Skip to main content
Log in

Preparation of Photo-responsive DNA Supramolecular Hydrogels and Their Application as UV Radiometers

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Ultraviolet light(UV) is an essential component of ambient light, but high dose UV would damage genome DNA. While semiconductors and soft materials have been employed to detect the UV, the complex process and the instrumental requirement have limited the application in daily life. In this study, taking advantage of sequence designability, a series of hydrogels with different gel-sol transition rates was constructed under the same UV intensity by introducing competing hybridization to tune the stability of the molecular network. Through estimating the transition time between each system under UV light irradiation, the intensity of UV could be roughly estimated, which provided a convenient method for the visual detection of UV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Williamson C. E., Rose K. C., Science, 2010, 329, 637

    Article  CAS  Google Scholar 

  2. Fuentes-León F., Peres de Oliveira A., Quintero-Ruiz N., Munford V., Satoru Kajitani G., Coimbra Brum A., Schuch A. P., Colepicolo P., Sánchez-Lamar A., Menck C. F. M., Photochem. Photobiol., 2020, 96, 1215

    Article  Google Scholar 

  3. Stein K. R., Pearce D. J., Feldman S. R., J. Dermatolog. Treat., 2008, 19, 141

    Article  Google Scholar 

  4. Dawe R. S., Cameron H., Yule S., Man I., Ibbotson S. H., Ferguson J., Arch. Dermatol., 2002, 138, 1071

    Article  Google Scholar 

  5. Nair S., Kekatpure V. D., Judson B. L., Rifkind A. B., Granstein R. D., Boyle J. O., Subbaramaiah K., Guttenplan J. B., Dannenberg A. J., Cancer Prev. Res., 2009, 2, 895

    Article  CAS  Google Scholar 

  6. Yin C. X., Yang T., Zhang W., Zhou X. D., Jiao K., Chinese Chem. Lett., 2010, 21, 716

    Article  CAS  Google Scholar 

  7. Brash D. E., Haseltine W. A., Nature, 1982, 298, 189

    Article  CAS  Google Scholar 

  8. Madronich S., De Gruijl F. R., Nature, 1993, 366, 23

    Article  CAS  Google Scholar 

  9. Bald T., Quast T., Landsberg J., Rogava M., Glodde N., Lopez-Ramos D., Kohlmeyer J., Riesenberg S., Van Den Boorn-Konijnenberg D., Hömig-Hölzel C., Reuten R., Schadow B., Weighardt H., Wenzel D., Helfrich I., Schadendorf D., Bloch W., Bianchi M. E., Lugassy C., Barnhill R. L., Koch M., Fleischmann B. K., Förster I., Kastenmüller W., Kolanus W., Hölzel M., Gaffal E., Tüting T., Nature, 2014, 507, 109

    Article  CAS  Google Scholar 

  10. Sang L., Liao M., Sumiya M., Sensors(Switzerland), 2013, 13, 10482

    CAS  Google Scholar 

  11. Tian W., Lu H., Li L., Nano Res., 2015, 8, 382

    Article  CAS  Google Scholar 

  12. Razeghi M., Rogalski A., J. Appl. Phys., 1996, 79, 7433

    Article  CAS  Google Scholar 

  13. Kosyachenko L. A., Sklyarchuk V. M., Sklyarchuk Y. F., Solid. State. Electron., 1998, 42, 145

    Article  CAS  Google Scholar 

  14. Pearton S. J., Yang J., Cary P. H., Ren F., Kim J., Tadjer, M. J., Mastro M. A., Appl. Phys. Rev., 2018, 5, 011301

    Article  Google Scholar 

  15. Boruah D. B., Nanoscale Adv., 2019, 1, 2059

    Article  Google Scholar 

  16. Fang W., Xie M., Hou X., Liu X., Zuo X., Chao J., Wang L., Fan C., Liu H., Wang L., J. Am. Chem. Soc., 2020, 142, 8782

    Article  Google Scholar 

  17. Yang Y., Guan L., Jiang H., Duan L., Gao G., J. Mater. Chem. C, 2018, 6, 7619

    Article  CAS  Google Scholar 

  18. Li Z., Chen H., Li B., Xie Y., Gong X., Liu X., Li H., Zhao Y., Adv. Sci., 2019, 6, 1

    Google Scholar 

  19. Matsubara K., Watanabe M., Takeoka Y., Angew. Chemie — Int. Ed., 2007, 46, 1688

    Article  CAS  Google Scholar 

  20. Cheng E., Xing Y., Chen P., Yang., Sun Y., Zhou D., Xu T., Fan Q., Liu D., Angew. Chemie-Int. Ed., 2009, 48, 7660

    Article  CAS  Google Scholar 

  21. Xing Y., Cheng E., Yang Y., Chen P., Zhang T., Sun Y., Yang Z., Liu D., Adv. Mater., 2011, 23, 1117

    Article  CAS  Google Scholar 

  22. Um S. H., Lee J. B., Park N., Kwon S. Y., Umbach C. C., Luo D., Nat. Mater., 2006, 5, 797

    Article  CAS  Google Scholar 

  23. Li Y., Ding Y., Yang B., Cao T., Xu J., Dong Y., Chen Q., Xu L., Liu D., CCS Chem., 2022, 1

    Google Scholar 

  24. Mo F., Jiang K., Zhao D., Wang Y., Song J., Tan W., Adv. Drug Deliv. Rev., 2021, 168, 79

    Article  CAS  Google Scholar 

  25. Cao T., Jia H., Dong Y., Gui S., Liu D., ACS Appl. Mater. Inter., 2020, 12, 4185

    Article  CAS  Google Scholar 

  26. Shi J., Shi Z., Dong Y., Wu F., Liu D., ACS Appl. Bio Mater., 2020, 3, 2827

    Article  CAS  Google Scholar 

  27. Yang B., Zhao Z., Pan Y., Xie J., Zhou B., Li Y., Dong Y., Liu D., ACS Appl. Mater. Inter., 2021, 13, 48414

    Article  CAS  Google Scholar 

  28. Li C., Chen P., Shao Y., Zhou X., Wu Y., Yang Z., Li Z., Weil T., Liu D., Small, 2015, 11, 1138

    Article  CAS  Google Scholar 

  29. Yang B., Zhou B., Li C., Li X., Shi Z., Li Y., Zhu C., Li X., Hua Y., Pan Y., He J., Cao T., Sun Y., Liu W., Ge M., Yang Y. R., Dong Y., Liu D., Angew. Chemie — Int. Ed., 2022

    Google Scholar 

  30. Shi J., Jia H., Chen H., Wang X., Xu J. F., Ren W., Zhao J., Zhou X., Dong Y., Liu D., CCS Chem., 2019, 1, 296

    Article  CAS  Google Scholar 

  31. Liu X., Zhang J., Fadeev M., Li Z., Wulf V., Tian H., Willner I., Chem. Sci., 2019, 10, 1008

    Article  CAS  Google Scholar 

  32. Peng L., You M., Yuan Q., Wu C., Han D., Chen Y., Zhong Z., Xue J., Tan W., J. Am. Chem. Soc., 2012, 134, 12302

    Article  CAS  Google Scholar 

  33. Wang C., Fadeev M., Zhang J., Vázquez-González M., Davidson-Rozenfeld G., Tian H., Willner I., Chem. Sci., 2018, 9, 7145

    Article  CAS  Google Scholar 

  34. Kang H., Liu H., Zhang X., Yan J., Zhu Z., Peng L., Yang H., Kim Y., Tan W., Langmuir, 2011, 27, 399

    Article  CAS  Google Scholar 

  35. Asanuma H., Liang X., Nishioka H., Matsunaga D., Liu M., Komiyama M., Nat. Protoc., 2007, 2, 203

    Article  CAS  Google Scholar 

  36. Asanuma H., Takarada T., Yoshida T., Tamaru D., Liang X., Komiyama M., Angew. Chemie — Int. Ed., 2001, 40, 2671

    Article  CAS  Google Scholar 

  37. Liang X., Asanuma H., Komiyama M., J. Am. Chem. Soc., 2002, 124, 1877

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Beijing Municipality, China(No.Z180016) and the National Natural Science Foundation of China(No.21971248).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongsheng Liu, Lijin Xu or Yuanchen Dong.

Ethics declarations

The authors declare no conflicts of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Li, Y., Yang, B. et al. Preparation of Photo-responsive DNA Supramolecular Hydrogels and Their Application as UV Radiometers. Chem. Res. Chin. Univ. 39, 115–120 (2023). https://doi.org/10.1007/s40242-023-2329-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-023-2329-5

Keywords

Navigation