Skip to main content
Log in

pH-Induced Size Regulation of Ru Nanocrystals and the Applications Towards Proton Exchange Membrane Water Electrolysis

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Ruthenium(Ru) and its derivatives have been widely studied as oxygen evolution reaction(OER) electrocatalysts in acidic water electrolysis due to their inherent electronic properties and high oxygen evolution activity. A facile pH-induced size regulation approach for Ru nanocrystals has been developed by introducing NaOH and CH3COOH in a polyol system. The size of Ru particles decreases with the increase of the dosage of NaOH and increases at a certain dosage of CH3COOH. The formation mechanism of ruthenium nanocrystals was investigated through a series of characterizations and kinetic experiments. The electrocatalytic activities of the electrocatalysts derived from these Ru particles were studied toward OER to investigate the influence of particle size on their electrocatalytic properties. Moreover, the prepared electrocatalysts were applied as anodic materials in the proton exchange membrane(PEM) electrolysis cell and demonstrated excellent performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lyons M. E. G., Floquet S., J. Phys. Chem., 2011, 13(12), 5314

    CAS  Google Scholar 

  2. Chu S., Majumdar A., Nature, 2012, 488(7411), 294

    Article  CAS  PubMed  Google Scholar 

  3. Cherevko S., Zeradjanin A. R., Topalov A. A., Kulyk N., Katsounaros I., Mayrhofer K. J. J., J. Chem. Cat. Chem., 2014, 6(8), 2219

    CAS  Google Scholar 

  4. Jiao Y., Zheng Y., Jaroniec M., Qiao S. Z., J. Chem. Soc. Rev., 2015, 44(8), 2060

    Article  CAS  Google Scholar 

  5. Li L., Gu Q., Tang Z., Chen X., Tan Y., Li Q., Yu X., J. Mater. Chem., 2013, 1(39), 12263

    Article  CAS  Google Scholar 

  6. Zou X., Zhang Y., J. Chem. Soc. Rev., 2015, 44(15), 5148

    Article  CAS  Google Scholar 

  7. Wei Z., Sun J., Li Y., Datye A. K., Wang Y., J. Chem. Soc. Rev., 2012, 41(24), 7994

    Article  CAS  Google Scholar 

  8. Anantharaj S., Ede S. R., Karthick K., Sam Sankar S., Sangeetha K., Karthik P. E., Kundu S., J. Energy & Environ. Sci., 2018, 11(4), 744

    Article  CAS  Google Scholar 

  9. Forgie R., Bugosh G., Neyerlin K. C., Liu Z. Strasser P., Journal Electrochemical and Solid State Letters., 2010, 13(4), B36

    Article  CAS  Google Scholar 

  10. Hodnik N., Jovanovič P., Pavlišič A., Jozinović B., Zorko M., Bele M., Šelih V. S., Šala M., Hočevar S. Gaberšček M., J. Phy. Chem., 2015, 119(18), 10140

    CAS  Google Scholar 

  11. Cherevko S., Zeradjanin A. R., Topalov A. A., Kulyk N., Katsounaros I., Mayrhofer K. J. J., J. Chem. Cat. Chem., 2014, 6(8), 2219

    CAS  Google Scholar 

  12. Liu Y., Zhou D., Deng T., He G., Chen A., Sun X., Yang Y. Miao P., J. Chem. Sus. Chem., 2021, 14(24), 5359

    Article  CAS  Google Scholar 

  13. Axet M. R., Philippot K., J. Chem. Rev., 2020, 120(2), 1085

    Article  CAS  Google Scholar 

  14. Chen L., Li Y., Liang X., J. Adv. Fun. Mater., 2021, 31(11), 2007344

    Article  CAS  Google Scholar 

  15. Gao K., Wang Y., Wang Z., Zhu Z., Wang J., Luo Z., Zhang C., Huang X., Zhang H., Huang W., J. Chem. Comm., 2018, 54(36), 4613

    Article  CAS  Google Scholar 

  16. Zhao M., Chen Z., Lyu Z., Hood Z. D., Xie M., Vara M., Chi M., Xia Y., J. ACS, 2019, 141(17), 7028

    CAS  Google Scholar 

  17. Viau G., Brayner R., Poul L. G. C., Chakroune N., Lacaze E., Fiévet-Vincent F., Fiévet F., J. Chem. Mater., 2003, 15, 486

    Article  CAS  Google Scholar 

  18. Yuan Z.-F., Zhao W.-N., Liu Z.-P., Xu B.-Q., J. J. Journal of Catalysis, 2017, 353, 37

    CAS  Google Scholar 

  19. Yang J., Deivaraj T. C., Too H. P., Lee J. Y., J. Langmuir: the ACS Journal of Surfaces and Colloids, 2004, 20(10), 4241

    Article  CAS  Google Scholar 

  20. Paoli E. A., Masini F., Frydendal R., Deiana D., Schlaup C., Malizia M., Hansen T. W., Horch S., Stephens I. E. L., Chorkendorff I., J. Chem. Sci., 2015, 6(1), 190

    CAS  Google Scholar 

  21. Kim S., Kim B.-J., Jeong H. G., Rhee C. K., Lim T. H., J. Bull. Korean Chem. Soc., 2010, 31(12), 3852

    Article  CAS  Google Scholar 

  22. Wojnicki M., Fitzner K., Luty-Błocho M., J. Colloid Interface Sci., 2016, 465, 190

    Article  CAS  PubMed  Google Scholar 

  23. Wang C., Geng Q., Fan L., Li J.-X., Ma L., Li C., J. Nano Research Energy, 2023, 2, 9120070

    Article  Google Scholar 

  24. Huang H., Kim H., Lee A., Kim S., Lim W.-G., Park C.-Y., Kim S., Kim S.-K., Lee J., J. Nano Energy, 2021, 88, 106276

    Article  CAS  Google Scholar 

  25. Wang Y., Ren J., Deng K., Gui L., Tang Y., J. Chem. Inform., 2000, 31, 1622

    Google Scholar 

  26. Yang T.-H., Gilroy K. D., Xia Y., J. Chem. Sci., 2017, 8(10), 6730

    CAS  Google Scholar 

  27. Watzky M. A., Finke R. G., J. Am. Chem. Soc., 1997, 119(43), 10382

    Article  CAS  Google Scholar 

  28. Peng H C., J. Am. Chem. Soc., 2015, 137, (25), 7947

    Article  PubMed  Google Scholar 

  29. Wu D., Wei Y., Ren X., Ji X., Liu Y., Guo X., Liu Z., Asiri A. M., Wei Q. Sun X., J. Adv. Mater., 2018, 30(9), 1705366

    Article  Google Scholar 

  30. Sun J., Jing Y., Jia Y., Tillard M., Belin C., J. Mater. Lett., 2005, 59(29), 3933

    Article  CAS  Google Scholar 

  31. Zahmakıran M., Özkar S., J. Mol. Catal A: Chem., 2006, 258(1), 95

    Article  Google Scholar 

  32. Shan J., Ling T., Davey K., Zheng Y. Qiao S. Z., J. Adv. Mater., 2019, 31(17), 1900510

    Article  Google Scholar 

  33. Salehmin M. N. I., Husaini T., Goh J., Sulong A. B., Journal Energy Conversion and Management, 2022, 268, 115985

    Article  CAS  Google Scholar 

  34. Ahmed K., Jang M., Park M. G., Chen Z, Fowler M., Electrochem, 2022, 3, 581

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No.2018YFA0702000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Liang.

Additional information

Conflicts of Interest

The authors declare no conflicts of interest.

Supporting Information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Hao, Y., Yang, Z. et al. pH-Induced Size Regulation of Ru Nanocrystals and the Applications Towards Proton Exchange Membrane Water Electrolysis. Chem. Res. Chin. Univ. 39, 647–653 (2023). https://doi.org/10.1007/s40242-023-3084-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-023-3084-3

Keywords

Navigation