Skip to main content
Log in

Stress Transfer in Polymer Nanocomposites: A Coarse-grained Molecular Dynamics Study

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

In this work, we used coarse-grained molecular dynamics simulation methods to investigate the dispersion and percolation behavior of nanoparticles in polymer nanocomposite. Our aim was to investigate the correlation between particle arrangement in nearby layers and the stretching performance in composite systems by exploring the stress transfer processes during different stages of the stretching process. The machine learning technique of linear regression was used to quantitatively measure the efficiency of stress transfer between particles nearby. According to our research, increasing the strength of attraction can significantly enhance the particle dispersion and affect the percolation threshold. We also noticed a non-monotonic relationship between the interaction strength and the tensile stress. Additionally, we quantified the efficiency of nanoparticles and polymers at transferring stress to nearby nanoparticles. As a result, the stress value provided by each particle in the aggregation body is significantly increased by the aggregation behavior of nanoparticles. The non-monotonic behavior is caused by two variables: the rapid disintegration of aggregates and the improved stress transfer efficiency from polymers to nanoparticles. Significantly, it was discovered that the structural rearrangement of nanoparticles during stretching is the main reason that causes the yield-like behavior seen in poorly dispersed systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jancar J., Douglas J. F., Starr F. W., Kumar S. K., Cassagnau P., Lesser A. J., Sternstein S. S., Buehler M. J., Polymer, 2010, 51, 3321

    CAS  Google Scholar 

  2. Kumar S. K., Benicewicz B. C., Vaia R. A., Winey K. I., Macromolecules, 2017, 50, 714

    CAS  Google Scholar 

  3. Desai T., Keblinski P., Kumar S. K., J. Chem. Phys., 2005, 122, 134910

    PubMed  Google Scholar 

  4. Smith G. D., Bedrov D., Li L. W., Byutner O., J. Chem. Phys., 2002, 117, 9478

    CAS  Google Scholar 

  5. Liu J., Wu S. Z., Zhang L. Q., Wang W. C., Cao D. P., Phys. Chem. Chem. Phys., 2011, 13, 518

    CAS  Google Scholar 

  6. Gao H. M., Shi R., Zhu Y. L., Qian H. J., Lu Z. Y., Chem. Res. Chinese Universities, 2022, 38 (3), 653

    CAS  Google Scholar 

  7. Gao H. M., Li B., Zhang R., Sun Z. Y, Lu Z. Y, J. Chem. Phys., 2020, 152, 094905

    CAS  PubMed  Google Scholar 

  8. Cheng S., Carroll. B., Bocharova V., J. Chem. Phys., 2017, 146, 203201

    PubMed  Google Scholar 

  9. Taub A., De Moor E., Luo A., Matlock D. K., Speer J. G., Vaidya U., Annu. Rev. Mater. Res., 2019, 49, 327

    CAS  Google Scholar 

  10. Anguita J. V., Smith C. T. G., Stute T., Funke M., Delkowski M., Silva S. R. P., Nat. Mater., 2020, 19, 317

    CAS  PubMed  Google Scholar 

  11. Karatrantos A., Clarke N., Composto R. J., Winey K. I., Soft Matter, 2015, 11, 382

    CAS  PubMed  Google Scholar 

  12. Kim S. Y., Meyer H. W., Saalwachter K., Zukoski C. F., Macromolecules, 2012, 45, 4225

    CAS  Google Scholar 

  13. Kim S. Y., Zukoski C. F., Macromolecules, 2013, 46, 6634

    CAS  Google Scholar 

  14. Koga T., Barkley D., Nagao M., Taniguchi T., Carrillo J. Y., Sumpter B. G., Masui T., Kishimoto H., Koga M., Rudick J. G., Macromolecules, 2018, 51, 9462

    CAS  Google Scholar 

  15. Sengupta R., Chakraborty S., Bandyopadhyay S., Dasgupta S., Mukhopadhyay R., Auddy K., Deuri A. S., Polym. Eng. Sci., 2007, 47, 1956

    CAS  Google Scholar 

  16. Karger-Kocsis J., Wu C. M., Polym. Eng. Sci., 2004, 44, 1083

    CAS  Google Scholar 

  17. Ray S. S., Okamoto M., Prog. Polym. Sci., 2003, 28, 1539

    CAS  Google Scholar 

  18. Allegra G., Raos G., Vacatello M., Prog. Polym. Sci., 2008, 33, 683

    CAS  Google Scholar 

  19. Zhang Y. X., Song Y. H., Zheng Q., Chin. J. Polym. Sci., 2013, 31, 325

    CAS  Google Scholar 

  20. Zhu Y. L., Lu Z. Y., Milano G., Shi A. C., Sun Z. Y., Phys. Chem. Chem. Phys., 2016, 18, 9799

    CAS  Google Scholar 

  21. Litvinov V. M., Orza R. A., Klueppel M., van D. M., Magusin P. C. M. M., Macromolecules, 2011, 44, 4887

    CAS  Google Scholar 

  22. Harton S. E., Kumar S. K., Yang H. C., Koga T., Hicks K., Lee E., Mijovic J., Liu M., Vallery R. S., Gidley D. W., Macromolecules, 2010, 43, 7, 3415

    Google Scholar 

  23. Berriot J., Montes H., Lequeux F., Long D., Sotta P., Macromolecules, 2002, 35 (26), 9756

    CAS  Google Scholar 

  24. Cui W. Z., You W., Yu W., Macromolecules, 2021, 54, 824

    CAS  Google Scholar 

  25. Kaur M., Mubarak N. M., Chin B. L. F., Khalid M., Karri R. R., Walvekar R., Abdullah E. C., Tanjung F. A., Mater. Sci. Eng., 2020, 943, 012021

    CAS  Google Scholar 

  26. Filippone G., de Luna M. S., Macromolecules, 2012, 45, 8853

    CAS  Google Scholar 

  27. Wang Y, Qu R. J., Pan Y. K., Luo Y. X., Zhang Y., Sun C. M., Ji C. N., Prog. Org. Coat., 2022, 163, 106631

    CAS  Google Scholar 

  28. Rathi A., Kundalwal S. I., Polym. Composites., 2020, 41, 2491

    CAS  Google Scholar 

  29. Wu C., Wu R. D., Tam L. H., Nanotechnology, 2021, 32, 325705

    CAS  Google Scholar 

  30. Zhao H. W., Guo L., Adv. Mater., 2017, 29, 1702903

    Google Scholar 

  31. Yu Y. D., Kong K. R., Tang R. K., Liu Z. M., ACS Nano, 2022, 16, 7926

    CAS  PubMed  Google Scholar 

  32. Liu S., Tian X. Y., Zhang X. S., Xu C. Z., Wang L. L., Xia Y. Z., Chin. Chem. Lett., 2022, 33, 2205

    CAS  Google Scholar 

  33. Su L. Y., Ma X. Y., Wang J., Zhai R., Song C. D., Liu X. C., Teng C., Ceram. Int., 2022, 48, 26013

    CAS  Google Scholar 

  34. Chen L., Zhou W. M., Lu J., Li J., Zhang W. H., Huang N. D., Wu L. H., Li L. B., Macromolecules, 2015, 48, 7923

    CAS  Google Scholar 

  35. Gao Y. Y., Hu F. Y., Wu Y. P., Liu J., Zhang L. Q., Comp. Mater. Sci., 2018, 142, 192

    CAS  Google Scholar 

  36. Shi R., Qian H. J., Lu Z. Y., Phys. Chem. Chem. Phys., 2019, 21, 7115

    CAS  PubMed  Google Scholar 

  37. Shi R., Qian H. J., Lu Z. Y., Phys. Chem. Chem. Phys., 2017, 19, 16524

    CAS  PubMed  Google Scholar 

  38. Kremer K., Grest G. S., J. Chem. Phys., 1990, 92, 5057

    CAS  Google Scholar 

  39. Dai L. J., Fu C. L., Zhu Y. L., Sun Z. Y., J. Chem. Phys., 2019, 150, 184909

    Google Scholar 

  40. Yue T. K., Zhang Z. Y., Li S., Zhao H. H., Duan P. W., Zhang G. G., Zhang L. Q., Liu J., Nano Energy, 2022, 101, 107584

    CAS  Google Scholar 

  41. Barr S. A., Kedziora G. S., Ecker A. M., Moller J. C., Berry R. J., Breitzman T. D., J. Chem. Phys., 2016, 144, 244904

    PubMed  Google Scholar 

  42. Zhu Y. L., Liu H., Li Z. W., Qian H. J., Milano G., Lu Z. Y, J. Comput. Chem., 2013, 34, 2197

    CAS  PubMed  Google Scholar 

  43. Shi R., Li S. J., Yu L. X. Z., Qian H. J., Lu Z. Y., Soft Mater., 2020, 18, 323

    Google Scholar 

  44. Schmidt J., Marques M. R. G., Botti S., Marques M. A. L., Comput. Mater., 2019, 5, 83

    Google Scholar 

  45. Liu H., Fu Z., Yang K., Xu X., Bauchy M., Non-Cryst. Solids., 2019, 119419

    Google Scholar 

  46. Chang Z. C., Wang Y. F., Zhang Z. Y, Gao K., Hou G. Y., Shen J. X., Zhang L. Q., Liu J., Polymer, 2021, 228, 123895

    CAS  Google Scholar 

  47. Shi R., Yu L. X. Z., Zhang N. B. Q., Yang Y., Lu Z. Y., Qian H. J., ACS Macro. Lett., 2023, 12, 1052

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos.21833008 and 52293471) and the National Key R&D Program of China (No.2022YFB3707303).

We are grateful for the essential support of the Network and Computing Center, CIAC, CAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoyan Sun.

Ethics declarations

SUN Zhaoyan is a youth executive editorial board member for Chemical Research in Chinese Universities and was not involved in the editorial review or the decision to publish this article. The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, J., Sun, Z. Stress Transfer in Polymer Nanocomposites: A Coarse-grained Molecular Dynamics Study. Chem. Res. Chin. Univ. 39, 741–749 (2023). https://doi.org/10.1007/s40242-023-3176-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-023-3176-0

Keywords

Navigation