Skip to main content
Log in

Ferrous Oxide Nanoparticles Induced Abnormal Cardiac Development in Zebrafish Through Hypoxia and Ferroptosis

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Ferrous oxide nanoparticles(nFeO) have potential applications in biomedicine, industrial processes, and waste water treatment. However, the biocompatibility of nFeO remains uncertain. In this study, we synthesized rhombus-shaped nFeO and exposed them to zebrafish embryos to investigate the bio-safety of nFeO. Our results showed that exposure to nFeO led to pericardial edema, heart bleeding, and enlarged ventricles. Furthermore, the content of dissolved oxygen decreased. Fe2+ ions, which were released from the core of nFeO, were oxidized into Fe3+. This caused the overexpression of tfa and fpn genes, which carried Fe3+ into and out of the cell membrane, respectively. The overload of Fe3+ caused ferroptosis in zebrafish larvae, which was evidenced by the overexpression of the marker gene ptgs2 and the marker production malondialdehyde(MDA) of ferroptosis. However, neither the ferrostatin-1(Fer-1) inhibitor nor deferoxiamine(DFO) could completely rescue the toxicity caused by nFeO. We found that co-treatment of nFeO with CaO2, a dissolved oxygen donor, and Fer-1 or DFO could totally rescue pericardial edema and heart bleeding. Our results provide new knowledge that both hypoxia and ferroptosis play important roles in nFeO-induced zebrafish cardiac developmental toxicity, which is beneficial for the development and safe application of iron-based nanomaterials in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fernandes N., Rodrigues C. F., Moreira A. F., Correia I. J., Biomater. Sci., 2020, 8, 2990

    Article  CAS  PubMed  Google Scholar 

  2. Miao Y., Chen Y., Xue F., Liu K., Zhu B., Gao J., Yin J., Zhang C., Li G., EBioMedicine, 2022, 76, 103847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Adegbeye M. J., Elghandour M. M. M. Y., Barbabosa-Pliego A., Monroy J. C., Mellado M., Ravi Kanth Reddy P., Salem A. Z. M., J. Equine. Vet. Sci., 2019, 78, 29

    Article  PubMed  Google Scholar 

  4. Lian L., Lv J., Wang X., Lou D., J. Chromatogr. A, 2018, 1534, 1

    Article  CAS  PubMed  Google Scholar 

  5. Nezamzadeh-Ejhieh A., Shirzadi A., Chemosphere, 2014, 107, 136

    Article  CAS  PubMed  Google Scholar 

  6. Lei C., Sun Y., Tsang D. C. W., Lin, D., Environ. Pollut., 2018, 232, 10

    Article  CAS  PubMed  Google Scholar 

  7. Couto D., Freitas M., Vilas-Boas V., Dias I., Porto G., Lopez-Quintela M. A., Rivas J., Freitas P., Carvalho F., Fernandes E., Toxicol. Lett., 2014, 225, 57

    Article  CAS  PubMed  Google Scholar 

  8. Sheykhbaglou R., Sedghi M., Fathi-Achachlouie B., An. Acad. Bras. Cienc., 2018, 90, 485

    Article  CAS  PubMed  Google Scholar 

  9. Al-Rawi M., Al-Mudallal N., Taha A. A., Arch Razi Inst., 2021, 76, 795

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Gore A. V., Pillay L. M., Venero Galanternik M., Weinstein B. M., Wiley Interdiscip Rev. Dev. Biol., 2018, 7, e312

    Article  PubMed  PubMed Central  Google Scholar 

  11. Busse B., Galloway J. L., Gray R. S., Harris M. P., Kwon R. Y., J. Orthop. Res., 2020, 38, 925

    Article  PubMed  Google Scholar 

  12. Horzmann K. A., Freeman J. L., Toxicol Sci., 2018, 163, 5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. MacRae C. A., Peterson R. T., Nat. Rev. Drug Discov., 2015, 14, 721

    Article  CAS  PubMed  Google Scholar 

  14. Bambino K., Chu J., Curr. Top Dev. Biol., 2017, 124, 331

    Article  CAS  PubMed  Google Scholar 

  15. Lebedeva L., Zhumabayeva B., Gebauer T., Kisselev I., Aitasheva Z., Zebrafish, 2020, 17, 359

    Article  PubMed  Google Scholar 

  16. Zhou Z., Pope J. R., Johnson R. L., Jamieson W. D., Worthy H. L., Kailasam S., Ahmed R. D., Taban I., Auhim H. S., Watkins D. W., Rizkallah P. J., Castell O. K., Jones D. D., Angew. Chem. Int. Ed. Engl., 2017, 56, 6492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zheng N., Sun X., Shi Y., Chen L., Wang L., Cai H., Han C., Liao T., Yang C., Zuo Z., He C., Sci. Total Environ., 2022, 158715

  18. Lin S., Zhao Y., Ji Z., Ear J., Chang C. H., Zhang H., Low-Kam C., Yamada K., Meng H., Wang X., Liu R., Pokhrel S., Madler L., Damoiseaux R., Xia T., Godwin H. A., Lin S., Nel A. E., Small, 2013, 9(9/10), 1776

    Article  CAS  PubMed  Google Scholar 

  19. Fang X., Wang H., Han D., Xie E., Yang X., Wei J., Gu S., Gao F., Zhu N., Yin X., Cheng Q., Zhang P., Dai W., Chen J., Yang F., Yang H. T., Linkermann A., Gu W., Min J., Wang F., Proc. Natl. Acad. Sci. USA, 2019, 116, 2672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yalcin H. C., Amindari A., Butcher J. T., Althani A., Yacoub M., Dev. Dyn., 2017, 246, 868

    Article  PubMed  Google Scholar 

  21. Meng Y., Zhong K., Xiao J., Huang Y., Wei Y., Tang L., Chen S., Wu J., Ma J., Cao Z., Liao X., Lu H., Chemosphere, 2020, 255, 126889

    Article  CAS  PubMed  Google Scholar 

  22. Li K., Wu J. Q., Jiang L. L., Shen L. Z., Li J. Y., He Z. H., Wei P., Lv Z., He M. F., Chemosphere, 2017, 171, 40

    Article  PubMed  Google Scholar 

  23. Battaglia A. M., Chirillo R., Aversa I., Sacco A., Costanzo F., Biamonte F., Cells, 2020, 9, 6

    Article  Google Scholar 

  24. Li J., Cao F., Yin H. L., Huang Z. J., Lin Z. T., Mao N., Sun B., Wang G., Cell Death Dis., 2020, 11, 88

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gao M., Monian P., Quadri N., Ramasamy R., Jiang X., Mol. Cell, 2015, 59, 298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Park E., Chung S. W., Cell Death Dis., 2019, 10, 822

    Article  PubMed  PubMed Central  Google Scholar 

  27. Li Y., Zeng X., Lu D., Yin M., Shan M., Gao Y., Hum. Reprod., 2021, 36, 951

    Article  CAS  PubMed  Google Scholar 

  28. Ma R., Fang L., Chen L., Wang X., Jiang J., Gao L., Theranostics, 2022, 12, 2266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gong Y., Wang N., Liu N., Dong H., DNA Cell Biol., 2019, 38, 725

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Z., Guo M., Li Y., Shen M., Kong D., Shao J., Ding H., Tan S., Chen A., Zhang F., Zheng S., Autophagy, 2020, 16, 1482

    Article  CAS  PubMed  Google Scholar 

  31. Liu P., Feng Y., Li H., Chen X., Wang G., Xu S., Li Y., Zhao L., Cell Mol. Biol. Lett., 2020, 25, 10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen C., Chen J., Wang Y., Liu Z., Wu Y., J. Biol. Chem., 2021, 296, 100187

    Article  CAS  PubMed  Google Scholar 

  33. Small C. D., El-Khoury M., Deslongchamps G., Benfey T. J., Crawford B. D., J. Dev. Biol., 2020, 8, 1

    Article  Google Scholar 

  34. Fuhrmann D. C., Mondorf A., Beifuss J., Jung M., Brune B., Redox Biol., 2020, 36, 101670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee C., Kim J. Y., Lee W. I., Nelson K. L., Yoon J., Sedlak D. L., Environ. Sci. Technol., 2008, 42, 4927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mandic M., Best C., Perry S. F., Proc. Biol. Sci., 2020, 287, 20200798

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Baba Y., Higa J. K., Shimada B. K., Horiuchi K. M., Suhara T., Kobayashi M., Woo J. D., Aoyagi H., Marh K. S., Kitaoka H., Matsui T., Am. J. Physiol. Heart Circ. Physiol., 2018, 314, H659

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.42177411), the Youth Innovation Fund Project of Xiamen, China (No.3502Z20206087), and the Guiding Project of Science and Technology in Medical and Health Field of Quanzhou City, China(No.2022N029S).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuzhen Chen or Zhenghong Zuo.

Additional information

Conflicts of Interest

The authors declare no conflicts of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, N., Chen, X., Zhan, R. et al. Ferrous Oxide Nanoparticles Induced Abnormal Cardiac Development in Zebrafish Through Hypoxia and Ferroptosis. Chem. Res. Chin. Univ. 39, 502–507 (2023). https://doi.org/10.1007/s40242-023-3055-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-023-3055-8

Keywords

Navigation