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Abstract
Low-sulfonation-level polyether sulfone octyl sulfonamide (LSPSO) was blended with a layered double hydroxides (LDHs, 
 Mg2AlCl)/sepiolite nanostructure clay as a filler to create an electrolyte membrane for fuel cell applications. Comprehensive 
characterization of the composite membranes was conducted, encompassing Fourier-transform infrared spectroscopy, X-ray 
diffraction, mechanical stability assessment, thermal gravimetric analysis, ion exchange capability, swelling characteristics, 
water uptake performance, and electrochemical impedance spectroscopy analysis. In comparison to the pristine LSPSO 
membrane, the presence of LDHs/sepiolite nanoarchitecture material within LSPSO exhibited superior water retention and 
proton conductivity values, especially at elevated temperatures. The proton conductivity of the composite membranes reached 
approximately 250 mS/cm, while the unmodified LSPSO membrane only achieved 35 mS/cm at 100 °C. Moreover, LSPSO 
composite membranes demonstrated enhanced chemical and thermal stability along with higher proton conductivity when 
compared to pristine LSPSO membranes. These findings highlight the potential of developing tailored LSPSO composite 
membranes to advance the prospects of commercial applications in proton exchange membrane fuel cells.
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Introduction

Extensive research has been undertaken to investigate the 
application of ion-exchange membranes within the context 
of proton exchange membrane fuel cells (PEMFCs). Aro-
matic polymers prove especially suitable for such purposes 
thanks to their favorable blend of exceptional thermal sta-
bility and ease of handling [1]. Utilizing the aromatic ring 
is frequently a top preference for alteration, resulting in the 
creation of polymers that display improved characteristics.

Polyether sulfone (PES), polybenzimidazole (PBI), and 
poly-aryl ether ketone (PEEK) are some examples of such 
polymers. Polyether sulfone (PES) stands out as an economi-
cal polymer commonly employed in the stage-reversal pro-
duction of polymer films, serving purposes in microfiltration 
[2], ultrafiltration [3], gas separation [4], proton exchange 
membrane fuel cell [5], electrodialysis [6], modified elec-
trode [7], and supercapacitors [8], thanks to its remarkable 
mechanical robustness and chemical durability [9]. However, 
it is important to note that PES possesses a significant hydro-
phobic nature, and one of the principal limitations associated 
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with the PES layer is its susceptibility to membrane fouling 
[10]. Chemical modification of PES represents a primary 
strategy for enhancing the hydrophilicity and anti-fouling 
characteristics of PES membranes. Research has explored 
the synthesis and characterization of sulfonated polyether 
ketone or sulfonated poly sulfone (SPES) and PES polymer 
composites [11]. SPES exhibits favorable characteristics 
that satisfy all the necessary requirements for its applica-
tion in an ideal PEMFC. However, it is worth noting that, 
like PES, SPES also presents certain drawbacks. Desirable 
traits for polymer composites include a strong elastic modu-
lus, excellent proton conductivity properties, and endurance 
[12]. Various forms of SPES can be created by introducing 
octylamine into the SPES structure in different proportions, 
resulting in the formation of SPESOS [13]. SPESOS, owing 
to its lack of solubility in water, results in membranes that 
display fragility and showcase an extensive spectrum of 
ionic conductance and water uptake, contingent on the extent 
of octylamine grafting. There exist numerous approaches to 
augment both the mechanical attributes and ionic conductive 
characteristics of SPESOS-based membranes. SPESOS have 
less hydrophilic segments at the same ion exchange capacity 
(IEC) level as typical sulfonated ones, but they have more 
hydrophobic segments, which gives them good dimensional 
stability and mechanical qualities. The large polarity dif-
ference between the densely sulfonated, hydrophilic, and 
hydrophobic portions of the polymer was expected to result 
in greater microphase separation, which would lead to well-
developed hydrophilic channels and higher proton conduc-
tion. Thus, the novel strategy for strengthening well-struc-
tured SPESOS is to use clays to create additional hydrophilic 
channels in it. Significantly, anionic clays known as layered 
double hydroxides (LDHs; [M1-x2+ Mx3+(OH)2]x+[(A−)x/n 
yH2O]) have recently exhibited notable proton conductivity 
[14–16]. Surface –OH groups within the LDHs layer assume 
a vital function in aiding the dissociation of protons and their 
migration from one water molecule to the initial  OH− group, 
thereby leading to the creation of a notably elevated con-
centration of  OH− or  H+ ions within the membrane [17]. 
In contrast, sepiolite, a naturally found hydrated mineral 
composed of  ([Si12O30  Mg8(OH, F)4]  (H2O)4·8H2O), pos-
sesses a significant surface area and impressive adsorption 
capabilities, primarily owing to its porosity and the pres-
ence of silanol groups on the clay fibers. These features 
make it highly conducive to the adsorption of significant 
quantities of substances [18]. SPESOS is a densely sul-
fonated polymer that is gaining interest because of the large 
polarity difference between hydrophilic and hydrophobic 
units, which favors the creation of hydrophilic-hydrophobic 
phase-separated structures. These studies focused solely on 
the incorporation of clays with a high sulfonated SPESOS 
[19–25]. Recent research found that incorporating Hectorite 
clay onto low-sulfonated polyether sulfone octyl sulfonamide 

(LSPSO) resulted in a significant improvement in proton 
conductivity, attaining a fourfold increase (141.66 mS/cm) 
compared to the LSPSO membrane in isolation (35.04 mS/
cm) [22]. In this regard, the goal of this study was to for-
mulate a novel sort of composite using the LSPSO matrix 
and LDHs/sepiolite to improve moisture retention and ion 
transport capabilities inside the LSPSO layers. To accom-
plish this, various LDHs/sepiolite loading ratios were used 
in the production of LDHs/sepiolite /LSPSO composite 
membranes, which were then structural and morphologi-
cally assessed. A comprehensive assessment of the thermal 
stability, water retention capacity, and proton conductivity of 
a proton-conductive polymer composite will be performed. 
This novel composite has applications in a variety of fields, 
including electric chemical detectors, heat transmitters, and 
related domains.

Experimental

Resources

A lower sulfonated polyether sulfone derivative known as 
LSPSO was synthetized at the Eras Labo facility. N,N′-
dimethylacetamide (DMAc) was acquired through Acros. 
Sulfuric acid was sourced from Scharlau, and sodium 
hydroxide was obtained from Laurylab.

Layered double hydroxides (LDHs)

LDHs were synthesized using the co-precipitation method 
[15]. Specifically,  MgCl2·6H2O (0.66 M) and  AlCl3·6H2O 
(0.33 M) were gradually introduced into a sodium hydroxide 
(NaOH) solution (100 mL, 1 M).

Simultaneously, a 2 M NaOH solution was continuously 
introduced under a nitrogen atmosphere to maintain a pH 
of 9.0 and minimize contamination from atmospheric  CO2. 
The resulting mixture was allowed to stand undisturbed for 
24 h, after which the LDH  (Mg2AlCl) was collected through 
centrifugation and washed with deionized water.

Preparation of low sulfonated membrane

During the fabrication process of the low sulfonated poly-
ether sulfone octyl sulfonamide (LSPSO) membrane, 1 g 
of LSPSO powder was dissolved in dimethylacetamide 
(DMAc), undergoing continuous magnetic stirring at room 
temperature for a duration of 15 min (refer to Fig. 1).

This process yielded a transparent and uniform polymer 
solution containing 10% by mass of LSPSO. Following that, 
the polymer solution was uniformly spread onto a Petri dish 
and exposed to drying under distinct conditions: 50 °C for 
12 h, 80 °C for 6 h, and 100 °C for 12 h. After cooling, the 
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LSPSO membrane was moistened using distilled water and 
carefully separated from the Petri dish. The resultant mem-
brane was preserved within a moisture-rich setting for later 
utilization.

Preparation of LDHs/sepiolite nano‑architecture 
material

The LDHs/sepiolite nanoarchitecture material was synthe-
sized through a co-precipitation process, where LDH was 
precipitated in the presence of sepiolite to achieve a final 
nanostructured material with an equal weight ratio of one 
[12, 15, 23].

Preparation of composite membranes (LDHs/
sepiolite/LSPSO)

Composite membranes were fabricated through a process 
that involved dispersing a solution, followed by a casting 
method and subsequent evaporation. Dispersion preparations 
involved mixing different quantities of LDHs/Sepiolite (1%, 
3%, and 6% by mass) with LSPSO (10% by mass). In the 
beginning, LDHs/sepiolite powder was introduced into 5 mL 
of DMAc and stirred using a magnetic stirrer at ambient 
conditions. The resulting solutions were subjected to a 4-h 
ultrasonication process to ensure the uniform dispersion of 
the filler material.

Following this, each ratio of LDHs/sepiolite powder was 
introduced into the LSPSO solution. The resulting compos-
ite solutions underwent magnetic stirring for 2 h to facilitate 
thorough blending. The dispersion solutions were uniformly 
applied to a Petri dish support with a 20  cm2 surface area, 
ensuring an even distribution of the samples across the sup-
port. Afterward, the membranes underwent the same dry-
ing process used for the reference LSPSO membrane under 
various conditions. Membranes were engineered to main-
tain a uniform thickness of approximately 100 µm across 
all samples.

Membrane characterization

Fourier transform infrared (FT-IR) analysis was performed 
in transmission mode with the utilization of an IR200 FT-IR 
spectrophotometer by Nicolet. Spectral data for both LSPSO 
and the diverse composite membranes were captured across 
the 400–4000  cm–1 range. To record the spectra, membrane 
specimens were positioned between the cast iron and the 

diamond crystal (separator blade) without undergoing prior 
treatment [24]. This approach enabled the precise characteri-
zation of membrane properties and analysis of the functional 
groups present.

X-ray diffraction examination was conducted with the 
automated system known as Bruker D8 Advance. Diffrac-
tograms of the dry composite membrane samples were 
acquired in the 2θ range spanning from 5° to 60°, and no 
pre-treatment was administered to the samples before analy-
sis. The X-ray diffraction assessment enabled the examina-
tion of the crystal structure in both LSPSO and the associ-
ated composites [25]. The dimensions of the crystals in the 
materials were calculated employing the Scherrer equation, 
which is formulated as follows:

In this equation, D represents the size of the crystals in 
nanometers, λ signifies the radiation wavelength (specifi-
cally, 1.54056 Å for CuKα radiation), κ is a constant charac-
terized by a value of 0.94, βD corresponds to the peak width 
at half-maximum intensity, and θ denotes the peak position. 
This analysis yielded valuable insights into the structural 
characteristics of the materials under investigation.

Thermogravimetric analysis (TGA) was conducted using 
a Mettle TGA instrument. Prior to analysis, the membrane 
specimens, with weights measuring around 2.5 and 3.5 mg, 
were subjected to a 24-h drying procedure at 100 °C to elim-
inate any lingering moisture and solvents. The TGA software 
was configured to elevate the temperature starting at 25 °C 
and reaching up to 900 °C, at a pace of 10 °C per minute, 
while sustaining a continuous nitrogen flow at a rate of 40 
mL/min throughout the analysis. The TGA methodology 
facilitated the evaluation of both the thermal resilience and 
degradation patterns exhibited by the membrane specimens 
across an extensive span of temperatures [26].

The Hitachi 4800 II scanning electron microscope (SEM) 
was employed for sample observation, and no prior surface 
or cross-sectional treatment was administered before con-
ducting the examinations [27]. This approach enabled the 
direct and unadulterated visualization of the membrane's 
structure and surface attributes at a remarkably high level 
of detail.

To assess the water uptake capacity (WU) of the mem-
branes, we employed dry samples. The measurement of 
water uptake involved immersing each membrane in deion-
ized water at room temperature for a duration of 72 h. 

(1)D = (��∕�D × cos�).

Fig. 1  Chemical structure of 
low sulfonated polyether sulfone 
octyl sulfonamide
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Afterward, any remaining surface moisture was meticu-
lously removed using hydrophilic paper, and the weight 
of the membranes after this process was recorded. Water 
uptake (WU) values were then determined by calculating 
the relative increase in weight per gram of the initial dry 
specimen [28]. This calculation was performed by sub-
tracting the weight of the sample before water absorption 
from its weight after water uptake. We applied Eq. (2) to 
derive the water uptake (WU) values.

In this context, Wwet denotes the weight of the damp-
ened membranes, whereas Wdry indicates the weight of the 
membranes when dry.

The contact angle (CA) of the various membranes was 
assessed using a Theta optical tensiometer. A precise 
droplet measuring 5 µL of demineralized water was gen-
tly deposited onto the membrane's surface, and an image 
of the droplet was captured using photographic equip-
ment [29]. Subsequently, the software named Theta was 
employed to calculate the contact angle by analyzing the 
captured droplet image and determining the angle formed 
between the droplet and the surface of the membrane.

Ionic exchange capacity (IEC) determination was 
accomplished through an acid–base titration method. 
Each membrane, measuring 5 × 5  cm2 in size, was indi-
vidually soaked in a 100 mL aqueous solution contain-
ing sodium hydroxide  (10–2 M) for a period of two days. 
Over this period, the sulfonated groups  (SO3H) within the 
membranes underwent conversion into sulfonate groups 
 (SO3Na) through an ion exchange mechanism. The protons 
released from the sulfonated groups were then countered 
by hydroxide ions  (OH−) within the solution, resulting 
in the formation of water. During the IEC calculation, 
titration procedures were carried out on both the start-
ing solution and the sodium hydroxide (NaOH) solution 
using solutions of aqueous sulfonic acid. The amount of 
acid required to reach the titration endpoint was utilized 
to ascertain the concentration of the sodium hydroxide 
solution that reacted with the sulfonated groups within the 
membrane [30]. Following that, the IEC for each mem-
brane was calculated using the subsequent correlation:

In this equation, niNaOH signifies the initial moles of 
sodium hydroxide within the solution  (10–2 M, 200 mL), 
nfNaOH represents the moles of sodium hydroxide after the 
exchange, and Wdry indicates the mass of the membrane 
when dry.

(2)WU =
Wwet −Wdry

Wdry

× 100.

(3)IEC =
ni
NaOH

− n
f

NaOH

Wdry

The sulfonation degree (DS) for LSPSO was calculated 
by employing the formula based on ion exchange capacity 
values [12, 24, 31]:

where M1 stands for the molar mass of LSPSO (505.53 g/
mol) and M2 corresponds to the molar mass of PES (442.53 
g/mol).

Proton conductance assessments in the membranes were 
carried out via the utilization of Electrochemical Imped-
ance Spectroscopy (EIS) utilizing a VSP potentiostat from 
Biologic Science Instruments. Samples cut as circles with 
a diameter of 1 cm were placed in a cell provided by a tem-
perature controller and were clamped between two golden 
stainless-steel blocking electrodes. The EIS measurements 
were performed under 100% relative humidity (RH), varying 
the temperature.

Electrical resistance (R) for each membrane was deter-
mined by identifying the intersection point of the high-fre-
quency Nyquist plots with the x-axis [32, 33]. To calculate 
ionic conductance (σ, mS/cm), the following equation was 
utilized:

Here, 'e' represents the thickness of the membrane, 'S' 
denotes the surface area of the membrane situated between 
the two electrodes, and 'R' stands for the electrical resistance.

Results and discussion

The uniform dispersion of organic and clay components 
became apparent through the composite membrane's con-
siderable thickness, its see-through appearance, and its pale 
ivory coloration (Fig. 2). The surface area of the clay (144 
 m2/g) was sufficient to host the LSPSO with a sulfonation 
level of 0.9 protons per monomer unit [13]. Furthermore, 
a highly effective hybrid material was produced through 
robust interfacial interactions between clay and an aromatic 
polymer matrix. This phenomenon can be elucidated by the 
establishment of non-covalent connections, facilitated by 
hydrogen bonding interactions between the  SO3H groups 
within LSPSO chains and the basal planes of the clay, as will 
be demonstrated via FTIR and XRD analyses.

Fourier transform infrared spectroscopy

Figure 3 displays FT-IR spectra spanning the 500–2000 
 cm−1 range, encompassing LSPSO as well as films with 
various clay ratio/LSPSO compositions.

(4)DS(%) =
M2 × IEC

1000 +
(

M2 −M1

)

× IEC

(5)�(mS∕cm) =
e

R × S
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Due to the constrained clay content in LSPSO, the spec-
tral profiles of the different composite membranes exhibit 
noteworthy resemblance. The FT-IR spectra reveal two 
prominent peaks at 1480 and 1584  cm−1, serving as mark-
ers for the presence of aromatic carbons. Furthermore, 
a band at 1240  cm−1 confirms the presence of a methyl 
group within LSPSO. The identification of the C–O–C 
group is apparent due to the peak detected at 1150  cm−1. 
The symmetrical and asymmetrical stretching vibrations of 
the O=S=O group are distinguishable by the characteristic 
bands observed at 1105 and 1082  cm−1, respectively. Fur-
thermore, the presence of C–S groups is accountable for 
the bands observed at 688 and 625  cm−1 [19]. The FTIR 
spectra obtained from the composite membranes closely 
mirrored those of the LSPSO membrane, showing no sub-
stantial differences.

This implies that there is no evidence of a chemical reac-
tion occurring between the clay and LSPSO. Simultaneously, 
the asymmetric and symmetric vibrations linked to O=S=O 
at 1105 and 1082  cm−1, in addition to the two characteris-
tic LSPSO bands connected to aromatic carbons at 1480 
and 1584  cm−1, displayed a reduction in intensity within 
the hybrid films (refer to Fig. 3). These findings indicate a 
lack of covalent bonding or stacking interactions between 

Fig. 2  Photo of the various 
membranes. a LSPSO, b 1 wt% 
LDHs-Sep/LSPSO, c 3 wt% 
LDHs-Sep/LSPSO and d 6 wt% 
LDHs-Sep/LSPSO
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Fig. 3  FT-IR spectra of (a) LSPSO, (b) 1wt% LDHs-Sep/LSPSO, (c) 
3wt% LDHs-Sep/LSPSO and (d) 6 wt% LDHs-Sep/LSPSO compos-
ite membranes
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the phenyl groups within LSPSO chains,  SO3H groups, and 
the clay's basal planes.

X‑ray diffractograms

In Fig. 4, you can observe the diffractograms for composite 
membranes containing clay and LSPSO, showcasing vari-
ous clay ratios.

The primary peak of LSPSO at 2θ = 14.6°, corresponding 
to the (001) plane, signified a significant alteration in the 
LSPSO membrane.

The introduction of clay induced favorable macromolecu-
lar orientations of the polymer chains, causing a shift in the 
dominant peak of the LSPSO composite towards a lower 2θ 
value. The presence of clay created compressive stress and 
a difference in ionic radii between LSPSO and the dopant 
ion (clay), resulting in expansion. Consequently, the peaks 
in the composite membranes shifted towards lower angles, 
accompanied by an increase in the inter-planar distance (d) 
and an expansion of the host lattice (Table 1).

The diffraction plane of LSPSO composites exhibited a 
noticeable shift towards lower angles (from 12.72° to 13.40°) 
as clay was incorporated into the LSPSO matrix, particularly 
concerning the (001) plane, which aligns parallel to the sur-
face. This shift in peak positions in the composite can be 
attributed to an increased atomic spacing within the com-
posite, resulting in a rise in the average lattice parameter. 
This occurrence can be credited to the dispersion of clay 
nanoparticles by the LSPSO chains, aided by ionic interac-
tions involving the sulfonic groups within LSPSO and the 
ions present on the clay's surface. These observations are 
consistent with the investigations carried out by Charradi 
et al. [12, 15]. The rise in the interplanar distance observed 
in the LSPSO composites, expanding from 6.35 to 7.04 Å, 
is indicative of the intercalation of clay layers by monolayers 
and/or multilayers of LSPSO chains. Additionally, there was 
a significant increase in the crystallite size of the composite 
when compared to the pristine LSPSO (refer to Table 1).

Contact angle

This can be attributed to the influence of clay, which poten-
tially impacts the aggregation of LSPSO particles through 
mechanisms such as grain-boundary pinning effects or alter-
ations in surface energy and charge distribution [26]. The 
alterations in the surface properties of LSPSO resulting from 
the LDH-Sep inclusion process can be elucidated through 
the utilization of drop shape analysis, as depicted in Fig. 5.

The analysis of contact angles provides valuable insights 
into the exceptional wetting properties of the composite 
components. By examining contact angles across various 
membranes, we can effectively compare the super-wettabil-
ity of LSPSO with its composite counterparts. The initial 
contact angle for the pristine LSPSO membrane measures 
87.54°. However, with the incorporation of clay into the 
composite membranes at concentrations of 1 wt%, 3 wt%, 
and 6 wt%, the contact angle consistently diminishes to val-
ues of 75.79°, 69.97°, and 57.71º, as depicted in Fig. 5. The 
decrease in the contact angle, which can be attributed to the 
presence of clay, indicates an increase in hydrophilicity. It's 
crucial to bear in mind that reduced contact angles in flat 
sheet membranes signify enhanced hydrophilic character-
istics [15, 16, 19, 25]. Hence, the measurements of contact 
angle indicate that the surfaces of the composite membranes 
possess enhanced wetting characteristics when compared to 
the individual constituent materials.

Fig. 4  X-ray diffraction pat-
terns A: (a) LSPSO, (b) 1 wt% 
LDHs-Sep/LSPSO, (c) 3 wt% 
LDHs-Sep/LSPSO and (d) 
6 wt% LDHs-Sep/LSPSO com-
posite membranes, B (e) LDHs 
and (f) LDHs/Sepiolite

10 20 30 40 50 60 70

d

c
b

In
te
ns

ity

2 (°)

a

10 20 30 40 50 60 70

(202)

(009)

(130)

(110)
(006)

(110)

(003)

f

e

In
te
ns

ity

2 (°)

Table 1  XRD analysis of LSPSO and LDH-Sep/LSPSO composite 
membranes

Sample 2θ (°) d (001) Å Crystallite 
size (nm)

LSPSO 14.10 6.35 11.37
1 wt% LDHs-Sep/LSPSO 13.40 6.68 20.94
3 wt% LDHs-Sep/LSPSO 13.27 6.75 25.75
6 wt% LDHs-Sep/LSPSO 12.72 7.04 25.73
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Thermogravimetric analysis

In the thermogravimetric analysis (TGA) of the various 
fabricated membranes, we observe a generally consistent 
behavior across the different membranes, without any nota-
ble deviations, as depicted in Fig. 6.

During thermal analysis, it's notable that all membranes 
exhibit a triphasic weight loss pattern. The initial phase 
of mass decrease transpires at around 100 °C and can be 
attributed to the vaporization of moisture within the LSPSO 
matrix. Following that, a significant secondary mass reduc-
tion, which takes place approximately at 300 °C, indicates 
the potential degradation of sulfonic groups. Finally, a sub-
sequent mass reduction is observable around 470 °C, indi-
cating the degradation of the primary polymer matrix. Upon 
comparing the thermogravimetric analysis (TGA) outcomes 

of the LSPSO membrane with those of all LSPSO com-
posite membranes, no substantial disparities in decompo-
sition characteristics are discernible throughout the entire 
investigated temperature range. However, in TGA curves 
depicting the composite membranes, a conspicuous trend 
towards higher temperatures is observed when clay is inte-
grated into LSPSO at concentrations of 1 wt% and 3 wt%. In 
a comparative analysis between the composite membranes 
and the LSPSO membrane, a comprehensive examination 
of the TGA curves reveals that the composite membranes 
exhibit an increased capacity for water retention. Notably, 
the incorporation of clay at a concentration of 6 wt% results 
in the most significant water loss, totaling 15%. This occurs 
because of a higher concentration of clay within the mem-
brane, resulting in increased water content within the com-
posite. [12, 15, 19]. In contrast, the composite membranes 
with 1 wt% and 3 wt% clay display water losses of roughly 
8 wt% and 10 wt%, respectively.

Ion exchange capacity and degree of sulfonation

Table 2 compiles the values of ion exchange capacity and 
sulfonation degree for all prepared membranes.

Regarding the measurements of ion exchange capacity 
(IEC), which were established through acid–base titration 
across the various membrane preparations, they consistently 
reside within the range of approximately 1.8 milliequivalents 
per gram (meq/g). As the presence of inert clay within the 

Fig. 5  Contact angle of fabri-
cated composite membranes

LSPSO (AC = 87.54 °)

    1 % LDHs-Sep/LSPSO                   3 % LDHs-Sep/LSPSO               6 % LDHs-Sep/LSPSO 
           (CA = 75.79 °)                               (CA = 69.97 °)                            (CA = 57.71 °)
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Fig. 6  Thermogravimetric analysis of (a) LSPSO (b) 1 wt% LDHs-
Sep/LSPSO, (c) 3 wt% LDHs-Sep/LSPSO and (d) 6 wt% LDHs-Sep/
LSPSO composite membranes

Table 2  Ion exchange capacity and degree of sulfonation of various 
membranes

Sample IEC (meq/g) DS (%)

LSPSO 1.80 71.53
1 wt% LDHs-Sep/LSPSO 1.81 71.89
3 wt% LDHs-Sep/LSPSO 1.78 70.82
6 wt% LDHs-Sep/LSPSO 1.82 72.25
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LSPSO matrix does not influence this measure, these out-
comes consistently align with the composition of LSPSO. 
To assess the achieved sulfonation degree of LSPSO and 
its composites, we used Eq. 4. The sulfonation degree of 
all composite membrane was approximately 71% similar to 
that of LSPSO membrane does not alter this property, as the 
clay nanoparticles do not contain sulfonic groups in their 
structure.

Water uptake

Furthermore, it was established that the LSPSO material 
employed exhibited an 71% sulfonation level. In Fig. 7, the 
fluctuations in water uptake, computed via Eq. 1, for all 
composite membranes are juxtaposed with that of LSPSO 
(1.8 meq/g).

In Fig. 7, the graphic representation portrays the connec-
tion between the clay content in both LSPSO membranes 
and composite membranes, along with their corresponding 
water absorption properties. When comparing the com-
posite membranes with the unaltered LSPSO membranes 
(exhibiting a water uptake of 37%), it becomes evident that 
the composite membranes exhibit superior water-absorbing 
capabilities. The innate hydrophilicity of clay, a vital factor 
contributing to improved water uptake, collaborates with the 
sulfonic groups within the LSPSO polymer, thereby leading 
to the observed augmentation in water absorption. Figure 7 
effectively illustrates the correlation between the clay con-
tent in both LSPSO and composite membranes and their 
respective water absorption capacities. The inherent hydro-
philic nature of clay, a critical factor in enhancing water 

absorption, collaborates with the sulfonic groups present 
in the LSPSO polymer, contributing to the observed rise 
in water uptake. The introduction of clay can alter the size 
of LSPSO particles and induce clustering, potentially lead-
ing to modifications in the microstructure of LSPSO. The 
increase in the rate of water absorption can be ascribed to the 
incorporation of clay into the LSPSO matrix, which leads 
to an expansion in the overall volume and the creation of 
solvated proton transport pathways [34–37].

Proton conductivity

To evaluate the electrochemical performance of the mem-
brane, AC impedance spectroscopy was employed to assess 
its ability to facilitate proton migration. These evaluations 
were carried out within a temperature range spanning from 
room temperature to 100 °C, with a relative humidity (RH) 
of 100%, as illustrated in Fig. 8.

In all temperature ranges, a consistent observation was 
the lower proton conductivity exhibited by the LSPSO refer-
ence membrane. At a temperature of 100 °C, the proton con-
ductivity of LSPSO was recorded at 35 mS/cm. In contrast, 
the nanocomposite membranes, which incorporated clay 
at concentrations of 1 wt%, 3 wt%, and 6 wt% by weight, 
exhibited significantly higher proton conductivities, measur-
ing 128 mS/cm, 167 mS/cm, and 251 mS/cm, respectively. 
The substantial improvement in proton conductivity can be 
attributed to the abundant presence of ions within the clay. 
These ions create stronger electrostatic fields that can better 
accommodate water molecules. This, in turn, facilitates the 
formation of a denser and more extensive hydrogen-bonding 
network, thereby enhancing proton transport. The observed 
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improvement in proton conductivity across the composite 
membranes, featuring different clay concentrations, may be 
attributed to the heightened ability of protons to solvate in 
water at elevated temperatures (100 °C). It's important to 
highlight that as the clay percentage increases, the proton 
conductivity of composite membranes consistently shows an 
upward trend. The layered structure and hygroscopic nature 
of clay provide advantages for enhancing water retention, 
especially under high-temperature conditions. Incorporat-
ing LDH/Sepiolite into the LSPSO matrix significantly ele-
vates proton conductivity to 251 mS/cm at 100 °C, marking 
a substantial enhancement compared to LSPSO containing 
Hectorite, which measured 141 mS/cm under identical test 
conditions and clay concentration [22]. To elucidate the 
correlation between temperature and proton conductivity, 
one can utilize the Arrhenius equation. As a result, you can 
employ the subsequent equation to compute the activation 
energy for conductivity:

In the provided equation, σ signifies proton conductiv-
ity in S/cm, σ0 represents the pre-exponential factor, R is 
the universal gas constant (8.314472 J/mol K), and T stands 
for the absolute temperature in Kelvin (K). The activation 
energies for LSPSO, computed using Eq. 4, are presented in 
Table 2. Moreover, the activation energies of the nanocom-
posite membranes are also provided, as determined through 
experiments conducted at 100% relative humidity (RH).

Under experimental conditions maintained at 100% rela-
tive humidity (RH), the activation energy for both composite 
and LSPSO membranes was assessed, and the outcomes are 
detailed in Table 3. It is evident that the composite mem-
branes exhibit lower activation energy values in compari-
son to membranes composed solely of unaltered LSPSO 
[19, 22, 25, 36]. The presence of the filler material exerts a 
notable influence on the activation energy, with the lowest 
value observed in the composite membrane containing 6% 
clay. This observation further substantiates previous find-
ings that the composite membranes exhibit enhanced proton 
conductivity. The inclusion of nanofillers in membranes pro-
motes the retention of water absorbed within the polymer, 
a decrease of Ea from 100 to 65 kJ/mol for LSPSO and 6% 

(6)� = �0exp(−Ea∕RT)

LDHs-Sep LSPSO thereby enhancing proton conductivity 
can be through vehicular and Grothus mechanisms.

Consequently, the heightened proton conductivity 
observed with the augmented presence of inorganic fillers 
indicates an improved pathway for proton movement due to 
increased water uptake. Vehicular mechanisms, the activa-
tion energy (Ea) achieved for Nafion membranes in the pres-
ence of clay is notably low [35, 38–40]. In fact, the Grottuss 
mechanism dominates in the proton conduction, the activa-
tion should be more important like SPEEK membrane in the 
presence of clay [12, 15]. In fact, both mechanisms can be 
active, making it challenging to pinpoint the predominant 
one. Proton conductivity experiences enhancement when the 
filler interacts with the sulfonic groups, serving not only to 
absorb water molecules but also to act as an active site that 
facilitates proton transport.

Conclusion and future outlook

The effective integration of LDHs sepiolite into the LSPSO 
matrix was confirmed through FT-IR and XRD analyses. 
Furthermore, investigations included crucial parameters, 
including water absorption and proton conductivity. The 
impressive performance demonstrated by the composite 
membranes highlights their appropriateness for electrochem-
ical applications. Unlike the unmodified LSPSO membranes, 
the composite membranes exhibit remarkable stability even 
when exposed to temperatures as high as 100 °C, while also 
maintaining strong proton conductivity. This confirms that 
the incorporation of clay improves membrane stability and 
water absorption capacity.
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Table 3  Activation energy values and proton conductivity at 100 °C

Membrane Conductivity (mS/cm) 
at 100 °C

Ea (kJ/mol)

LSPSO 35.04 100
1 % LDHs-Sep/LSPSO 128.12 95
3 % LDHs-Sep/LSPSO 169.93 93
6 % LDHs-Sep/LSPSO 251.40 65
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