Skip to main content
Log in

Recent Advances in Microbial Production of Terpenoids from Biomass-derived Feedstocks

  • Review
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Terpenoids are a diverse class of natural products widely used as pharmaceuticals, perfumes, flavors, and biofuels. Traditionally, terpenoids are obtained from natural sources, such as plants, but their production is limited by the insufficiency of resources and low yields of extraction. Microbial production of terpenoids has emerged as a promising alternative due to that it is sustainable and easy to scale up. This review aims to summarize recent advances in microbial production of terpenoids from inexpensive biomass-derived feedstocks. Metabolic pathways and key enzymes involved in terpenoid biosynthesis are introduced. Microorganisms that can utilize low-cost lignocellulosic feedstocks for terpenoid production are highlighted. The challenges and prospects faced by microbial terpenoid production are proposed. We believe that continuous progress in the fields of biomass transformation and synthetic biology will ultimately achieve industrial production of microbial terpenoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jaeger R., Cuny E., Nat. Prod. Commun., 2016, 11, 1373

    PubMed  Google Scholar 

  2. Yuan Y., Cheng S., Bian G., Yan P., Ma Z., Dai W., Chen R., Fu S., Huang H., Chi H., Cai Y., Deng Z., Liu T., Nat. Catal., 2022, 5, 277

    Article  CAS  Google Scholar 

  3. Oldfield E., Lin F., Angew. Chem. Int. Ed., 2012, 51, 1124

    Article  CAS  Google Scholar 

  4. Agatonovic-Kustrin S., Morton D. W., The Current and Potential Therapeutic Uses of Parthenolide, Elsevier, Amsterdam, 2018, 61

    Book  Google Scholar 

  5. Huang L. Y., Sun X., Chen M. Y., Yan P. C., Wang C. J., Chem. Res. Chinese Universities, 2022, 38 (2), 622

    Article  CAS  Google Scholar 

  6. Tholl D., Adv. Biochem. Eng. Biotechnol., 2015, 148, 63

    PubMed  CAS  Google Scholar 

  7. Julsing M. K., Koulman A., Woerdenbag H. J., Quax W. J., Kayser O., Biomol. Eng., 2006, 23, 265

    Article  PubMed  CAS  Google Scholar 

  8. Bastiaanse E. M. L., Hold K. M., VanderLaarse A., Cardiovasc. Res., 1997, 33, 272

    Article  PubMed  CAS  Google Scholar 

  9. Pagels F., Vasconcelos V., Guedes A. C., Biomolecules, 2021, 11, 735

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Mewalal R., Rai D. K., Kainer D., Chen F., Külheim C., Peter G. F., Tuskan G. A., Trends Biotechnol., 2017, 35, 227

    Article  PubMed  CAS  Google Scholar 

  11. Xu C., Wang J., Med. Res. Rev., 2021, 41, 2891

    Article  PubMed  Google Scholar 

  12. Quílez del Moral J. F., Pérez À., Barrero A. F., Phytochem. Rev., 2020, 19, 559

    Article  Google Scholar 

  13. Gohil N., Bhattacharjee G., Singh V., An Introduction to Microbial Cell Factories for Production of Biomolecules, Academic Press, Amsterdam, 2021, 19

    Book  Google Scholar 

  14. Shen X., Wang J., Li C., Yuan Q., Yan Y., Curr. Opin. Biotechnol., 2019, 59, 122

    Article  PubMed  CAS  Google Scholar 

  15. Chen K., Arnold F. H., Nat. Catal., 2020, 3, 203

    Article  CAS  Google Scholar 

  16. Keasling J., Garcia Martin H., Lee T. S., Mukhopadhyay A., Singer S. W., Sundstrom E., Nat. Rev. Microbiol., 2021, 19, 701

    Article  PubMed  CAS  Google Scholar 

  17. Khalil A. M., J. Genet. Eng. Biotechnol., 2020, 18, 68

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ding Q., Ye C., Microb. Cell Fact., 2023, 22, 20

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cao Y., Zhang H., Liu H., Liu W., Zhang R., Xian M., Liu H., Appl. Microbiol. Biotechnol., 2018, 102, 1535

    Article  PubMed  CAS  Google Scholar 

  20. Rohmer M., Knani M., Simonin P., Sutter B., Sahm H., Biochem. J., 1993, 295, 517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Proteau P. J., Bioorg. Chem., 2004, 32, 483

    Article  PubMed  CAS  Google Scholar 

  22. Rekittke I., Jomaa H., Ermler U., FEBSLett., 2012, 586, 3452

    Article  CAS  Google Scholar 

  23. Huang S., Xue Y., Ma Y., Zhou C., Front. Bioeng. Biotech., 2022, 10, 1057938

    Article  Google Scholar 

  24. Tippmann S., Ferreira R., Siewers V., Nielsen J., Chen Y., J. Ind. Microbiol. Biotechnol., 2017, 44, 911

    Article  PubMed  CAS  Google Scholar 

  25. Cao Y., Zhang R., Liu W., Zhao G., Niu W., Guo J., Xian M., Liu H., Sci. Rep., 2019, 9, 95

    Article  PubMed  PubMed Central  Google Scholar 

  26. Friesen J. A., Rodwell V. W., Genome Biol., 2004, 5, 248

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chen C. L., Mermoud J. C., Paul L. N., Steussy C. N., Stauffacher C. V., J. Biol. Chem., 2017, 292, 21340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Christianson D. W., Chem. Rev., 2017, 117, 11570

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Zhou J., Wang C., Yang L., Choi E. S., Kim S. W., Enzyme Microb. Technol., 2015, 68, 50

    Article  PubMed  CAS  Google Scholar 

  30. Thulasiram H. V., Poulter C. D., J. Am. Chem. Soc., 2006, 128, 15819

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Song Y., Guan Z., van Merkerk R., Pramastya H., Abdallah I. I., Setroikromo R., Quax W. J., J. Agric. Food Chem., 2020, 68, 4447

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Tao H., Lauterbach L., Bian G., Chen R., Hou A., Mori T., Cheng S., Hu B., Lu L., Mu X., Li M., Adachi N., Kawasaki M., Moriya T., Senda T., Wang X., Deng Z., Abe I., Dickschat J. S., Liu T., Nature, 2022, 606, 414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Zerbe P., Bohlmann J., Trends Biotechnol., 2015, 33, 419

    Article  PubMed  CAS  Google Scholar 

  34. Wang Z., Zhang L., Dong C., Guo J., Jin L., Wei P., Li F., Zhang X., Wang R., BMC Plant Biol., 2021, 21, 32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Alicandri E., Paolacci A. R., Osadolor S., Sorgonà A., Badiani M., Ciaffi M., J. Mol. Evol., 2020, 88, 253

    Article  PubMed  CAS  Google Scholar 

  36. Köksal M., Zimmer I., Schnitzler J. P., Christianson D. W., J. Mol. Biol., 2010, 402, 363

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kumar R. P., Morehouse B. R., Matos J. O., Malik K., Lin H., Krauss I. J., Oprian D. D., Biochemistry, 2017, 56, 1716

    Article  PubMed  CAS  Google Scholar 

  38. Li R., Chou W. K. W., Himmelberger J. A., Litwin K. M., Harris G. G., Cane D. E., Christianson D. W., Biochemistry, 2014, 53, 1155

    Article  PubMed  CAS  Google Scholar 

  39. Xing B., Yu J., Chi C., Ma X., Xu Q., Li A., Ge Y., Wang Z., Liu T., Jia H., Yin F., Guo J., Huang L., Yang D., Ma M., Commun. Chem., 2021, 4, 140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Pu Y., Cao Y., Xian M., Bioengineering, 2022, 9, 771

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Wang S., Yang J., Molecules, 2017, 22, 960

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bai S., Wang T., Tian Z., Cao K., Li J., Sci. Rep., 2020, 10, 15845

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Wang S., Li R., Yi X., Fang T., Yang J., Bae H., BioMed Res. Int., 2016, 2016, 4342892

    PubMed  PubMed Central  Google Scholar 

  44. Duncan S. M., Alkasrawi M., Gurram R., Almomani F., Wiberley-Bradford A. E., Singsaas E., Energies, 2020, 13, 4662

    Article  CAS  Google Scholar 

  45. Rinaldi M. A., Tait S., Toogood H. S., Scrutton N. S., Front. Bioeng. Biotech., 2022, 10, 892896

    Article  Google Scholar 

  46. Zebec Z., Poberznik M., Lobnik A., Life-Basel, 2022, 12, 1423

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Lee S., Sohn J. H., Bae J. H., Kim S. C., Sung B. H., Biotechnol. Bioprocess Eng., 2020, 25, 862

    Article  CAS  Google Scholar 

  48. Wang X., Baidoo E. E. K., Kakumanu R., Xie S., Mukhopadhyay A., Lee T. S., Biotechnol. Biofuels Bioprod., 2022, 15, 137

    Article  PubMed  PubMed Central  Google Scholar 

  49. Cao Y., Liu H., Liu W., Guo J., Xian M., Microb. Cell Fact., 2022, 21, 166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Desvaux M., Enzyme Microb. Technol., 2005, 37, 373

    Article  CAS  Google Scholar 

  51. Janke C., Gaida S., Jennewein S., Microbiologyopen, 2020, 9, e1008

    Article  PubMed  PubMed Central  Google Scholar 

  52. Abdel-Mawgoud A. M., Markham K. A., Palmer C. M., Liu N., Stephanopoulos G., Alper H. S., Metab. Eng., 2018, 50, 192

    Article  PubMed  CAS  Google Scholar 

  53. Yao F., Liu S. C., Wang D. N., Liu Z. J., Hua Q., Wei L. J., FEMS Yeast Res., 2020, 20, foaa046

    Article  PubMed  CAS  Google Scholar 

  54. Wei L. J., Zhong Y. T., Nie M. Y., Liu S. C., Hua Q., J. Agric. Food Chem., 2021, 69, 275

    Article  PubMed  CAS  Google Scholar 

  55. Chen S., Lu Y., Wang W., Hu Y., Wang J., Tang S., Lin C. S. K., Yang X., Front. Microbiol., 2022, 13, 960558

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wen Z., Zhang S., Odoh C. K., Jin M., Zhao Z. K., FEMS Yeast Res., 2020, 20, foaa038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Zhuang X., Kilian O., Monroe E., Ito M., Tran-Gymfi M. B., Liu F., Davis R. W., Mirsiaghi M., Sundstrom E., Pray T., Skerker J. M., George A., Gladden J. M., Microb. Cell Fact., 2019, 18, 54

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kirby J., Geiselman G. M., Yaegashi J., Kim J., Zhuang X., Tran-Gyamfi M. B., Prahl J. P., Sundstrom E. R., Gao Y., Munoz N., Burnum-Johnson K. E., Benites V. T., Baidoo E. E. K., Fuhrmann A., Seibel K., Webb-Robertson B. J. M., Zucker J., Nicora C. D., Tanjore D., Magnuson J. K., Skerker J. M., Gladden J. M., Biotechnol. Biofuels, 2021, 14, 101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Geiselman G. M., Kirby J., Landera A., Otoupal P., Papa G., Barcelos C., Sundstrom E. R., Das L., Magurudeniya H. D., Wehrs M., Rodriguez A., Simmons B. A., Magnuson J. K., Mukhopadhyay A., Lee T. S., George A., Gladden J. M., Microb. Cell Fact., 2020, 19, 208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Bertacchi S., Cantu C., Porro D., Branduardi P., FermentationBasel, 2021, 7, 208

    Article  CAS  Google Scholar 

  61. Dias C., Nobre B., Santos J. A. L., Reis A., da Silva T. L., App. Biochem. Biotechnol., 2022, 194, 5556

    Article  CAS  Google Scholar 

  62. Chang M. C. Y., Keasling J. D., Nat. Chem. Biol., 2006, 2, 674

    Article  PubMed  CAS  Google Scholar 

  63. Palmqvist E., Hahn-Hägerdal B., Bioresour. Technol., 2000, 74, 17

    Article  CAS  Google Scholar 

  64. Ramamurthy P. C., Singh S., Kapoor D., Parihar P., Samuel J., Prasad R., Kumar A., Singh J., Microb. Cell Fact., 2021, 20, 55

    Article  PubMed  PubMed Central  Google Scholar 

  65. Dessie W., Luo X., Wang M., Feng L., Liao Y., Wang Z., Yong Z., Qin Z., Appl. Microbiol. Biotechnol., 2020, 104, 4757

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2022YFC2104700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mo Xian.

Ethics declarations

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Xian, M. Recent Advances in Microbial Production of Terpenoids from Biomass-derived Feedstocks. Chem. Res. Chin. Univ. 40, 20–28 (2024). https://doi.org/10.1007/s40242-024-3242-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-024-3242-2

Keywords

Navigation