Skip to main content
Log in

Zeolite-encaged Ultrasmall Pt-Zn Species with Trace Amount of Pt for Efficient Propane Dehydrogenation

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Propane dehydrogenation(PDH) has become a globe-welcoming technology to meet the massive demand for propylene, but the most commonly used Pt-based catalysts suffer from quick sintering, poor selectivity for propylene, and unsatisfied Pt utilization. Herein, a series of Silicalite-1(S-1) zeolite-encaged ultrasmall Pt-Zn clusters with a trace amount of Pt[40–180 ppm(parts per million)] were developed by using a one-pot ligand-protected direct H2 reduction method. Interestingly, the extremely low amount of Pt can significantly promote the activity of zeolite-encaged Zn catalysts in PDH reactions. Thanks to the high Pt dispersion, the synergy between Pt and Zn species, and the confinement effect of zeolites, the optimized PtZn@S-1 catalyst with 180 ppm Pt and 1.88%(mass fraction) Zn, exhibited an extraordinarily high propane conversion(33.9%) and propylene selectivity(99.5%) at 550 °C with a weight hourly space velocity (WHSV) of 8 h−1, affording an extremely high propylene formation rate of \(340.7\,{\rm{mo}}{{\rm{l}}_{{{\rm{C}}_3}{{\rm{H}}_6}}} \cdot {g_{{\rm{Pt}}}}^{ - 1} \cdot {{\rm{h}}^{ - 1}}\). This work provides a reference for the preparation of zeolite-encaged metal catalysts with high activity and noble metal utilization in PDH reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen S., Chang X., Sun G., Zhang T., Xu Y., Wang Y., Pei C., Gong J., Chem. Soc. Rev., 2021, 50, 3315

    Article  CAS  PubMed  Google Scholar 

  2. Monai M., Gambino M., Wannakao S., Weckhuysen B. M., Chem. Soc. Rev., 2021, 50, 11503

    Article  CAS  PubMed  Google Scholar 

  3. Qu Z., Sun Q., Inorg. Chem. Front., 2022, 9, 3095

    Article  CAS  Google Scholar 

  4. Zhang F., Nie Y.-Y., Miao C.-X., Yue Y.-H., Hua W.-M., Gao Z., Chem. J. Chinese. Universities, 2012, 33(1), 96

    Google Scholar 

  5. Liu L., Díaz U., Arenal R., Agostini G., Concepcion P., Corma A., Nat. Mater., 2017, 16, 132

    Article  CAS  PubMed  Google Scholar 

  6. Xu G.-H., Yu J.-P., Xu H.-S., Li C.-C., Huang J.-H., Wang P.-F., J. Inorg. Mater., 2019, 34, 546

    Article  Google Scholar 

  7. Sun Q., Wang N., Fan Q., Zeng L., Mayoral A., Miao S., Yang R., Jiang Z., Zhou W., Zhang J., Zhang T., Xu J., Zhang P., Cheng J., Yang D.-C., Jia R., Li L., Zhang Q., Wang Y., Terasaki O., Yu J., Angew. Chem. Int. Ed., 2020, 59, 19450

    Article  CAS  Google Scholar 

  8. Wang Y., Hu Z.-P., Lv X., Chen L., Yuan Z.-Y., J. Catal., 2020, 385, 61

    Article  CAS  Google Scholar 

  9. Xie L., Chai Y., Sun L., Dai W., Wu G., Guan N., Li L., J. Energy. Chem., 2021, 57, 92

    Article  CAS  Google Scholar 

  10. Liu L., Lopez-Haro M., Lopes C. W., Li C., Concepcion P., Simonelli L., Calvino J. J., Corma A., Nat. Mater., 2019, 18, 866

    Article  CAS  PubMed  Google Scholar 

  11. Ryoo R., Kim J., Jo C., Han S. W., Kim J.-C., Park H., Han J., Shin H. S., Shin J. W., Nature, 2020, 585, 221

    Article  CAS  PubMed  Google Scholar 

  12. Chai Y., Dai W., Wu G., Guan N., Li L., Acc. Chem. Res., 2021, 54, 2894

    Article  CAS  PubMed  Google Scholar 

  13. Zhang B., Li G., Liu S., Qin Y., Song L., Wang L., Zhang X., Liu G., ACS Catal., 2022, 12, 1310

    Article  CAS  Google Scholar 

  14. Sun Q., Wang N., Yu J., Adv. Mater., 2021, 33, e2104442

  15. Wang N., Sun Q., Yu J., Adv. Mater., 2019, 31, e1803966

  16. Chai Y., Shang W., Li W., Wu G., Dai W., Guan N., Li L., Adv. Sci., 2019, 6, 1900299

    Article  Google Scholar 

  17. Zhang B., Li G., Zhai Z., Chen D., Tian Y., Yang R., Wang L., Zhang X., Liu G., AIChE J, 2021, 67, e17295

    Article  CAS  Google Scholar 

  18. Sun Q., Wang N., Zhang T., Bai R., Mayoral A., Zhang P., Zhang Q., Terasaki O., Yu J., Angew. Chem. Int. Ed., 2019, 58, 18570

    Article  CAS  Google Scholar 

  19. Wang W., Sun Q., Wang Q., Li S., Xu J., Deng F., Catal. Sci. Technol., 2022, 12, 4442

    Article  CAS  Google Scholar 

  20. Zhang Q., Gao S., Yu J., Chem. Rev., 2023, 123, 6039

    Article  CAS  PubMed  Google Scholar 

  21. Li J., Zhang K., Wang N., Sun Q., Chem. J. Chinese. Universities, 2022, 43(5), 20220032

    Google Scholar 

  22. Liu Y., Wang L., Xiao F.-S., Chem. Res. Chinese Universities, 2022, 38(3), 671

    Article  CAS  Google Scholar 

  23. Deng X., Qin B., Liu R., Qin X., Dai W., Wu G., Guan N., Ma D., Li L., J. Am. Chem. Soc., 2021, 143, 20898

    Article  CAS  PubMed  Google Scholar 

  24. Wang C., Guan E., Wang L., Chu X., Wu Z., Zhang J., Yang Z., Jiang Y., Zhang L., Meng X., Gates B. C., Xiao F.-S., J. Am. Chem. Soc., 2019, 141, 8482

    Article  CAS  PubMed  Google Scholar 

  25. Yang Z., Li H., Zhou H., Wang L., Wang L., Zhu Q., Xiao J., Meng X., Chen J., Xiao F.-S., J. Am. Chem. Soc., 2020, 142, 16429

    Article  CAS  PubMed  Google Scholar 

  26. Xu H., Wu P., Natl. Sci. Rev., 2022, 9, nwac045

  27. Wang S., Zhang L., Wang P., Jiao W., Qin Z., Dong M., Wang J., Olsbye U., Fan W., Nat. Catal., 2022, 5, 1038

    Article  CAS  Google Scholar 

  28. Zhu Q., Zhou H., Wang L., Wang C., Wang H., Fang W., He M., Wu Q., Xiao F.-S., Nat. Catal., 2022, 5, 1030

    Article  CAS  Google Scholar 

  29. Jin Z., Wang L., Zuidema E., Mondal K., Zhang M., Zhang J., Wang C., Meng X., Yang H., Mesters C., Xiao F.-S., Science, 2020, 367, 193

    Article  CAS  PubMed  Google Scholar 

  30. Sun Q., Wang N., Xu Q., Yu J., Adv. Mater., 2020, 32, 2001818

    Article  CAS  Google Scholar 

  31. Wang N., Sun Q., Bai R., Li X., Guo G., Yu J., J. Am. Chem. Soc., 2016, 138, 7484

    Article  CAS  PubMed  Google Scholar 

  32. Wang N., Sun Q., Zhang T., Mayoral A., Li L., Zhou X., Xu J., Zhang P., Yu J., J. Am. Chem. Soc., 2021, 143, 6905

    Article  CAS  PubMed  Google Scholar 

  33. Wei S., Dai H., Long J., Lin H., Gu J., Zong X., Yang D., Tang Y., Yang Y., Dai Y., Chem. Eng. J., 2023, 455, 140726

    Article  CAS  Google Scholar 

  34. Zhao D., Tian X., Doronkin D. E., Han S., Kondratenko V. A., Grunwaldt J.-D., Perechodjuk A., Vuong T. H., Rabeah J., Eckelt R., Rodemerck U., Linke D., Jiang G., Jiao H., Kondratenko E. V., Nature, 2021, 599, 234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ren Y.-J., Hua W.-M., Yue Y.-H., Gao Z., Chem. J. Chinese Universities, 2009, 30(6), 1162

    CAS  Google Scholar 

  36. Chen M., Gupta G., Ordonez C. W., Lamkins A. R., Ward C. J., Abolafia C. A., Zhang B., Roling L. T., Huang W., J. Am. Chem. Soc., 2021, 143, 20907

    Article  CAS  PubMed  Google Scholar 

  37. Yu C., Ge Q., Xu H., Li W., Catal. Lett., 2006, 112, 197

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No.2022YFA1506000), the Technology Development Project from SINOPEC (No.LZSH-2022-JS-81), the Natural Science Foundation of Jiangsu Province, China(No.BK20210698), the Jiangsu Distinguished Professor Program, China and the Gusu Innovation and Entrepreneurship Leading Talents Program, China (No.ZXL2022497).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiming Sun.

Ethics declarations

The authors declare no conflicts of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, Z., Zhang, T., Yin, X. et al. Zeolite-encaged Ultrasmall Pt-Zn Species with Trace Amount of Pt for Efficient Propane Dehydrogenation. Chem. Res. Chin. Univ. 39, 870–876 (2023). https://doi.org/10.1007/s40242-023-3063-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-023-3063-8

Keywords

Navigation