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Abstract Healthcare services are often provided to a

country as a whole, though in many cases the available

resources can be more effectively targeted to specific

geographically defined populations. In the case of malaria,

risk is highly geographically heterogeneous, and many

interventions, such as insecticide-treated bed nets and

malaria community health workers, can be targeted to

populations in a way that maximises impact for the

resources available. This paper describes a framework for

geographically targeted budget allocation based on the

principles of cost-effectiveness analysis and applied to

priority setting in malaria control and elimination. The

approach can be used with any underlying model able to

estimate intervention costs and effects given relevant local

data. Efficient geographic targeting of core malaria inter-

ventions could significantly increase the impact of the

resources available, accelerating progress towards elimi-

nation. These methods may also be applicable to priority

setting in other disease areas.

Key Points for Decision Makers

Geographic heterogeneity in disease risk and other

factors is important to malaria control and

elimination policy.

Yet geographic heterogeneity does not feature

prominently in the malaria economic evaluation

evidence base.

This paper describes an approach to geographic

allocation of a malaria budget based on cost

effectiveness.

1 Introduction

Effective spending is critical to malaria control and elim-

ination. While global financing for malaria has risen con-

siderably in recent years [1], it is not possible to provide all

malaria interventions to all areas at risk. In addition to

ensuring sustained financial and political commitment,

policy makers must determine how best to marshal the

available resources to maximise impact on malaria burden.

Economic evaluation aims to address this question by

providing information on the health impact of interventions

in proportion to the resources required.

Several reviews have sought to summarise the evidence

base on the cost effectiveness of malaria interventions

[2–4]. This evidence has most clearly informed malaria

policy when an intervention was shown to be highly cost

effective in a wide range of settings, supporting general-

isable policy recommendations. Examples include the use
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of artesunate for the treatment of severe malaria [5] and the

introduction of point-of-care or rapid diagnostic tests [6–8].

However, translating the cost-effectiveness evidence base

to inform detailed malaria control and elimination planning

can be challenging, as described in an accompanying

paper.

1.1 The Importance of Geographic Variation

in Malaria Policy

The national malaria control programme manager is faced

with, among other things, a toolbox of interventions, a

limited budget and a map of malaria risk. With increasingly

abundant geo-data on malaria incidence and the use of

spatial–statistical models to fill in the gaps [9–11], malaria

risk maps are increasingly useful and becoming more

popular as there is growing recognition of the high degree

of heterogeneity in risk within countries, within provinces

or districts, and even within communities [12]. Related to

this, most malaria interventions are highly divisible, down

to the community or patient level, and can be targeted to

specific geographically defined populations. These inter-

ventions include insecticide-treated bed nets (ITNs),

chemoprevention, indoor residual spraying, larviciding,

early detection and treatment through malaria community

health workers (CHW), mass treatment and, perhaps soon,

vaccination.

In addition to disease risk, further factors that vary with

geography are relevant to malaria programming, such as

access to treatment and the higher cost of delivering ser-

vices in remote areas, though the cost of such services may

well be considered worthwhile. In many countries, efforts

are being made to identify the human and ecological

dynamics behind geographic heterogeneity in malaria risk

[13, 14]; trials are underway to identify packages of

interventions that could successfully target malaria hot-

spots [15] and spatial decision-support systems are being

established [16, 17]. Locating malaria risk and deciding

how to respond to this risk is therefore essential to effective

control and elimination.

1.2 Geographic Heterogeneity and Economic

Evaluation

While geographic heterogeneity is clearly important to

malaria policy making, it does not feature prominently in

malaria economic evaluations. The impact of variation in

malaria risk on cost effectiveness can be, and often is,

assessed by univariate or probabilistic sensitivity analysis.

This risks conflating an important distinction between

heterogeneity and uncertainty; it may be useful to the

decision maker to understand both the differences between

geographies and the degree of confidence in this

information. Detailed stratification of cost-effectiveness

results by disease risk would allow readers to match the

characteristics of their context with study findings. How-

ever, geographic variation may include multiple variables

preventing clear stratification.

Economic evaluation can do more to integrate infor-

mation on geographic variability in situations where this is

central to the policy response. There are several recent

examples of studies that model geographic resource allo-

cation for countries or regions in malaria and other disease

areas [18–20]. Though aiming to reconcile costs and con-

sequences, such studies are not always described as eco-

nomic evaluations, often originating in the disciplines of

mathematical modelling or spatial epidemiology. This

paper describes an approach to geographic resource allo-

cation grounded in economic evaluation methodology.

2 Geographic Resource Allocation

Healthcare economic evaluation models provide estimates

of the cost and health impact for interventions of interest.

Given relevant local data on demographics, disease risk

and other factors for a set of geographically defined pop-

ulations (hence ‘geo-units’), such models can provide a

menu or league table of interventions or intervention

combinations in terms of their expected costs and effects.

That is, a modelled estimate of the cost and effect of each

intervention option in each geo-unit. The interpretation of

such a dataset is not trivial, and the decision problem

addressed in this paper is to select intervention options for

each geo-unit such that health gains are maximised given

the resources available.

A wide range of methods are available to model inter-

vention costs and effects, including decision trees, com-

partmental or Markov models and individual-based models

[21–23]. Some considerations in model design may include

intervention interactions, the impact on disease transmission

as well as health, the marginal effects of one intervention in

the presence of another, variations over time and population

behaviour, to name a few. Where multiple interventions are

being considered, the model may need to be able to simulate

their impact in isolation and in varying combinations. It is

important to use an outcome measure that adequately cap-

tures the impact of all interventions of interest; utilitymetrics

including the disability-adjusted life-year (DALY) or qual-

ity-adjusted life-year are appropriate, though some disease-

specific measures such as reduction in prevalence may be

sufficient. Notwithstanding the above, all models are sim-

plifications of reality, and the model should be no more

complex than is necessary to reasonably estimate interven-

tion costs and effects. The literature on modelling economic

and health impacts is extensive.
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2.1 Allocation Method

Geographic resource allocation is a variation of the knap-

sack problem1 and is analogous to priority setting between

healthcare domains in standard healthcare priority setting

using cost-effectiveness or cost-utility analysis [24]. The

allocation problem can be stated as follows:

max
X

i2I

X

g2G
eigdig

s:t:
X

i2I

X

g2G
cigdig � b

The sum of intervention effects (e) is maximised subject

to a budget constraint (b) on the sum of intervention costs

(c), where the set of all interventions (i) in all geo-units

(g) are included or excluded using a decision variable (d).

The decision variable determines inclusion or exclusion of

intervention options and normally d [ {0, 1}. Obtaining a

solution to the optimisation problem is more

tractable given an assumption of divisibility (see Sect. 2.3).

The allocation algorithm described here is an adaptation

of priority setting using cost-effectiveness analysis rather

than an iterative trial-and-improvement optimisation solver

and is illustrated with a simplified example of a decision

problem in three geographic units: A, B and C. Two

interventions, ITNs and malaria CHWs, are available, as

well as the combination of both interventions and the

option to provide neither. Figure 1, panel 1, presents this

example graphically, with information on the costs, effects

and allocation results in Table 1. The corresponding cost-

effectiveness plane and the allocation result is presented in

Fig. 1, panel 2, and the steps of the allocation algorithm are

summarised in Box 1.

Starting with the costs and effect estimates for all

intervention options in all geo-units, all dominated inter-

ventions (those that are more costly and less effective than

an alternative intervention within the same geo-unit) are

excluded. Incremental cost-effectiveness ratios (ICERs) are

calculated for all interventions using the null or ‘no addi-

tional intervention’ scenario as the comparator. Priority

setting is then broken down into a series of decisions. The

first decision selects the intervention option with the lowest

ICER from all non-excluded options in all geo-units. This

selection is the choice that produces the maximum

expected health gains for the investment (though it may be

replaced by a subsequent selection in the same geo-unit).

The cost of the intervention is subtracted from the budget,

and the ICERs for the remaining interventions in the same

geo-unit are recalculated using the selected intervention as

the comparator (see Sect. 2.2). Any recalculated ICERs that

are negative are subject to extended domination and

excluded. These recalculated ICERs are those that form the

cost-effectiveness frontier for the geo-unit. These steps are

repeated, selecting the most cost-effective intervention

option, recalculating the ICER and adjusting the budget. If

the selection is in a geo-unit for which an intervention is

already allocated, the new selection displaces the previous

one and the cost of the displaced intervention is returned to

the running budget. The process ends when the remaining

budget is less than the cost of the next most cost-effective

option.

Given the challenges specifying and interpreting cost-

effectiveness thresholds (CETs) for malaria control and

elimination [25], the approach uses a budget as the resource

constraint, which, because of the role of international aid, is

often known and ring-fenced. Alternatively, if we instead

wish to apply a CET as the resource constraint, each geo-

unit can be treated as an isolated decision problem. As

before, interventions subject to domination by others within

the same geo-unit are excluded. Then, following standard

economic evaluation methods, the cost-effectiveness fron-

tier is identified and ICERs calculated sequentially along

this frontier. The intervention option with the highest ICER

below the CET is the expected optimal choice in each geo-

unit.

Box 1 Geographic resource allocation steps

The starting point of this method is a set of cost and effect

estimates for all intervention options in all geographic units of

interest. The aim is to select interventions and intervention

bundles by geo-unit in such a way that impact is maximised for a

given budget

1. Remove all interventions where there exists an alternative

within the same geo-unit that is both more effective and less

costly (absolute domination)

2. Calculate ICERs for all intervention combinations in all geo-

units using a common ‘no additional intervention’ comparator

3. Considering all remaining intervention options in all geo-units,

select the option with the lowest ICER to allocate funding.

Reduce the budget by the cost of this selection

4. If the selection displaces another intervention option in its geo-

unit, then remove the displaced option from the league table and

add its cost to the running budget

5. Recalculate the ICER for any remaining interventions in the

selection geo-unit, using the newly selected intervention option

as the comparator

6. Remove any intervention options where the ICER is negative

(extended domination, the intervention is not absolutely

dominated yet does not fall on the cost-effectiveness frontier and

thus is not selected at any point)

7. Repeat steps 3-6 until the running budget is less than the cost of

the next selection

ICER incremental cost-effectiveness ratio

1 A standard combinatorial optimisation of placing objects of

different weights into a knapsack.
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2.2 Incremental Cost-Effectiveness Ratio

Calculation: Which Comparator?

When evaluating intervention options across multiple geo-

units, identification of the appropriate comparator is

essential to calculation of the correct ICER. Where a new

intervention selection replaces a previous one, the differ-

ence in costs and effects between these alternatives should

be used to decide whether the additional investment justi-

fies the additional benefit. In this respect, there is a

difference in resource allocation within and between pop-

ulation groups in that within-group selection is alternative

whereas between-group selection is additive.

Figure 2 illustrates this using the second decision step in

the example; after selection of ITN in population A, the

next choice can be to add ITN in population B or C or to

replace ITN in population A with the ‘both’ option in

population A (CHW only is dominated in the example). If

one intervention will replace another, the appropriate

information on which to make this decision is the

Cost

Effect

1

2
3

4

5

1

CHW & ITN
CHW
ITN
Dominated (Abs./Ext.)
Geo-unit cost effec�veness 
fron�er

Resource alloca�on rank

Δ Cost

Δ Effect

1 Selected interven�on op�ons

ICER
Geo-unit A

Geo-unit B

Geo-unit C

1 2

Both CHW

ITNNone

Both CHW

ITNNone

Both CHW

ITNNone

A

B

C

Fig. 1 Illustrative geographic allocation with cost-effectiveness

plane (matching Table 1). Panel 1: A, B and C are illustrative geo-

units corresponding to the example described in Sect. 2.1 and Table 1.

The highlighted segments denote the intervention options selected to

receive funding in the example. Abs. absolutely, Ex. extended, CHW

community health worker, ITN insecticide-treated bed net

Table 1 Example results table for multiple intervention resource allocation

Geographic

unit

Intervention Effect (DALYs

averted)

Cost

($US)

ICER ($US per DALY averted) Allocation

resultb
Selection

rank
With null

comparator

With frontier

comparatora

A ITN 3.73 304 82 82 Displaced 1

CHW 3.4 380 112 – Abs.

dominated

Both 5.01 498 99 152 Funded 3

B ITN 3.41 501 146 146 Displaced 2

CHW 3.62 733 202 – Ex. dominated

Both 4.29 804 187 344 Funded 5

C ITN 3.01 533 177 177 Funded 4

CHW 3.27 767 235 900 Unfunded

Both 3.38 933 276 1509 Unfunded

Abs. absolutely, CHW community health worker, DALY disability-adjusted life-year, Ex. extended, ICER incremental cost-effectiveness ratio,

ITN insecticide-treated bed net
a A by-product of the allocation process is the cost-effectiveness threshold or willingness to pay implied by the relevant budget. The threshold

would fall between the least cost-effective intervention that is funded and the most cost-effective intervention that is not. In the example in

Table 1, this is between $US344 and $US900 per DALY averted
b Given a budget constraint of $US2000

302 T. L. Drake et al.



difference between the costs and health gains between

these interventions.

Calculation of the correct ICERs emerges in the process

of the algorithm described in Sect. 2.1. At the point of

selecting an intervention for inclusion, the ICERs for all

remaining interventions within the same geo-unit are

recalculated with the selected intervention as comparator,

reflecting that, within a geo-unit, a new selection will

replace the previous selection.

2.3 Geo-Units

To address a practical budget allocation problem, the geo-

units are likely to be pre-established administrative con-

stituencies such as districts, townships or perhaps villages.

The choice of administrative level should reflect how the

interventions of interest may realistically be implemented.

For example, for reasons of pragmatism and economies of

scale, it may be more appropriate to allocate mass distri-

bution of goods such as ITNs by district or township rather

than by village. It is also essential that information such as

population and disease risk must be available for the cho-

sen administrative level. It may also be beneficial to

include variable costs for different geo-units and for pro-

gramme scale [26, 27].

Lastly, sequential selection based on ICERs does not

necessarily provide a perfectly optimal solution for a dis-

crete allocation problem in that there is a degree of error

associated with the residual underspend [28]. In cost-ef-

fectiveness analysis, decision divisibility is assumed,

allowing partial implementation of interventions. That is,

the decision variable (d) in the knapsack objective function

(Sect. 2) may take fractional values. While the assumption

of divisibility in cost effectiveness has been debated

[29–31], it is reasonable in the context of geographic tar-

geting, where divisibility of intervention decisions by

geographic areas is already assumed. Moreover, in the

geographic allocation methods described here, the divisi-

bility assumption is only necessary at the margin. That is,

at the end of the allocation algorithm, it is assumed the

most cost-effective unfunded intervention geo-unit option

could be partially implemented using the remaining funds.

It may not be necessary to formally include the partial unit

allocation, as the interpretation of results would not reflect

such precision (see Sect. 3.1), as in cost-effectiveness

analysis, an underlying assumption of divisibility may be

sufficient.

2.4 Uncertainty

Assessing and communicating the robustness of results

given uncertainty in the model inputs is essential for rig-

orous economic evaluation. Probabilistic uncertainty can

be incorporated into the allocation analysis by assigning

sampling distributions to input variables and making

repeated simulations of the allocation result (Monte Carlo

simulation). A clear distinction can be made between this

variation due to uncertainty and variation due to hetero-

geneity, and this is incorporated into the resource alloca-

tion analysis described above. The result of a probabilistic

uncertainty analysis would be a probability score for each

intervention in each geo-unit that it is the optimal choice

Cost

Effect

1 1

CHW & ITN
CHW
ITN
Dominated (Abs./Ext.)
Geo-unit cost effec�veness 
fron�er

Resource alloca�on rank
1 Selected interven�on op�ons

Geo-unit A

Geo-unit B

Geo-unit C

1 2

Both CHW

None

Both CHW

ITNNone

Both CHW

ITNNone

A

B

CITN

Fig. 2 Graphical representation of within and between geo-unit

selection having initially selected ITN in geo-unit A. Panel 1: A,

B and C are illustrative geo-units corresponding to the example within

vs. between geo-unit selection described in Sect. 2.2. The darker

highlighted ITN segment in geo-unit A denotes the intervention

selected in the first step; the lighter highlighted segments denote the

three options available for selection in the second step. Panel 2

represents the corresponding cost-effectiveness plane. CHW commu-

nity health worker, ITN insecticide-treated bed net
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given the defined parameter uncertainty. In such a proba-

bilistic (or Bayesian) framework, additional decision cri-

teria can be incorporated to reflect decision maker

preferences such as aversion to overspend or undersupply

[32, 33]. Univariate or multivariate sensitivity analysis or

scenario analysis can be used to assess parameter impor-

tance and scenarios of interest. Finally, structural uncer-

tainty can be examined by repeating the allocation analysis

with different underlying malaria models.

2.5 Case Study: Universal Insecticide-Treated Bed

Net Coverage vs. Targeted Resource Allocation

in Myanmar

A geographic resource allocation approach is employed by

Drake et al. [19] to examine the cost effectiveness of ITN

and malaria CHW in the Myanmar Artemisinin Resistance

Containment (MARC) region [19]. Here, we use scenarios

from the same context to illustrate the comparative

advantage of targeted resource allocation over universal

coverage (Fig. 3).

Based on the parameters detailed in Drake et al. [19],

universal ITN coverage in the MARC region has an annual

equivalent cost of $US6.08 million. The expected total

impact of this compared with a hypothetical ‘do nothing’

scenario is 2156 DALYs averted. In comparison, the same

budget allocated to ITNs, malaria CHWs or both by

township on the basis of cost effectiveness yields a total

impact of 2458 DALYs averted, a 14% increase in impact

compared with universal coverage in the first year without

including reduction in transmission. It is worth noting that

this is within a region already identified as high priority for

malaria control efforts; application to the country as a

whole or wider regions could yield greater efficiencies.

Effectively targeted malaria interventions have the poten-

tial for greater impact than universal coverage of a single

‘most cost-effective’ intervention. This is already a com-

mon view in many policy circles. Economic analysis can

do more to support geographic targeting in malaria control

and elimination.

3 Discussion

This paper describes an approach for the geographic allo-

cation of a given budget using locally specific estimates of

the costs and effects of multiple interventions or inter-

vention bundles. This framework is described in the con-

text of malaria policy making but could be equally relevant

in other disease contexts, such as schistosomiasis and soil-

transmitted helminths [34] or HIV/AIDS [18].

3.1 Interpretation

A strength of this approach is that results are clear and

directly applicable to the planning process, offering

recommendations not only as to which interventions to

invest in but where to target them to maximise health

gains. Moreover, the recommendations are constrained

by a relevant budget rather than a CET that, if too

high, may recommend unaffordable policies or, if

reflecting societal affordability constraints, may

underestimate available resources because of interna-

tional aid. In the context of malaria, budget-based

geographic targeting can better reflect a real and timely

decision problem than generalised threshold-based

economic evaluations.

Nevertheless, a model is a simplification of a complex

process and should be interpreted as such. All model

inputs, the structure of the underlying model and the

resource allocation framework are necessarily limited.

While the model results may offer one recommendation,

decision makers often have rich knowledge of the local

context and should interpret model results as a potentially

useful synthesis of relevant information that is nonetheless

a simplification.

Fig. 3 Geographic allocation of budget for universal insecticide bed

net coverage compared with targeting of both bed nets and

community health workers. a Universal bed net coverage (within

the MARC region) compared with b geographic targeting of both bed

nets and community health workers. CHW community health worker,

DALY disability-adjusted life-year, ITN insecticide-treated bed net,

MARC Myanmar Artemisinin Resistance Containment

304 T. L. Drake et al.



3.2 Alternative Methods

In addition to the methods outlined in this paper, there are

alternative approaches to geographic resource allocation.

Walker et al. [20] applied a cost-minimisation framework and

simulated a large number of different allocation options,

choosing the least costly configuration that achieved a par-

ticular endpoint such as disease elimination. The approach

differs from budget allocation in that it does not specify a

resource constraint. A possible advantage of this or similar

simulation approaches is that optimal solutions can be found

for allocation problems without making the assumption of

divisibility. A drawback of a simulation approach is the

substantial computation time required, notwithstanding tech-

niques to improve efficiency, such as simulated annealing.

Computation time for the approach described in this paper is

negligible and therefore dependent only on the underlying

cost-effectiveness model. For simple models, probabilistic

sensitivity analysis and interactive user interfaces can be

possible, both of which are potentially valuable extensions.

3.3 Limitations

There are several limitations to the resource allocation

framework described in this paper.

First, all limitations of the underlyingmodel used to estimate

intervention costs and effects apply equally to the allocation

result. Care needs to be taken when comparing allocation

results from different models because characteristics or arte-

facts of the underlyingmodel could drive important differences

in results. Second, the method objective is a simple maximi-

sation of health utility. It may be beneficial in some contexts to

extend the approach to include non-health benefits such as

financial protection [35] or to incorporate equity preferences

[36]. Third, the friction cost of administering targeted, as

opposed to universal, healthcare programmes is not included,

and there may be differences in economies of scale. Incorpo-

ration of scale into a variable cost function would be a valuable

addition. Lastly, the allocation results can only be as good at the

input data. Reliable locally specific information on disease risk

and other variables, such as treatment-seeking behavior or

intervention cost, are essential and not always readily available.

In particular, the potential bias of under-reporting disease bur-

den in areaswith poor health surveillance is problematic for any

geographic targeting based on such data, whether in a formal

allocation framework or otherwise.

4 Conclusion

Geographic targeting is an increasingly common feature of

malaria control and elimination strategies but does not

feature prominently in malaria economic evaluations. This

paper describes a framework for geographic budget allo-

cation grounded in economic evaluation methods. Efficient

targeting of core malaria interventions has the potential to

increase the impact of the resources available, accelerating

progress towards disease elimination. These methods will

also be applicable to priority setting in other disease areas.
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