material, which is available to authorized users.
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Key Points for Decision Makers 

Higher body mass index is associated with a variety of 
adverse health outcomes, the management of which may 
have important resource requirements for health systems.

We studied the observational association between 
body mass index and inpatient hospital costs in the UK 
Biobank, a very large cohort of individuals mostly aged 
between 40 and 69 at recruitment.

A unit increase in body mass index was associated with 
higher inpatient hospital costs per person of £13.61, per 
year of follow-up.

These findings, in conjunction with evidence from causal 
analyses, may be used as inputs to guide the develop-
ment of interventions and preventive programmes target-
ing (in particular) overweight and obesity.
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prevention and treatment of obesity. As Wang et al. [13] 
note, “A systematic understanding of the potential morbid-
ity and cost implications of specified hypothetical changes 
in body-mass index trajectories…is crucial for formation 
of effective and cost-effective strategies, establishment of 
research and funding priorities, and creation of the political 
will to address the obesity epidemic.”

2 � Methods

2.1 � UK Biobank—Features of Study Design 
and Participants

Adults aged between 40–69 and living within approximately 
25 miles (40 km) of 22 assessment centres in England, Wales 
and Scotland were invited to participate in the UK Biobank 
study. Some 9.24 million individuals registered with the 
UK’s National Health Service (NHS) were sent postal invi-
tations, and 503,317 individuals ultimately joined the study 
cohort [21], for a response rate of approximately 5.45%. 
Participation rates were higher for women (6.4%) than men 
(5.1%) [21]. The cohort is not representative of the national 
population from which it is drawn, being wealthier, healthier 
and better educated. The implications of the response rate 
and the representativeness of the cohort are considered in the 
Discussion section below. Ethical approval for UK Biobank 
was received from the North West—Haydock Research Eth-
ics Committee (reference 11/NW/0382).

Participant assessments, undertaken at the 22 centres 
between 2006 and 2010, comprised consent, self-completion 
of an electronic questionnaire, computer-assisted interviews, 
specimen collection and measurement of physical function 
[22]. Individual participant baseline data were linked with 
participant consent to, among other things, death registers 
and records of certain forms of care in NHS hospitals.

2.2 � Measurement of Body Mass, Waist‑Hip Ratios 
and Bio‑impedance

Three different but cognate measures that indicate adiposity 
were measured at the baseline appointment: BMI measured 
using height and weight, bio-impedance (opposition in bio-
logical tissues to alternating current) and circumferences of 
the waist and hip.

Weight was measured following the removal of shoes and 
heavy outer clothing using Tanita BC-148MA body com-
position analysers. Participants’ height, standing shoeless, 
was measured using a Seca 202 device. These measurements 
were used to create an index of body mass in terms of kg/m2.

The built-in algorithms of the Tanita analysers were also 
used to estimate body composition following measurement 
of bio-impedance. Mass measured using impedance was 

1  Introduction

Body mass index (BMI)—weight divided by the square of 
standing height—is a widely used indicator of nutritional sta-
tus, adiposity and overall health [1–7]. Longitudinal, cross-
country data reveal a recent increase in mean BMI levels for 
men and women, and increased variance in BMI [6]. Globally, 
more individuals are becoming obese (BMI ≥ 30 kg/m2) than 
are transitioning out of underweight status (BMI ≤ 18.5 kg/m2) 
[6, 8], leading to marked increases in the absolute numbers 
of individuals in the former category. Some 2.1 billion indi-
viduals throughout the world were overweight (BMI > 25 kg/
m2) or obese in 2013, an increase of 1.4 billion from 1980 
[4]. This reflects a global prevalence of overweight or obesity 
amongst men of 28.8% and 29.8% amongst women [4].

The underlying aetiology between BMI and health is 
complex [9], but robust associations have nevertheless 
been found between higher BMI and risks for a variety of 
adverse health and social outcomes, including higher rates 
of age-adjusted mortality [10], increased morbidity [6, 11] 
and poor labour market outcomes [12]. This has important 
implications for the management of healthcare systems 
[13], since the endocrinal [14], cardiometabolic [15, 16] 
and other changes [13] associated with increased adiposity 
are associated with substantial healthcare resource require-
ments [17].

Cawley et al. [18] estimate that the direct medical care costs 
of obesity of US adults amounted to 27.5% of health expen-
ditures for non-institutionalised US adults, and noted adult 
obesity has become more expensive over time in the USA 
due to both increased prevalence and higher treatment costs. 
Kent et al. [19] attribute 14.6% of total annual hospital costs in 
women aged 55–79 in England to overweight and obesity, with 
this figure rising to 52% for individuals with BMI > 40 kg/m2.

This article assesses the observational association between 
BMI and other measures of adiposity with admitted patient 
hospital costs using individual-level data from UK Biobank, a 
large prospective cohort study. This is the first study to develop 
cost estimates for UK Biobank, which will be returned to the 
cohort and freely available for other researchers to use. Obser-
vational analyses of the type deployed in this paper cannot 
answer causal questions, or identify the mechanisms that medi-
ate the association between adiposity and healthcare costs, but 
do have utility in documenting policy-relevant associations, 
offering context for previous observational and causal studies, 
and providing evidence for meta-analysis.

A further advantage of this analysis is that the results 
may be triangulated [20] with other sources of evidence with 
potentially orthogonal sources of bias to come to an over-
all view about the association between BMI and healthcare 
costs. Together, diverse sources of evidence, of which the 
present analysis is one source, can be used to inform the 
cost-effectiveness of interventions and policies targeting the 
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calculated in increments of 0.1 kg. A separate measure of 
adiposity was calculated from these impedance measures 
by dividing by the standing height of participants to create 
another index of body mass, also in terms of kg/m2.

These two measures of adiposity were highly concordant 
(Lin’s rho = 0.99996, p < 0.00001) with a mean difference 
between traditional and impedance measures of − 0.01 (99% 
confidence interval − 0.12 to 0.10). Impedance-based BMI 
was therefore used where the traditional BMI measure was 
missing. A total of 685 observations had a mean difference 
between traditional and impedance-based measures of BMI 
of more than 5 standard deviations from the mean difference, 
and were excluded from the analysis.

Waist circumference (at the umbilicus) and hip cir-
cumference were measured in centimetres using a Wessex 
sprung tape measure. A waist-hip ratio (WHR) was calcu-
lated from these measurements to reflect central adiposity 
[23, 24]. We estimated separate models including WHR as 
a continuous variable and as a binary variable. The binary 
variable was constructed to reflect measures of regional 
adiposity using a ratio > 0.85 for women and > 0.9 for 
men. It is important to note that while these binary cut-off 
points are used in a number of countries, there is no widely 
accepted definition of these cut-offs, despite the frequent 
attribution of these figures to WHO reports (see [25] and 
particularly the discussion in [26]). Nevertheless, this clas-
sification has utility as a comparison to the binary cut-off 
of obesity defined for the conventional BMI measures, as 
well to published literature using these or similar classifica-
tions for WHR measures.

As a sensitivity analysis, we estimated models of the con-
tinuous WHR outcome using continuous BMI as a covariate, 
and vice versa. These models estimated, respectively, BMI-
adjusted WHR, and WHR-adjusted BMI outcomes condi-
tional on all baseline covariates, and each model assumes 
that WHR is not on the causal pathway between BMI and 
hospital costs and vice versa.

2.3 � Measurement of Costs

Admitted patient care episodes, sometimes referred to as 
inpatient care episodes, were obtained from linked Hospital 
Episode Statistics (HES) for English care providers and from 
Patient Episode Database for Wales (PEDW) for Welsh pro-
viders. These two data sources are very similar in structure 
and purpose, and were analysed as a single dataset following 
reconciliation where required. Inpatients are those who are 
admitted to hospital and occupy a hospital bed but need not 
necessarily stay overnight (i.e. day case care).

Episodes of care refer to a period of care in which a 
patient is under the care of a single consultant working at a 
single hospital provider. An admission may comprise just 
one “Finished Consultant Episode” (FCE), or many such 

episodes if the patient receives care from more than one 
consultant.

Each FCE is associated with information on the patient, 
and the consultant and hospital overseeing their care. For 
example, FCEs are associated with procedures undertaken 
(based on OPCS-4 procedure codes) and diagnoses made 
(based on ICD-10 diagnosis codes [27]). These FCEs were 
converted into Healthcare Resource Groups (HRGs) by 
using data on patient characteristics, length of stay, pro-
cedures, diagnoses, and other information by using NHS 
“Grouper” software [28].

HRGs reflect groups of similar patient activity, and 
are used in England and Wales as the basis for case-mix-
adjusted remuneration of publicly funded NHS hospitals. In 
turn, these HRGs were cross-classified against NHS Refer-
ence unit costs, allowing costs to be assigned to each FCE. 
These costs were calculated to reflect differences between 
categories of care included in inpatient care, such as elec-
tive and non-elective episodes, and accounted for the addi-
tional costs associated with patients undergoing long hos-
pital stays. Costs were separately calculated for so-called 
“unbundled” elements of care, such as diagnostic imaging, 
for which elements of cost and care activity are represented 
separately from other elements of inpatient care.

Due to differences in the collection and valuation of 
care in Scottish hospitals compared to hospitals in England 
and Wales, only costs from the latter two jurisdictions are 
included in this analysis. Costs were calculated for episodes 
of care occurring on or after 1 April 2006 to reflect major 
changes to the hospital payment system that came into effect 
on that date [29]. Participants who attended UK Biobank 
baseline appointments before this date were removed from 
the analysis.

Remaining cohort members therefore report person-years 
from recruitment, and contribute data to HES until death, 
emigration, or 31 March 2015, the current censoring date 
for linked HES data. Note that the event of death does not 
constitute censoring in this analysis, since the number of all-
care episodes and associated costs is known following death. 
Emigration out of the UK amongst the cohort is reported to 
be a modest 0.3% [21] and is not accounted for in our analy-
sis. We do not have information on patients who may have 
received inpatient care in Scottish hospitals while living in 
England or Wales. Costs were converted into a per-patient 
cost by summing across all episode costs per person-year of 
follow-up in constant 2016/17 prices.

2.4 � Covariates

All models adjusted for covariates obtained from participant 
responses at the baseline appointment at UK Biobank assess-
ment centres. These covariates were sex, age at recruitment, 
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days per week of vigorous physical activity (categorical 
ranging from 0–7), frequency of alcohol intake (categorical 
ranging from “daily or almost daily” to “never”), educational 
and professional qualifications (categorical), employment 
status (categorical, ranging from “in paid employment or 
self-employed” to “full or part-time student”), and a meas-
ure of deprivation calculated using the Townsend score con-
verted into quintiles.

To assess the effects of residual confounding and of 
reverse causality from pre-diagnostic or prodromal disease 
[7], we conducted sensitivity analysis restricting the analysis 
to include only “never smokers” (n = 249,423) and including 
only individuals reporting no pre-existing illness at base-
line (n = 106,388). Smoking status is self-reported and may 
exhibit measurement error as a consequence [30]. It is pos-
sible that focusing only on never smokers (who are probably 
less likely to misreport their smoking status than current or 
former status) may avoid some of the confounding that may 
otherwise be present in the BMI-hospital cost association. 
However, the causal relationship between BMI, smoking and 
healthcare costs is complicated and very likely bidirectional 
[31, 32]. It is important to emphasise that accounting for 
residual confounding and reverse causality in this way is 
necessarily incomplete given the observational study design.

Including only those individuals with no health condi-
tions at baseline may partially capture the impact of reverse 
causality if individuals with many pre-existing conditions 
are on treatment regimens that raise or lower BMI, so that 
the direction of causality runs from costs to BMI. Again, 
this is a partial attempt at accounting for reverse causality 
and reflects only baseline information that was accurately 
self-reported.

Two covariates (the exercise variable and the qualifi-
cations variable) had slightly higher rates of missing data 
than others, and we conducted a post hoc sensitivity analysis 
excluding these two variables from the adjusted regression 
models.

2.5 � Statistical Methods

The primary objective of our analysis was to predict total 
admitted patient hospital costs as a function of the condi-
tional marginal effect of body mass on healthcare costs. 
Marginal effects for categorical and binary adiposity-related 
variables refer to the effects of a change in category, e.g. 
from “overweight” to “obese”. Marginal effects for contin-
uous outcomes were calculated for specific changes—unit 
changes and standard deviation changes—in the adiposity-
related variable. The magnitude of these effects depends on 
the values of other covariates included in the model—these 
values of other covariates were left at their observed values 
to calculate an average marginal effect.

The average adjusted predictions that follow from this 
calculation adjust for variation in these other covariates. 
These predicted costs therefore do not necessarily reflect 
the hypothetical costs of an “average” individual, nor neces-
sarily the expected costs for any specific individual in the 
sample. Average adjusted predicted costs were calculated for 
the entire analysis sample, for the samples defined in sensi-
tivity analyses, and at representative ages stratified by sex.

Cost is always non-negative, the modal value is often 
zero, and the distribution of healthcare costs tends to be 
skewed with a long right tail reflecting very high expen-
ditures incurred by a small number of individuals. Linear 
models may predict negative costs for some individuals, may 
not estimate mean effects without bias in the presence of 
long tails, and are likely to be inefficient in the presence of 
heteroskedasticity. Logarithmic transformations can address 
skewness to some extent but are not well suited for han-
dling zero cost observations, and require transformations of 
regression output back to the original scale, a process which 
itself may cause bias in the presence of heteroskedasticity 
[33].

Generalised linear models (GLM) were therefore used 
to estimated average adjusted predicted costs: rather than 
modelling the conditional expectation of the logarithm of 
cost, the logarithm of the conditional expectation of cost 
was estimated, and the relationship of the mean to variance 
in the outcome data was assessed and modelled. A so called 
“single-index model” was used, in which the zero-cost and 
positive-cost outcomes were modelled with a single density 
function. As Deb et al. [34], this approach is appropriate 
when the object of inferential interest is related to the mean 
function of the outcome, conditional on covariates, such as 
the marginal effect of an adiposity-related covariate on inpa-
tient hospital cost outcomes. However, in sensitivity analy-
ses, we also estimated models under a two-part model which 
decomposed the density of the outcome into a mixture of 
two parts: one that models the zero cost observations (esti-
mated with a logit model), and one that models the non-zero 
cost observations using a GLM structure.

Two tests, neither necessarily definitive, were used to 
identify an appropriate link function for all models. Box-Cox 
tests on positive cost observations were used to identify sca-
lar powers that resulted in the most symmetric transformed 
distribution. A Pregibon-type [35] link test was performed to 
check whether including the squared outcome variable as a 
covariate had explanatory value above models excluding this 
term. To inform the choice of the family function, a modified 
version of the Park test was used to characterise the relation-
ship between the variance of the error term and the expected 
value of the cost outcome variable. All models use robust 
standard errors to allow for potential mis-specification of the 
link and family functions.
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All analyses were conducted in Stata version 15.1 (Stata-
Corp, College Station, Texas).

3 � Results

Following exclusion of data as described above, records 
from up to 457,689 participants were available for the 
inferential analysis (Fig. 1), of whom 54.4% at baseline 
were female (Table 1). Person-years of follow-up ranged 
from 4.5 to 9 years (mean and median = 6.1 years). Mean 
age at baseline for women was 56.3 years, and 56.7 years 
for men. Median hospital costs per person-year of follow-
up were £89, compared to mean costs of £481, reflecting 
the highly skewed distribution that is characteristic of this 
type of cost data.

Some 54.4% of individuals included in the analysis 
sample had positive healthcare costs over the period of 
follow-up. Mean BMI overall was 27.4 kg/m2 [standard 
deviation (SD) 4.8]; BMI amongst men was 27.8  kg/
m2 (SD 4.2) and amongst women 27.1 kg/m2 (SD 5.2). 
The proportion of participants with BMI > 30 kg/m2 was 
24.4%, with more men (25.3%) than women (23.5%) meet-
ing the definition of obesity. This is slightly lower than the 

prevalence of obesity in England in 2010 (the last year 
of recruitment to the study) amongst all adults of 26.1% 
(26.2% males, 26.1% females) [36].

There was limited missingness (< 0.1%) amongst baseline 
covariates used in the adjusted analysis, with the exception 
of the exercise variable (5.4% coded as missing) and the 
qualifications variable (1.9% missing). Tests of family and 
link functions for the GLM supported the use of a Gamma 
family with logarithmic link when modelling the cost out-
come. Further details on the results of these tests are pro-
vided in supplementary material.

All models found a positive association between meas-
ures of adiposity and hospital costs (Table 2). Marginal 
effects represent a specific change in the outcome associ-
ated with each scenario, leaving other variables at their 
observed levels, and averaged over all individuals in the 
sample. For example, an increase in categorical BMI from 
the base category of 25 kg/m2 to 27.5 kg/m2 to the 30 kg/m2 
to 35 kg/m2 category is associated with an increase in costs 
of £106.24 [99% confidence interval (CI) £91.59–£120.90]. 
This marginal effect can be interpreted as the hypotheti-
cal difference if all individuals differed only in their BMI 
category, but not on any other covariate. Average adjusted 
predictions reflect the expected values of the inpatient 

Fig. 1   Flow chart of participants available for analysis. BMI body 
mass index. Ungrouped cost data refers to data for which Hospi-
tal Episode Statistics data are not sufficient to assign a Healthcare 

Resource Group. This is typically where the primary diagnosis was 
not specific and was coded to an unspecified injury (or similar) clas-
sification
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cost outcome for specific sets of values for the predictor 
variables, for example, the effect of a standard deviation 
increase in BMI.

Marginal effects for continuous outcomes require the 
specification of a particular “margin” of change, but oth-
erwise have a similar interpretation of the marginal effects 
of categorical outcomes. For example, the effect of a one 
standard deviation increase in BMI is to increase in inpatient 
hospital costs by £69.20 (99% CI £64.98–£73.42).

The relative effect of a unit change in continuous BMI 
amounts to approximately 2.9% (99% CI 2.7–3.2) in 
increased costs per person-year of follow-up.

Figure  2 displays average adjusted predicted costs 
at representative values of continuous BMI, capturing 
predictions at unit increments of BMI from small to the 
large BMI values. Figure 3 presents the same outcome 
according to age, and stratified by sex to examine whether 
these variables may influence inpatient costs. The point 
estimates and CIs are similar, and no difference in sex is 
apparent at any age. However, there is a clear gradient 
with respect to age, with older members of the cohort pre-
dicted to have higher inpatient costs. Figure 4 summarises 
average marginal effects for the categorical BMI outcome. 
There is some evidence of a J-shaped relationship in point 
estimates for lower levels of categorical BMI, although 
this evidence is weak given the widths of the CIs around 
these estimates.  

Three of the five specifications assessed in sensitivity 
analysis were very similar to the base-case predictions 
(Fig. 5). The effect of BMI attenuates slightly when con-
trolling for WHR. Including only never-smokers slightly 
reduced the estimated marginal effect to £13.10 (99% CI 
£11.77–£14.43), and predicted costs are similar to the 
base model near mean BMI. Excluding individuals who 
reported no pre-existing health conditions had the larg-
est impact of all scenarios assessed, reducing the mar-
ginal effect of a unit change of BMI to £5.51 (99% CI 
£4.13–£6.89). Supplementary material describes average 
adjusted predictions over the range of BMI for these sen-
sitivity analyses. Results from sensitivity analyses of the 
other outcomes reported in Table 2 were similar.

4 � Discussion

Higher rates of adiposity are associated with higher inpa-
tient hospital costs in this cohort of middle-aged and older 
individuals. This is broadly consistent with findings from 
studies with similar designs. A systematic review [37] of 
the association between total annual healthcare costs and 
BMI in studies using individual participant data found 
progressive increases in annual hospital costs for increas-
ing levels of obesity, a finding demonstrated here in all Ta
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models and for all outcomes. The systematic review also 
reported that overweight and obesity increased median 
inpatient hospital costs relative to costs associated with 
BMI of 18.5 kg/m2 to < 25 kg/m2 by 12% and 34%, respec-
tively. These figures are similar to those reported here, 
for which the comparable relative increases in cost for 
BMI 25 kg/m2 to < 27.5 kg/m2 relative to 22.5 to 25 kg/
m2 of 16%, and 31% for BMI ≥ 30 kg/m2 relative to 22.5 
to < 25 kg/m2.

Korda et al. [38] studied hospital costs amongst 224,254 
Australian adults aged at least 45  years, and found an 
increase in costs of between 14 and 24% (depending on cat-
egory of age) for BMI between 27.5–30 kg/m2 relative to 
22.5– < 25 kg/m2, rising to 77% to 115% for BMI between 
40–50 kg/m2. The comparable increase in costs for individu-
als of all ages in UK Biobank ≥ 40 kg/m2 is 78%. The find-
ings are also broadly similar to the US study of Andreyeva 
et al. [39].

Marginal effects for the continuous BMI outcome are 
similar to the observational estimates in Cawley et al. [18] 
for US adults of $49 in 2005 US dollars per unit change in 
BMI, although their estimate of the marginal effect of obe-
sity ($656) is much higher than the effect reported in Table 2 
for the UK Biobank cohort. Predicted costs and marginal 
effects are estimated to be somewhat lower than in the large 
prospective women-only study of Kent et al. [19], perhaps 

reflecting the relatively “healthier and wealthier” composi-
tion of participants in UK Biobank.

4.1 � Strengths and Limitations

This analysis benefitted from access to a large volume of 
patient level data obtained from a prospective cohort study 
with comprehensive information on a variety of baseline 

Table 2   Marginal effects and average adjusted predicted inpatient hospital costs

BMI body mass index, SD standard deviation, WHR waist hip ratio

Marginal effect 99% confidence interval Average adjusted 
predicted cost

99% confidence interval

Outcome: continuous BMI
 Effect of unit change in BMI £13.61 £12.60 to £14.63 £468.30 £464.84 to £471.77
 Effect of SD change in BMI £69.20 £64.98 to £73.42 £537.51 £531.69 to £543.32

Outcome: binary BMI
 Effect of change in BMI-defined obesity status £136.35 £124.62 to £148.08 £569.25 £561.51 to £576.99

Outcome: categorical BMI
 10 to < 18.5 kg/m2 £41.62 − £77.86 to £161.10 £473.35 £354.31 to £592.39
 18.5 to < 20 kg/m2 − £31.94 − £68.91 to £ 5.03 £399.79 £364.04 to £435.55
 20 to < 22.5 kg/m2 − £40.94 − £57.02 to − £24.86 £390.79 £377.44 to £404.15
 22.5 to < 25 kg/m2 − £20.83 − £34.52 to − £7.15 £410.90 £400.65 to £421.15
 25 to < 27.5 kg/m2 (base category) – – £431.73 £422.91 to £440.56
 27.5 to < 30 kg/m2 £46.01 £31.39 to £60.63 £477.74 £466.05 to £489.43
 30 to < 35 kg/m2 £106.24 £91.59 to £120.90 £537.98 £526.52 to £549.44
 35 to < 40 kg/m2 £188.99 £162.37 to £215.61 £620.72 £595.83 to £645.62
 ≥ 40 kg/m2 £300.14 £257.60 to £342.69 £731.87 £690.43 to £773.32

Outcome: continuous WHR
 Effect of 0.01 change in WHR £8.79 £8.20 to £9.38 £476.51 £472.91 to £480.12
 Effect of SD change in WHR £85.06 £78.93 to £91.18 £552.77 £545.25 to £560.30

Outcome: binary WHR
 Effect of change in regional adiposity status £96.78 £85.78 to £105.87 £514.16 £508.50 to £519.82

Fig. 2   Average adjusted predicted healthcare costs by continuous 
body mass index (BMI)
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characteristics. Measures of BMI and related variables were 
obtained by research staff, and the errors and biases associ-
ated with self-report of weight and height were avoided [40]. 
The use of traditional and impedance-based measures of 
BMI offered a degree of further validation for the core expo-
sure. The analysis included both continuous and categorical/
binary outcomes of weight-related measures, in contrast to 
much of the literature on these associations, which is gener-
ally restricted to categorical or binary classifications of BMI.

The analysis has a number of limitations. The analysis 
presented in this paper is observational and cannot reveal 
the causal association between measures of adiposity and 
inpatient costs. For example, the association between costs 
and BMI may be confounded by the effect of unmeasured 
baseline health conditions that affect both BMI and hospi-
tal costs. Adjustment for baseline pre-existing conditions in 
sensitivity analysis revealed a relatively large moderating 
effect, but only captures known health conditions that were 
accurately reported at baseline.

The results could therefore be affected by some degree 
of reverse causality, the precise degree of which cannot be 
uncovered in this type of observational analysis. The results 
from excluding individuals without pre-existing conditions 
was suggestive—effect sizes attenuated but did not encom-
pass the null. Nevertheless, this is necessarily a partial and 
incomplete test of reverse causality.

A further channel for costs to influence BMI may be 
treatment regimens that affect weight (such as selective 
serotonin reuptake inhibitors for depression), or treatment 
decisions that used BMI thresholds (such as for bariatric 
surgery) as a basis for intervention. However, observing 
these associations may give the appearance of the direc-
tion of causality running from healthcare costs to BMI, 
but in reality, are better conceived of as further instances 
of confounding (by depression in the first example) rather 

than an actual causal effect on the level of BMI from the 
level of costs per se.

Methods for causal inference, such as Mendelian Rand-
omization—the use of germline genetic variants as instru-
ment variables for exposures such as BMI—or the use of BMI 
of a biological relative as an instrument for own BMI, offer 
promise in this area as a means to overcome confounding [41]. 
Complementary study designs and triangulation [20] between 
these different designs will almost certainly be necessary even 
after causal analyses of the adiposity/cost relationship.

Biobank cohort participants differ from the general popu-
lation: they are more likely to be older, female and univer-
sity graduates. They are less likely to be deprived, obese, 
to smoke, to drink alcohol on a daily-basis, or to have self-
reported health conditions. There is evidence of a selec-
tion bias from a “healthy volunteer” effect [21]. The rate 
of all-cause mortality is 46% lower in the cohort than in the 

Fig. 3   Average adjusted predicted healthcare costs stratified by age 
and sex

Fig. 4   Summarises average marginal effects for the categorical BMI 
outcome

Fig. 5   Average marginal effects per unit change in continuous body 
mass index (BMI)
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population from which it was drawn [22]. This may induce 
associations between outcomes and participant characteris-
tics when none exist in truth due to the operation of collider 
bias caused by the self-selection of a healthier and more 
educated population into the cohort [42].

This is likely to impair the representativeness and gen-
eralisability of the findings of this study to the wider UK 
population from which the cohort is drawn. The direction of 
the bias that this imparts is unknown. However, it is plausible 
that the direction of bias may be downwards, suggesting that 
the estimates presented here are likely to be an underestimate 
of the effect of BMI on healthcare costs. This would occur if, 
for example, the healthy behaviours and favourable circum-
stances of cohort participants (relative to the general popula-
tion) are related to unmeasured variables that themselves tend 
to mitigate the consequences of higher BMI. Robust causal 
methods are required to resolve this uncertainty.

Modelling cost outcomes is challenging, not least because 
methods to identify appropriate link and family functions 
in GLM have limitations and require a degree of contextual 
interpretation. Mis-specification is possible despite robust 
standard errors being used for all models. The costs assigned 
to each individual episode of care are based on HRGs that 
are essentially averages of costs of types of care, and may 
conceal individual variation in actual resources used.

Analysis did not encompass all healthcare costs. Primary 
care data are not linked to UK Biobank, and hospital data 
are restricted to inpatient care, although Kent et al. [19] 
report that 30–50% of total overweight and obesity attribut-
able costs relate to inpatient care. It is also probable that 
many costs will be correlated with the same direction of 
effect across different categories of provider care, albeit that 
the scale of effects is likely to differ. This question requires 
linked data that are not available for the UK Biobank cohort. 
The remuneration of Scottish hospitals differs from that in 
England and Wales, and Scottish hospitalisation data could 
not be combined with those from the latter two jurisdictions.

The dataset includes private patients treated in NHS hospi-
tals, but not private patients treated elsewhere. Approximately 
37% of the cohort answered a question on use of private health 
insurance, of whom 2.4% self-report exclusive use of private 
healthcare. Nevertheless, 39% of individuals reporting exclu-
sive use of private healthcare have non-zero NHS inpatient 
costs. Further data on reported use of private healthcare in the 
cohort are presented in Supplementary material.

5 � Conclusion

BMI is a potentially modifiable risk factor for a variety of 
healthcare conditions. Evidence from analysis of the UK 
Biobank is consistent with findings from other cohorts in 

demonstrating a robust association between BMI and inpa-
tient hospital costs. However, evidence from randomised 
study designs and/or valid causal inference on observational 
data is required to validate these findings and to inform pub-
lic policy toward excess adiposity.
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