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Abstract
This review is an update of an earlier narrative review published in 2015 on developments in the clinical management of 
cutaneous leishmaniasis (CL) including diagnosis, treatment, prevention and control measurements. CL is a vector-borne 
infection caused by the protozoan parasite Leishmania. The vector is the female sandfly. Globally, CL affects 12 million 
cases and annually 2 million new cases occur. CL is endemic in almost 100 countries and the total risk population is approxi-
mately 350 million people. WHO lists CL an emerging and uncontrolled disease and a neglected tropical disease. Local 
experience-based evidence remains the mainstay for the management of CL. Whereas intralesional therapeutic options are 
the first treatment option for most CL patients, those with mucocutaneous and disseminated involvement require a systemic 
therapeutic approach. Moreover, different Leishmania species can vary in their treatment outcomes. Therefore, species 
determination is critical for optimal CL clinical management. New DNA techniques allow for relatively easy Leishmania 
species determination, yet they are not easily implemented in resource-limited settings. There is a desperate need for novel, 
less toxic, and less painful treatment options, especially for children with CL. Yet, the large and well conducted studies 
required to provide the necessary evidence are lacking. To further control and potentially eliminate CL, we urgently need 
to improve vector control, and diagnostics, and we require efficient and safe vaccines. Alas, since CL primarily affects poor 
people, biotechnical companies dedicate little investment into the research programs that could lead to diagnostic, pharma-
ceutical, and vaccine innovations.

Key Points 

WHO acknowledges cutaneous leishmaniasis is an 
emerging, uncontrolled, and neglected infection affecting 
millions yearly.

Leishmania species determination based on molecular 
diagnostics is key in the clinical management of cutane-
ous leishmaniasis, but is unavailable in many low- and 
middle-income endemic settings.

The required evidence for novel, less toxic, and less 
painful cutaneous leishmaniasis management is currently 
lacking.

To contain and ultimately eliminate cutaneous leish-
maniasis, we need comprehensive research programs 
including vector control, diagnostics, and vaccines.
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1 Introduction

Leishmaniasis is a vector-borne infection caused by the 
protozoan parasite of the genus Leishmania. The vec-
tors are female sandflies (Phlebotomus and Lutzomyia). 
The World Health Organization (WHO) has designated 
leishmaniasis a neglected tropical disease (NTD), thus 
emphasizing its considerable impact not only on health, 
but on societies at large with a high economic burden [1]. 
Leishmaniasis is endemic in almost 100 countries and the 
estimated total risk population is approximately 350 mil-
lion people. Each year, an estimated 2 million new cases 
occur and the overall prevalence is 12 million cases. In 
most countries, the incidence numbers are probably under-
estimated since cases are not recognized and reporting is 
not mandatory [2, 3]. This is the case in many sub-Saharan 
African countries, for example, where burden estimations 
are lacking, and as a result essential control measures can-
not be effected [4].

Depending on the Leishmania species, the disease can 
cause three main clinical manifestations: (1) localized 
cutaneous leishmaniasis (CL) characterized by cutaneous 
ulcers, sometimes accompanied by satellite lesions and/
or nodular lymphangitis; (2) muco-cutaneous leishmania-
sis (MCL) involving mucosa, and underlying connective 
tissues such as cartilage structures in combination with 
CL disease; and (3) visceral leishmaniasis (VL) affect-
ing internal organs, like liver, spleen, and bone marrow. 
VL can be lethal, just like MCL, albeit the latter less fre-
quently [5]. American tegumentary leishmaniasis (ATL) 
can be considered as a fourth syndrome caused by New 
World Leishmania species, containing CL and MCL mani-
festations for the most part, but also much rarer forms such 
as diffuse and disseminated CL [6].

With 600,000 to 1 million new cases annually world-
wide, CL is the most prevalent clinical leishmanial mani-
festation. Moreover, only eight countries contribute to 
90% of cases: Afghanistan, Algeria, Brazil, Iran, Pakistan, 
Peru, Saudi Arabia, and Syria [7]. Conflicts, such as in 
Syria recently, caused CL outbreaks due to healthcare dis-
ruption, and potential human to human transmission due 
to massive overcrowding [8]. Outbreaks occurred not only 
in the actual war zones, but also among refugees sheltered 
in safe countries such as Turkey, Jordan, and Lebanon [9].

Based on the European world view, Leishmania para-
sites are divided into two dominant groups: (1) Old World 
species found in the Mediterranean basin, the Middle East, 
the horn of Africa and the Indian subcontinent, such as 
L. (L.) major, L. infantum, and L. (L.) tropica; and (2) 
the New World species that consists of species found in 
Middle and South America, such as L. (L.) amazonensis, 
L. (L.) chagasi, L. mexicana L, L. (Viannia.) naiffi, L. (V.) 

braziliensis, and L. (V.) guyanensis. Old World species 
predominantly cause self-limiting ulcers, whereas New 
World species can be severely destructive and even cause 
death, mostly in relation to MCL disease.

Not all Leishmania species are susceptible to the cur-
rently available array of therapeutic options [10]. There-
fore, species determination is key for the clinical outcome 
of patients with CL or MCL caused by an unknown species. 
This is often the case in ill returning travelers (e.g., back-
packers) who visited multiple leishmaniasis endemic regions 
where a range of species with varying susceptibility pat-
terns reside. Based on the successful molecular Leishmania 
species determination, novel parasite species-driven disease 
manifestations have been unveiled in different regions of the 
world [11]. For example, L. donovani complex, generally 
associated with VL, is now also associated with a CL disease 
presentation [12]. Overlap of VL and CL clinical presenta-
tions were described earlier for L. infantum [13].

The two recently updated Cochrane reviews on the treat-
ment for Old [14], and New World CL [15] once again dem-
onstrate that the sparse number of clinical trials available 
are often poorly designed and/or reported upon. As a result, 
we lack the evidence for potentially beneficial treatments. 
In part, this can be explained by the absence of pharma-
ceutical industry interest in the development of novel anti-
leishmanial therapeutics, since it is widely believed that the 
return on investment will be risky, as the disease mainly 
affects people in low- and middle-income countries that 
lack financial resources. Conducting drug trials for CL can 
be challenging because CL is mainly endemic in remote 
areas. As a result, patient follow-up is often difficult, and 
many studies are severely affected by a large amount of loss 
to follow up data. To inform clinical practice, we urgently 
need large trials that can produce the necessary data on the 
long-term effects of current and promising experimental 
therapies. The establishment of an international platform 
has been suggested to improve the quality and standardiza-
tion of future trials.

With the slogan “Small bite, big threat”, WHO launched 
its initiative in 2014 to fight the emerging threat of vector-
borne diseases, including leishmaniasis [16]. WHO consid-
ers leishmaniasis an emerging, uncontrolled, and severely 
neglected disease. Containment of further incidence and 
morbidity, and more research programs for the improvement 
of vector control, novel diagnostics, and the extension of 
the current therapeutic arsenal are required. Here, we will 
focus on current developments in the diagnosis, treatment, 
prevention, and strategies for the management and control 
of CL caused by Old and New World species.

We performed a literature search for articles in PubMed 
published between 01 January 2015 (end date of our previ-
ous search [17]) and 22 February 2022 and filtered on the 
MESH terms ‘humans’ and ‘cutaneous leishmaniasis’ or 
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‘cutaneous leishmania’. The following publication languages 
were included: English, French, Spanish, and Portuguese. 
The search was narrowed down by using the following items: 
Prevention or control or therapy/narrow[filter] or diagnosis/
broad[filter] or clinical trial[ptyp] or classical article[ptyp] 
or comparative study[ptyp] or clinical trial, phase i[ptyp] or 
clinical trial, phase ii[ptyp] or clinical trial, phase iii[ptyp] or 
clinical trial, phase iv[ptyp] or controlled clinical trial[ptyp] 
or evaluation studies[ptyp] or guideline[ptyp] or multicenter 
study[ptyp] or review[ptyp] or practice guideline[ptyp] or 
randomized controlled trial[ptyp] or systematic[sb] or vali-
dation studies[ptyp]).

2  Laboratory Diagnosis

The diagnosis of CL is based on clinical features (supported 
by epidemiological data) and laboratory testing. Numerous 
diagnostic methods have been described with a huge vari-
ation in diagnostic accuracy, including direct parasitologi-
cal examination (microscopy, histopathology, and parasite 
culture), and/or indirect testing with serology and molec-
ular diagnostics [18]. The selection of the diagnostic test 
employed often depends on the available infrastructure and 
resources of the diagnostic facility, and not so much on diag-
nostic accuracy. Here we selected generally employed diag-
nostic methodologies only, for discussion.

2.1  Direct Microscopy, Histopathology, and Culture

Direct parasitological diagnosis is still considered the gold 
standard in leishmaniasis diagnosis because of its high 
specificity, although there are concerns about its sensitivity 
[18]. Furthermore, this strategy requires expert health staff 
to collect the diagnostic specimen and to perform the para-
sitological tests. Furthermore, direct diagnosis can be time 
consuming (hours to weeks) depending on the methodology 
used and laboratory structure [19]. Direct parasitological 
diagnosis can be performed by histopathological analysis of 
formalin embedded tissue, or in vitro parasite culture from 
specimens from suspected lesions. With the help of light 
microscopy, amastigotes can be detected directly in lesional 
smears of biopsies, scrapings, or impression smears stained 
by Giemsa’s method. Amastigotes are identified as round 
or oval bodies 2–4 μm in diameter, with typical nuclei and 
kinetoplasts (Fig. 1). With the aid of immunohistochemical 
staining (e.g., CD1a antibodies), amastigotes can be detected 
more easily [18]. Specimens from the ulcer base usually 
result in the highest yield. To detect amastigotes and micro-
granuloma, fine needle aspiration (FNA) cytology is superior 
to scraping smears, with more patient comfort [20]. A sim-
plified collection method is the Press–Imprint–Smear (PIS). 
When compared with histopathology, PIS was positive in 

85.3% in study cases suspected of CL, and histopathology 
was only positive in 44%. PIS is considered a rapid and rela-
tively sensitive method for the diagnosis of CL [21].

Parasite culture in tubes containing Novy–Mac-
Neal–Nicolle medium from suspected lesions is difficult, 
requires significant technical expertise, is prone to contami-
nation, and is time consuming [22]. The sensitivity of cul-
ture tends to be low and highly variable [23]. Simplicity 
and (needle) pain-free sampling are additional advantages 
of culture. Mini-culture and micro-culture technologies are 
less costly since they require less culture medium; they also 
provide easier application and higher sensitivity, even in 
samples with a low parasite yield [22]. Yet, micro-culture 
does not allow additional species determination, which 
as described above is often required to prescribe proper 
treatment.

2.2  Indirect Serological Diagnostic Methods

Indirect fluorescent antibody (IFA), enzyme-linked immuno-
sorbent assay (ELISA), western blot, and lateral flow assay 
are the mainstay formats used as serological CL tests. How-
ever, serology is not used widely to diagnose CL, since the 
humoral response provoked by the infection is poor and the 
sensitivity thus low [18, 24, 25]. In fact, recent guidelines do 
not recommend the use of serology for the diagnosis of CL.

Yet, there are still attempts made to improve the sero-
diagnosis of CL. A relative successful approach seems to 
be the use of crude antigens derived from amastigotes of 
local Leishmania strains [26]. In contrast, a systematic 
review by Zanetti et al. revealed that more specific (recom-
binant) antigens yielded better diagnosis results, that is, 
sensitivity (93.8–100%) and specificity (82.5–100%) for 

Fig. 1  Leishmaniasis amastigotes. Amastigotes appear in skin biop-
sies as round or oval structures with characteristic nuclei and kineto-
plasts, about 2–4 μm in diameter
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ATL, compared with crude soluble antigen-based ELISAs 
[27]. More than 70 different antigens have been evaluated as 
ELISA diagnostic markers for (M)CL [28]. For example, an 
ELISA based on a recombinant conserved Leishmania hypo-
thetical protein (which showed a high amino acid sequence 
homology between CL- as well as VL-causing Leishma-
nia species) was found to be more specific and sensitive in 
detecting (M)CL patients than an ELISA based on L. bra-
ziliensis soluble antigens [29].

Given its complexity and infrastructural requirements, 
alternatives for ELISA and IFA are sought in the form of 
point of care (PoC) or rapid diagnostic tests (RDTs). Several 
RDTs have been developed for VL, mainly based on (vari-
ants of) a 39 amino acid sequence repeat of a kinesin-related 
protein of L. donovani, with relatively good diagnostic per-
formance, except for East Africa [30]. In contrast, only few 
have been developed for CL. The CL Detect™ Rapid Test (a 
membrane-based qualitative immunoassay using polyclonal 
antibodies against amastigote peroxidoxin) is the most prom-
inent example used for the detection of all clinically relevant 
Leishmania species that cause CL in skin samples. This 
RDT has been evaluated in Tunisia, Morocco [31], Afghani-
stan [32], Suriname [33], and Ethiopia [33], with variable 
diagnostic accuracy rates. The CL Detect™ Rapid Test was 
initially developed to detect L. major (which often comes 
at a relative high parasite density) peroxidoxin antigen. As 
a result, the discrepant lower sensitivities found in several 
studies (Afghanistan, Suriname, and Ethiopia) could either 
be caused by differences in non-L. major species involved, 
that may be less abundant, or have a lower expression of the 
peroxidoxin antigen, and/or produce a different variant of 
the antigen [34].

2.3  Leishmania Skin Test

The Leishmania intradermal skin test (LST) or Montenegro 
skin test (MST) is a marker of cellular immune response (a 
delay-type hypersensitivity response) and can be used for an 
indirect CL diagnosis because of its simple use and because 
of its high predictive value, being positive in more than 90% 
of CL cases with good sensitivity and specificity values [35, 
36]. In addition, the LST can be useful in epidemiological 
studies to monitor exposure and immunity to Leishmania as 
well as in vaccine studies as a surrogate marker of immu-
nity [37]. The test, comparable to the well-known Mantoux 
tuberculosis test, is based on the intradermal injection of 
Leishmania extracts (leishmanin) and results in a cutaneous 
reaction. If the skin reaction to LST is ≥ 5 mm, the test is 
considered positive, and if < 5 mm, negative. Otherwise 
diagnosed CL patients with a negative LST have a predictive 
value for relapse or treatment failure, probably because of an 
inadequate T-cell mediated response [35, 38].

The LST has been available for over a century, but despite 
its clinical value, its use has greatly declined in the last dec-
ade due to unavailability of standardised antigen. As yet, 
there is no production under good manufacturing practices 
conditions. The immune response against Leishmania is cell 
mediated, and depends on interferon (IFN)-γ induced activa-
tion of macrophages. Potentially, leishmanin can be used in a 
yet to be developed in vitro IFN-γ release assay (IGRA) with 
similar prognostic value as the LST test, but with the advan-
tages of improved standardization and patient comfort [37].

2.4  Nucleic Acid Amplification Tests

2.4.1  Polymerase Chain Reaction (PCR)

Molecular approaches, and in particular PCR, have revolu-
tionized CL diagnostics since they have superior test char-
acteristics (both in sensitivity and specificity) in comparison 
with the previously mentioned traditional diagnostic meth-
ods. Moreover, molecular tests can be used in combination 
with less invasive sampling [39]. The main PCR sequence 
targets used for diagnostic assays in the recent past are the 
ribosomal DNA internal transcribed spacer 1 sequence 
[40–42], or sequences within the kinetoplast DNA (kDNA) 
of Leishmania genus [43, 44]. Head-to-head comparisons 
of different PCR tests are lacking, and there are no defined 
general accepted protocols, since almost every laboratory 
applies its own in-house method [39]. However, a recent 
systematic review and meta-analysis clearly confirmed that 
PCR is the most accurate diagnostic approach for CL, but 
the number of studies (n = 13) that could be included for 
this review was limited [45]. An important observation from 
this study was that simple smear samples are sufficient to get 
a reliable PCR result, whereas older non-molecular tech-
niques would require more invasive sampling methods such 
as needle aspirates or skin biopsies. Furthermore, it is note-
worthy that quantified PCR (qPCR) is suggested to monitor 
treatment responses in CL patients and may even be used to 
predict treatment failures [46].
2.4.2  Isothermal Platforms

A disadvantage of PCR diagnostics is the requirement for 
advanced laboratory infrastructure and technicians. This 
makes PCR-based platforms in general less suitable for dis-
ease endemic countries, that often have to rely on resource-
restricted laboratories. In an attempt to simplify PCR 
requirements, isothermal diagnostic platforms have been 
recently developed and evaluated. Where PCR platforms 
require strictly controlled and varying temperature cycles, 
isothermal tests can be performed under a fixed temperature.

Loop-mediated isothermal reaction (LAMP) is an exam-
ple of an isothermal molecular method that is performed 
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at 60 °C and 65 °C, uses only one enzyme (Bst DNA pol-
ymerase) for amplification, and is able to produce large 
amounts of DNA within 30–60 min. LAMP specificity is 
high because it uses six primers and the end product can 
be visualized directly using simple detection methods, 
such as naked eye reading (turbidity) and lateral flow strips 
(Fig. 2) [47, 48]. LAMP is therefore widely adopted in CL 
diagnostics.

The initial reverse transcriptase (RT-)LAMP test for 
CL targeted the conserved region of the 18S ribosomal 
RNA (rRNA) gene. The pre-amplification addition of a 
fluorescent detection reagent and a simple UV lamp visu-
alized the amplification when the target was present in 
the samples of patients with lesions containing between 
10 and 100 parasites per mL with 98% sensitivity [47]. 
This platform was further developed into a LAMP test 
detecting in principal all CL- and VL-causing Leishmania 
species based on primers specific for the 18S ribosomal 
DNA and the conserved region of mini circle kineto-
plast DNA (kDNA). RT-LAMP was marketed through a 
collaboration between Eiken Company (Japan) and the 
Foundation for Innovative New Diagnostics (Switzer-
land) [49]. Many research groups have now taken this 
platform or modified versions using different targets, like 
cysteine proteinase b gene, to further it for various appli-
cations [50–52]. A systematic review and meta-analysis 
on LAMP assays reported a sensitivity ranging from 83 
to 99% and specificity from 31 to 94% for LAMP, com-
pared with microscopy, and a sensitivity ranging from 
80 to 99% and specificity from 91 to 98% compared with 
various PCR platforms [48]. The application of LAMP 
on swab samples opens up the possibility to develop a 

simple and rapid PoC molecular diagnostic method for 
CL in resource-limited settings [53, 54].

Recombinase polymerase amplification (RPA) is a 
second isothermal technology that has the potential for 
application in resource-limited settings, because of its 
low infrastructural demands. The RPA process employs 
three essential enzymes: a recombinase, a single-stranded 
DNA-binding protein, and strand-displacing polymerase. 
The RPA reaction can be performed at 37–42 °C in, for 
example, a water bath or heat block. An interesting fea-
ture of the RPA reaction is that it can detect RNA as well 
as DNA, without the need for a separate step to produce 
cDNA [55]. RPA uses standard PCR detection methods, 
such as real-time fluorescent detection, gel electrophore-
sis, and lateral flow strip detection. RPA assays have now 
also been developed for CL, but a systematic review of its 
diagnostic performance is not yet available. Most RPA for 
CL exploit kDNA as a target, often in combination with a 
lateral flow (LF) stick read-out [56–58]. It is also possible 
to design your own primers and probes by using software 
from the RPA manufacturer and using the TriTryp data-
base [59, 60]. So far, observed diagnostic sensitivity and 
specificity of employed RPA for CL are slightly lower 
compared with (q)PCR or LAMP [58, 60]. However, a 
recent evaluation of an RPA lateral flow test for CL in a 
clinic in the Peruvian Amazon basin found a good 91.2% 
sensitivity (confidence interval [CI] 86.5–94.4), and a 
93% (CI 88.6–95.8) positive predictive value compared 
with kDNA-PCR. It highly surpassed microscopy as a 
diagnostic method, strongly suggesting the possibility to 
enhance the performance of RPA [57].

Fig. 2  Loop-mediated isothermal reaction (LAMP) molecular diag-
nostics. Many molecular diagnostic techniques require adequate 
infrastructure and technically skilled operators, making these tests 
less suitable for resource-restricted laboratories in disease endemic 

countries. LAMP is an isothermal diagnostic platform that partly 
circumvents these requirements. The picture shows visualization of 
LAMP results under UV light. Positive samples (1–7) show turbidity, 
whereas the negative sample (8) has remained transparent
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2.4.3  Sampling for Molecular Biology

Rapid and affordable CL tests will have to rely on non-
invasive sampling. To further the evaluation of the clinical 
accuracy of the most optimal molecular platform, unification 
of the sample source, the method of DNA recovery, and the 
type of molecular test is required [61]. Adams and co-work-
ers found that a lesional swab processed with  Qiagen® DNA 
extraction was the most efficient, sensitive, and specific 
recovery method for Leishmania DNA, when compared with 
aspirate samples, which were also more painful and more 
complicated to obtain [61]. This approach has now been 
further validated in several other studies that support the use 
of cotton swabs for the non-invasive collection of diagnos-
tic material for subsequent PCR analysis [62–65]. Although 
rubbing over the lesion with cotton swabs potentially yields 
a low parasitic load, several studies have indicated that the 
choice of the subsequent nucleic acid extraction and ampli-
fication method influences the results obtained with cotton 
swab collection [61, 63]. Moreover, the minimally invasive 
cotton swab collection method could be useful for children 
or in cases where the cosmetic outcome is of importance, 
such as in patients with facial lesions [65].

To collect specimens for PCR tests, FTA cards (Whatman 
filter paper cards) have also been successfully used. Apart 
from being minimally invasive for patients, FTA cards are 
easy to handle for medical personnel and easily transported 
under dry conditions, whereas for cotton swabs, a storage 
buffer might be needed for transportation [66, 67]. Several 
studies have recently confirmed good results with the FTA 
card sampling method [68, 69].

Another attractive non-invasive DNA sampling method 
is the use of tape strips to obtain tissue from the surface 
of ulcerative or closed skin lesions of CL patients. DNA 
recovered from infected skin was about 10 times higher than 
that obtained from healthy skin, and molecular analysis by 
PCR after conventional DNA isolation with a kit resulted in 
100% sensitivity [70].

2.5  Species Determination

Leishmania species cannot be distinguished from each other 
by light microscopy. Thus, other strain identification meth-
ods have been developed [10, 71]. The first attempts for 
strain identification were performed with isoenzyme analysis 
(or multi locus enzyme electrophoreses, MLEE) and led to 
the construction of phylogenetic classifications [72]. MLEE 
was even capable of the differentiation of anthroponotic vari-
ants from zoonotic variants within a single species [73]. The 
MLEE technique uses the variation in the electrophoretic 
mobility of Leishmanial enzymes, and strains are classified 
along so-called zymodemes. Currently, MLEE is only per-
formed in a few reference laboratories, because it requires 

large amounts of cultured promastigotes, making it a costly 
and time consuming procedure [74].

Another culture-dependent method is the use of monoclo-
nal antibodies to identify Leishmania species. The method 
depends on parasite isolation and subsequent culturing of 
promastigotes. The antibodies are mostly used for specifica-
tion of New World Leishmania species and to a much lesser 
extend the Old World species [75].

Given the technical difficulties with large-scale cultur-
ing of parasites, alternative typing methods are being devel-
oped, and in particular based on genetic characteristics of 
the parasite. Molecular methods offer robust species typing. 
Van der Auwera and DuJardin have provided a state of the 
art overview of the currently deployed and available Leish-
mania species typing assays, with a focus on methods that 
are applicable globally rather than validated locally [76]. 
Furthermore, this review outlines the consensus taxonomy 
for the genus Leishmania, including debatable species 
attributions.

Nowadays, species discrimination methods use PCR (to 
amplify the DNA required for typing) in combination with 
restriction fragment length polymorphism (RFLP) analysis 
or sequencing. Currently, the mini-exon gene, crucial in the 
trans-splicing process of nuclear mRNA, is an excellent gen-
otyping marker that is present as 100–200 tandem repeated 
copies per nuclear genome. Each mini-exon repeat consists 
of three major parts [77]. As a result of the variability in 
sizes of the amplification products, preliminary discrimina-
tion between the major complexes (i.e., Old World Leish-
mania, New World Leishmania, and New World Viannia 
complexes) is possible [77, 78]. WHO reference strains of 
Leishmania and cultured isolates from patients were used to 
validate the mini-exon PCR-RFLP genotyping scheme [77, 
78]. The mini-exon method is now widely accepted as a high 
resolution, sensitive, and specific tool that can help in the 
clinical management of CL [10, 79–81].

Alternative gene targets for typing have been identi-
fied and are extensively reviewed by Van der Auwera and 
Dujardin, such as cytochrome B (encoded on the kDNA 
maxi circles), glycoprotein 63, cysteine proteinase B, Heat 
Shock Protein 70 and glucose-6-phosphate dehydrogenase 
[76]. The choice of target and method will strongly depend 
on the species and question (epidemiology, treatment etc.) 
addressed.

3  Species‑Based Clinical Management

Most CL patients are identified as probable cases, solely 
based on patient history and physical examination, since 
they are found in endemic regions lacking the resources of 
laboratory confirmation tests. Apart from a typical clinical 
presentation, a probable case can be identified based on a 
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number of findings such as younger age, typical professions 
such as mining, farming, military and hunting, not using bed 
nets, residing in deforested, rural, sub-urbane sites (Fig. 3), 
living close to pets and cattle, a history of travelling such as 
tourism or labor migration (where immunologically naïve 
cases enter a CL endemic area), and the season of exposure 
(rainy seasons and El Niño are associated with CL) [82–86]. 
Typical CL cutaneous lesions are ulcers covered with hem-
orrhagic crusts on unexposed skin of the extremities and 
face, accompanied by satellite lesions and/or lymphangitis 
(Fig. 4). In MCL, the ear nose and throat tract, especially the 
mucosal tissue and underlying structures such as cartilage 
bones are affected.

Direct diagnostic tests (such as light microscopy) can 
help to establish a more definite diagnosis and aid clini-
cal management. As discussed above, microscopy does not 
allow for species determination, and as such cannot guide 
the choice of therapy [87]. In many endemic regions, one 
species dominates the CL epidemic, and first-line treatment 
can be based on (trial and error-based) local experience. The 
situation can be more complicated when multiple Leishma-
nia species prevail in the same region, each requiring differ-
ent therapeutic options. This is the case throughout Middle 
and South America where the geographical spread of species 
causing both CL and MCL overlap in large areas [88–90]. 
CL and MCL require a different clinical approach (see next 
paragraph), thus the identification of the responsible species 
is key for the choice of treatment and follow-up [91, 92].

Cheap, reliable, easy to perform, and rapid species-spe-
cific diagnostic tests are urgently needed to guide clinical 
management and prevent unnecessary treatment failure and 
late complications. PoC near patient rapid diagnostics are 
especially helpful in low resource endemic settings since 
they allow for timely treatment (preferably during the first 

clinic visit), and a reduction of return visits to prevent loss 
to follow-up. In non-endemic settings, clinical management 
based on CL species identification is of importance when 
dealing with returning travelers with CL, especially when 
multiple endemic regions with a variety of causative species 
have been visited [10, 84]. Lastly, in clinical trials where 
well defined cases are crucial for the quality of generated 
data, species determination is also necessary.

3.1  Clinical Dilemmas: Co‑Infections and Unusual 
Presentations

Asymptomatic infection is the most common outcome after 
Leishmania inoculation [93]. This is based on epidemio-
logical studies where individuals with a positive Montene-
gro skin test proved resistant and capable of controlling the 
infection without evidence of tissue damage. The mecha-
nisms responsible for controlling the parasite are not fully 
understood, but might aid the development of effective 
vaccines.

Diffuse CL and disseminated CL are rare presentations 
that are often missed initially since they mimic other gener-
alized skin infections such as leprosy and fungal infections 
[94]. Diffuse CL is caused by anergy to Leishmania and a 
lack of T-cell mediated immunity. As a result, the response 
to the LST is negative or poor, and the number of parasites 
found in lesions/smears is massive. Diffuse CL is character-
ized by nodules, papules, plaques, and erythema and resem-
bles lepromatous leprosy (in fact, lepromatous leprosy is 
also characterized by the absence of T-mediated immunity 
against Mycobacterium leprae). Mucocutaneous involve-
ment is rarely seen. The response to therapy is poor in dif-
fuse CL, and relapses occur frequently.

Disseminated CL is characterized by a strong T-cell 
hypersensitivity immune response, a strong positive LST 
reaction, and scanty parasites in lesions. In disseminated 
CL, necrotic ulcers can be found (yet not in diffuse CL), 
and the response to therapy is in general good (Fig. 4). 
Mucosal involvement is frequent seen. The dichotomy in 
the immunological responses of diffuse CL on the one hand 
and disseminated CL and MCL on the other hand has led 
to the proposition that leishmaniasis is a spectrum disease 
comparable with leprosy [95].

Many CL endemic regions may have geographical over-
lap with other highly prevalent infections such as helmin-
thiasis, leprosy, trypanosomiasis, and fungal infections. 
Diagnostic problems may occur when concurrent infections 
cause similar lesions (e.g., CL and leprosy, Fig. 5), when 
different pathogens are present in the same lesions (e.g., 
Leishmania and Sporothrix schenckii), or when similarities 
between phylogenetically close pathogens affect accuracy of 
diagnostic tests (e.g., serology for leishmaniasis and Chagas’ 
disease) [96]. This may lead to diagnostic errors and delays, 

Fig. 3  Deforestation in Godo-olo, district Sipaliwini (Suriname). 
Human interference can cause leishmaniasis outbreaks due to the dis-
ruption of the natural reservoir-vector transmission cycle of Leishma-
nia parasites and the introduction of an immune-naïve labor force in 
the deforested area.  Collection Ramdas, S., 2009
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Fig. 4  Various manifestations of cutaneous leishmaniasis. a A cuta-
neous leishmaniasis ulcer with a satellite lesion on the lower arm. 
b Same patient as in a, healed after treatment with cryotherapy and 
intralesional antimonials. c Non-ulcerative cutaneous leishmaniasis 
lesion on the elbow. Multibacillary leprosy was considered  but dis-
proved in this patient. d Crusty cutaneous leishmaniasis ulcer with 
lymphangitis on the upper leg. e Typical cutaneous leishmaniasis 

lesion as often seen in children with Leishmania infantum contracted 
in North Africa. f Chiclero ulcer, typically affecting the ear with 
cartilage destruction. g Disseminated cutaneous lesions in a patient 
with mucocutaneous leishmaniasis caused by L. guyanensis. h Intral-
esional treatment of cutaneous leishmaniasis with antimonials. Photo 
credits: Department of Dermatology, Amsterdam UMC, Amsterdam, 
The Netherlands
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Fig. 5  Skin diseases that can mimic the clinical picture of cutaneous 
leishmaniasis. a Buruli ulcer caused by Mycobacterium ulcerans on 
the lower leg. b Atypical mycobacterial infection on the hand with 
lymphangitis caused by M. marinum infection. c Hyperkeratotic 
lesions caused by deep mycosis of the lower leg with lymphangitis in 
an immunosuppressed patient. d Ulcerative lesion caused by sporotri-
chosis with a satellite lesion on the arm. e Rickettsiosis on the lower 

leg with an eschar. f Ulcerative lesion in a patient with multibacillary 
leprosy. g Ulcerative lesions in a patient with necrobiosis lipoidica in 
a sporotrichoid dissimination pattern. h Squamous cell carcinoma on 
the dorsal foot. i Pyoderma gangrenosum ulcer with ragged margins 
and yellow necrosis on the lower leg. Photo credits: Department of 
Dermatology, Amsterdam UMC, Amsterdam, The Netherlands
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and it can influence the effectiveness and safety of treat-
ment. HIV co-infection in CL patients can increase the risk 
of CL recurrence and treatment failure [97]. Vice versa, CL 
can interfere with innate immunity, thus facilitating HIV 
progression [98].

Besides HIV infection, immunosuppression in gen-
eral can lead to atypical clinical CL presentations [99]. 
Therefore, one should consider CL, especially in endemic 
regions, when granulomatous and tumorous skin diseases 
such as subcutaneous and deep mycosis, cutaneous lym-
phoma, pseudolymphoma, and basal and squamous cell 
carcinoma are deliberated. In a non-endemic setting, medi-
cal and travel history can help clinicians to consider CL in 
the differential diagnosis of complex and unusual appear-
ing dermatoses.

4  Treatment

In most cases, CL is self-limiting. Nonetheless, irrevers-
ible disfiguring scar formation often occurs, and nodular 
lymphangitis and MCL can complicate the outcome with 
lasting disability and permanent unsightly destruction. 
The recovery period can be hindered by secondary bacte-
rial infections and can take months to years, during which 
time patients have to deal with function impairment. In the 
absence of sound evidence, most therapy options are based 
on expert opinion [10]. Moreover, when species identifica-
tion is not available, therapy options have to rely on local 
expertise. CL has been largely neglected for drug develop-
ment because it affects poor people in poor regions of the 
world [100]. Most of the current drugs used to treat CL 
are decades old and have many limitations such significant 
toxicity and side effects [101]. Costs are another challenge 
in low- and middle-income endemic settings, especially 
with the systemic treatment options. A clinician with in-
depth knowledge of the outcome of CL and the therapeutic 
options should make a tailored management plan in close 
discussion with the patient (shared decision making). A 
risk–benefit assessment of therapeutic options should be 
made, and in mild and indolent cases a wait-and-see policy 
can sometimes be the best option. Moreover, drug resist-
ance is an emerging problem in the control of CL [87].

Several treatment options for CL are available. Penta-
valent antimonials (sodium stibogluconate—Pentostam® 
or meglumine antimoniate—Glucantime®) remain the 
first treatment option for CL in most countries. Alterna-
tive treatment regimens include miltefosine, pentamidine 
isethionate, amphotericin B, antifungal agents (e.g., keto-
conazole, fluconazole [102], itraconazole, paromomycin 
[103], granulocyte macrophage colony-stimulating fac-
tor [104], and heat therapy or cryotherapy [105–107]. 
Although attempts are being made to discover novel drugs 

against CL (e.g., via smart ex vivo compounds screening 
technology), promising therapeutic breakthroughs for CL 
are decades away from the clinic [108].

4.1  Treatment of Old World Cutaneous 
Leishmaniasis (CL)

Based on expert opinion, local therapy is preferred in 
patients with fewer than five lesions [10]. Compared with 
intralesional antimony or cryotherapy monotherapy, a 
combination of the two options proved more effective, 
even though differences were quite small [109–111]. Heat 
therapy is also effective [112–115], yet recently failed in 
over 90% of patients with CL caused by L. tropica [116]. 
The ratio behind both heat and cryotherapy is to kill para-
sites locally, and to induce an inflammatory response to 
indirectly eliminate parasites. Whereas liquid nitrogen is 
used for cryotherapy, heat therapy can be applied with 
different methods including infrared, ultrasound, exother-
mic crystallization thermotherapy, radiofrequency, and 
microwave. A major drawback of most local therapeutic 
options is the pain induced by the required intradermal 
injections. This makes local options especially challenging 
in children with CL.

Systemic treatment should be considered in patients 
with multiple lesions, potentially disfiguring facial 
involvement, or lesions at locations less fit for topical 
treatment. Miltefosine is an orally administered systemic 
treatment option that works well in patients with compli-
cated Old World CL (L. major) lesions [117, 118]. Espe-
cially in children with Old World CL (caused by L tropica 
or L major), miltefosine seems a safe and effective alterna-
tive for painful local treatment options [119].

In a 2017 Cochrane review on therapeutic interventions 
for Old World CL, 40 new studies were identified since 
the previous update from 2008 [120]. Most studies were 
at unclear or high risk for most bias domains, and almost 
40% lacked blinding. Only two additional comparisons 
could be added in the update: itraconazole cured more CL 
versus placebo; and there was no difference in the cured 
number of participants between paromomycin ointment 
versus vehicle arms. Both interventions caused mild side 
effects.

A number of experimental local treatments such as 
infiltration with hypertonic salt solutions [121], trichlo-
roacetic acid [122], intralesional metronidazole [123], 
diphencyprone [124], carbon dioxide laser [125], intense 
pulsed light [126], photodynamic therapy [127], and sys-
temic treatments such as cimetidine [128] in combination 
with antimoniate and chloroquine [129, 130] have been 
tried in small single-centered studies with varying results 
that need further evidence to conclude on their therapeutic 
value.
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4.2  Treatment of American CL

In a 2019 Cochrane review on therapeutic interventions for 
American CL and mucocutaneous leishmaniasis (ACML), 
37 new studies were identified since the previous update 
from 2009 [15]. In total, 75 studies were analyzed and the 
most assessed drugs were oral miltefosine and antimoni-
als (particularly meglumine antimoniate). Most studies 
comprised participants with ulcerative CL lesions on the 
extremities, yet none included cases with diffuse cutaneous 
or disseminated CL. Most studies were hampered by unclear 
or a high risk of bias in at least one domain. Following are 
the most remarkable conclusions from the Cochrane review:

1. Intramuscular meglumine antimoniate given for 20 days 
to treat L. braziliensis and L. panamensis infections in 
ACML may increase the likelihood of complete cure.

2. Compared with placebo, at 6-month follow-up, oral 
miltefosine given for 28 days to treat L. mexicana, L. 
panamensis, and L. braziliensis infections in American 
cutaneous leishmaniasis (ACL) probably improves the 
likelihood of complete cure, with gastrointestinal side 
effects reported.

3. Comparing intramuscular meglumine antimoniate and 
miltefosine to treat L. braziliensis, L. panamensis, L. 
guyanensis, and L. amazonensis infections in ACML 
shows little to no difference to the likelihood of com-
plete cure.

Based on expert opinion, local treatment can be consid-
ered in patients with a small number of lesions caused by 
American strains that are not associated with MCL like L. 
naiffi, L. chagasi, and L. mexicana [131, 132]. In patients 
with CL caused by L. mexicana, miltefosine treatment 
often fails due to antimicrobial resistance shown in both 
in vitro and in vivo studies; here, antimony (either locally 
or systemically administered) should be preferred [133, 
134]. Provided CL patients affected by L. panamensis or 
L. amazonensis can be followed up closely, local treatment 
(e.g., combination local therapy of antimony and cryother-
apy) could be considered, since these strains rarely cause 
MCL [10, 135, 136]. Although MCL due to L. guyanensis 
is not as rare as formerly thought, in patients with a few 
uncomplicated CL lesions, local therapy can also be con-
sidered [137]. Nonetheless, in Suriname and Brazil, sys-
temic pentamidine is the preferred treatment option for L. 
guyanensis infections [138, 139], even though in Manaus, 
Brazil, efficacy proved lower with 50–60% success rates 
[140]. As a rule of thumb, strict follow-up is advisable in 
patients with American CL, to exclude treatment failure 
or progression towards MCL manifestations [141, 142]. 
The role of intralesional pentamidine has been studied in a 

small number of patients and requires additional evidence 
to prove its efficacy [143].

Because of the considerable risk of MCL seen with L. 
braziliensis infections, systemic antimony is the gold stand-
ard, and in general local therapy is not recommended. Yet 
again, when strict follow-up can be guaranteed, local treat-
ment options for L. braziliensis infections can be consid-
ered in limited and uncomplicated cases [106, 135]. In some 
South American regions, miltefosine shows comparable 
treatment outcomes to antimony, whereas in other regions, 
miltefosine is inferior [144–147]. Treatment outcome varia-
tions are likely related to differences in susceptibility among 
local L. braziliensis strains. Although systemic amphotericin 
B is at least non-inferior to antimony to treat L. brazilien-
sis MCL, costs and the severity of side effects make it the 
second-line treatment option [148–151]. Local amphotericin 
options currently do not seem to increase cure rates [152].

Because of the lack of trials evaluating the treatment of 
MCL caused by L. panamensis, L. amazonensis, and L. guy-
anensis, it is as advised to follow the L. braziliensis MCL 
treatment recommendations [10]. The combination of anti-
mony and pentoxifylline is likely not more effective than 
antimony monotherapy in the treatment of CL caused by L. 
braziliensis [153]. Similarly, adding tamoxifen to antimony 
does not seem to improve cure rates [154].

5  Prevention

The old paradigm, prevention is better than cure, also applies 
to CL, not only for the patient but also for the community at 
large. Primary prevention consists of interventions against 
infected fly bites and should be offered to affected key popu-
lations such as farmers, hunters, military and mining labor-
ers in CL endemic areas [82, 155, 156]. Here, an important 
intervention is sleeping under bed nets impregnated with 
insecticide and a maze that should be three times smaller 
than the bed nets used in the fight against malaria. To further 
reduce the chance of sand fly bites, bed nets can be impreg-
nated with permethrin or other effective insect repellents 
[155]. This approach can be supplemented with indoor resid-
ual spraying [156], which has shown to be a (cost) effective 
measure for the prevention of CL [157]. However, emerging 
resistance of sand flies against insecticides is a concern in 
keeping these measures effective [158–160].

Intervention programs targeting reservoir-to-human 
transmission lack sound evidence on their effectiveness 
[161]. Although it is evident that the potential reservoir for 
zoonotic transmission is large and its full size not yet com-
pletely known, the exact contribution of mammalian spe-
cies to disease transmission remains to be better established 
[162]. Canines are considered to be one of the main reser-
voirs and vaccination as well as culling strategies or the use 
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of insecticide-impregnated dog collars have been explored 
to reduce transmission, however with very variable success 
[155, 163].

A good understanding of community perceptions of the 
disease and healthcare-seeking behavior are essential to 
the further design of (cost-effective) preventive measures 
[85, 164, 165]. A recent review by Alidosti et al. revealed 
that providing educational programs to strengthen positive 
beliefs and understanding of the diseases and to correct 
negative beliefs and misunderstandings about CL will be 
useful to improve relevant behavioral changes towards pre-
vention and control of CL [166]. Providing information on 
CL to key populations can improve the correct uptake of 
preventive measures, ameliorate risk behavior, and improve 
help-seeking behavior.

Early recognition of CL cases is of great importance, both 
for the individual patients, but also for public health pur-
poses. In remote, sparsely populated, and underserved areas, 
mobile app-based care, and tele-dermatology applications 
can help in clinical management of suspected CL cases and 
surveillance [167].

Within the WHO NTD program, leishmaniasis is further 
integrated in the context of skin-related neglected tropical 
diseases (skin NTDs) [168]. Skin NTDs have in common 
that they are associated with stigmatization, discrimination, 
and socioeconomic problems. Moreover, skin NTDs often 
affect the same population. This offers opportunities such as 
integrated approaches to cover a number of skin NTDs. Inte-
gration is defined as a mode to optimize the use of limited 
resources, disability management, and community engage-
ment, in addition to simplification of treatment pathways and 
the minimisation of stigma, through the implementation of 
activities to prevent two or more diseases simultaneously in 
the same community [167, 169]. Examples are the integra-
tion of screening programs, training of health workers and 
community volunteers, and the use of common laboratory 
and case management infrastructure.

5.1  Future Preventive Measures, Vaccination

The development (and delivery) of a vaccine against CL 
would ultimately be one of the most effective measures 
to control or even eliminate the disease [170]. It has been 
estimated that an effective vaccine against CL (70% effi-
cacy, 10 years’ protection) could prevent 41,000–141,000 
cases of CL in Latin America for a smaller financial 
amount than needed to cover treatment of these cases 
[170, 171]. The road towards development of an effective 
vaccine against CL is difficult and complicated due to the 
complex interaction between the Leishmania parasites and 
the host immune system. However, naturally recovered CL 
infection mostly induces life-long immunity against the 

species that caused the primary infection, and this sug-
gests that vaccination in theory should be possible [170, 
172, 173]. This is further supported by the fact that ‘leish-
manization’ (i.e., immunization of individuals with living 
parasites on an inconspicuous part of the body to protect 
against disfiguration lesions caused by a natural infection) 
indeed confers protection against CL [174]. The practice 
of leishmanization has nowadays been greatly abandoned 
because of safety issues and problems with standardiza-
tion of the ‘vaccine’ [170, 174]. Still, the option of using 
a live attenuated vaccine, because of its ability to induce 
a protective Th1 response, is an attractive approach that 
is currently being explored [174]. Next to live attenuated 
vaccines, many experimental vaccines based on the use 
of (components of) dead parasites, recombinant proteins 
or DNA have been explored, but so far none have led to a 
licensed CL vaccine for use in humans [175]. The recent 
advances in vaccine development (fueled especially by 
the Covid-19 pandemic) will hopefully also be applied to 
NTDs in the near future, including leishmaniasis. Finally, 
deforestation, migration, and climate change, including 
global warming, may all contribute to spread of the vector 
and CL outside the currently known endemic areas [176].

6  Conclusions

Globally, CL affects millions. Most CL cases occur in low- 
to middle-income countries, which are often burdened by 
other ailments like malaria, tuberculosis, and HIV. At the 
same time, their governments have limited healthcare 
budgets and often have to rely on poor healthcare infra-
structure. Because of lacking disease management and 
public health control interventions, CL is emerging and 
threatens to become an uncontrollable disease. Since it pri-
marily affects poor people, pharmaceutical companies do 
not develop CL pipelines, because they fear their invest-
ments might not be returned. As a consequence, indus-
try dedicates little investments and research into innova-
tive diagnostics, treatments, and vaccines for CL. With 
the current molecular techniques, Leishmania species 
can be identified more easily, and species identification 
enables rational therapy management. Current CL treat-
ment guidelines lack the required sound evidence and are 
mostly based on improperly designed and ill-conducted 
trials. Thus, there is an urgent need for large standard-
ized and state-of-the-art trials that can evaluate potentially 
beneficial treatments, including less toxic drugs, and for 
children, painless modalities without injections. To further 
contain CL incidence and morbidity, we need intensified 
preventive research programs into improved vector con-
trol, vaccines, and diagnostics.
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