Skip to main content
Log in

A Supported Palladium on Gallium-based Liquid Metal Catalyst for Enhanced Oxygen Reduction Reaction

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Developing high-performance catalysts for oxygen reduction reaction to replace costly platinum-based materials is of great importance but still confronted with challenges. Herein, a kind of supported palladium liquid metal catalyst, which is prepared by galvanic replacement, surpasses commercial Pt/C and Pd/C in oxygen reduction catalysis with a higher half-wave potential of 0.92 V, mass activity of 1.85 A/mgPd at 0.90 V, and superior durability. The liquid metal support can both optimize the electronic structures of Pd sites and guarantee the dispersion of Pd atoms, which explains the enhanced activity and durability, respectively. This work opens an avenue for rational design of catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steele B. C. H., Heinzel A., Nature, 2001, 414, 345

    CAS  PubMed  Google Scholar 

  2. Li Y., Dai H., Chemical Society Reviews, 2014, 43, 5257

    Article  CAS  Google Scholar 

  3. Aurbach D., McCloskey B. D., Nazar L. F., Bruce P. G., Nature Energy, 2016, 1, 16128

    Article  CAS  Google Scholar 

  4. Debe M. K., Nature, 2012, 486, 43

    Article  CAS  Google Scholar 

  5. Seh Z. W., Kibsgaard J., Dickens C. F., Chorkendorff I., Nørskov Jens K., Jaramillo T. F., Science, 2017, 355, eaad4998

    Article  Google Scholar 

  6. Jiao Y., Zheng Y., Jaroniec M., Qiao S. Z., Chemical Society Reviews, 2015, 44, 2060

    Article  CAS  Google Scholar 

  7. Li M., Zhao Z., Cheng T., Fortunelli A., Chen C.-Y., Yu R., Zhang Q., Gu L., Merinov Boris V., Lin Z., Zhu E., Yu T., Jia Q., Guo J., Zhang L., Goddard William A., Huang Y., Duan X., Science, 2016, 354, 1414

    Article  CAS  Google Scholar 

  8. Wang Y., Wang D., Li Y., SmartMat, 2021, 2, 56

    Article  CAS  Google Scholar 

  9. Fang B., Chaudhari N. K., Kim M.-S., Kim J. H., Yu J.-S., J. Am. Chem. Soc., 2009, 131, 15330

    Article  CAS  Google Scholar 

  10. Zhang Z., Sun J., Wang F., Dai L., Angew. Chem., Int. Ed, 2018, 57, 9038

    Article  CAS  Google Scholar 

  11. Zaman S., Su Y.-Q., Dong C.-L., Qi R., Huang L., Qin Y., Huang Y.-C., Li F.-M., You B., Guo W., Li Q., Ding S., Yu Xia B., Angew. Chem. Int. Ed, 2022, 61, e202115835

    Article  CAS  Google Scholar 

  12. Wang J., Huang Z., Liu W., Chang C., Tang H., Li Z., Chen W., Jia C., Yao T., Wei S., Wu Y., Li Y., J. Am. Chem. Soc., 2017, 139, 17281

    Article  CAS  Google Scholar 

  13. Yin P., Yao T., Wu Y., Zheng L., Lin Y., Liu W., Ju H., Zhu J., Hong X., Deng Z., Zhou G., Wei S., Li Y., Angew. Chem., Int. Ed, 2016, 55, 10800

    Article  CAS  Google Scholar 

  14. Chen Y., Li Z., Zhu Y., Sun D., Liu X., Xu L., Tang Y., Advanced Materials, 2019, 31, 1806312

    Article  Google Scholar 

  15. Zhou T., Du Y., Yin S., Tian X., Yang H., Wang X., Liu B., Zheng H., Qiao S., Xu R., Energy & Environmental Science, 2016, 9, 2563

    Article  CAS  Google Scholar 

  16. Yuan W.-K., Chem. Eng. Sci., 2007, 62, 3335

    Article  CAS  Google Scholar 

  17. Huang L., Zheng X., Gao G., Zhang H., Rong K., Chen J., Liu Y., Zhu X., Wu W., Wang Y., Wang J., Dong S., J. Am. Chem. Soc., 2021, 143, 6933

    Article  CAS  Google Scholar 

  18. Zamora Zeledón J. A., Stevens M. B., Gunasooriya G. T. K. K., Gallo A., Landers A. T., Kreider M. E., Hahn C., Nørskov J. K., Jaramillo T. F., Nature Communications, 2021, 12, 620

    Article  Google Scholar 

  19. Slanac D. A., Hardin W. G., Johnston K. P., Stevenson K. J., J. Am. Chem. Soc., 2012, 134, 9812

    Article  CAS  Google Scholar 

  20. Li X., Li X., Liu C., Huang H., Gao P., Ahmad F., Luo L., Ye Y., Geng Z., Wang G., Si R., Ma C., Yang J., Zeng J., Nano Letters, 2020, 20, 1403

    Article  CAS  Google Scholar 

  21. Wang H., Luo W., Zhu L., Zhao Z., E B., Tu W., Ke X., Sui M., Chen C., Chen Q., Li Y., Huang Y., Advanced Functional Materials, 2018, 28, 1707219

    Article  Google Scholar 

  22. Zhou M., Guo J., Zhao B., Li C., Zhang L., Fang J., J. Am. Chem. Soc., 2021, 143, 15891

    Article  CAS  Google Scholar 

  23. Liu Q., Li Y., Zheng L., Shang J., Liu X., Yu R., Shui J., Adv. Energy Mater., 2020, 10, 2000689

    Article  CAS  Google Scholar 

  24. Xiang W., Zhao Y., Jiang Z., Li X., Zhang H., Sun Y., Ning Z., Du F., Gao P., Qian J., Kato K., Yamauchi M., Sun Y., Journal of Materials Chemistry A, 2018, 6, 23366

    Article  CAS  Google Scholar 

  25. Liu Q., Peng Y., Li Q., He T., Morris D., Nichols F., Mercado R., Zhang P., Chen S., ACS Appl. Mater. Interfaces, 2020, 12, 17641

    Article  CAS  Google Scholar 

  26. Zuraiqi K., Zavabeti A., Allioux F.-M., Tang J., Nguyen C. K., Tafazolymotie P., Mayyas M., Ramarao A. V., Spencer M., Shah K., McConville C. F., Kalantar-Zadeh K., Chiang K., Daeneke T., Joule, 2020, 4, 2290

    Article  CAS  Google Scholar 

  27. Song H., Kim T., Kang S., Jin H., Lee K., Yoon H. J., Small, 2020, 16, 1903391

    Article  CAS  Google Scholar 

  28. Ang S.-Y., Tabor C., Kalantar-Zadeh K., Dickey M. D., Annual Review of Materials Research, 2021, 51, 381

    Article  Google Scholar 

  29. Taccardi N., Grabau M., Debuschewitz J., Distaso M., Brandl M., Hock R., Maier F., Papp C., Erhard J., Neiss C., Peukert W., Görling A., Steinrück H. P., Wasserscheid P., Nature Chemistry, 2017, 9, 862

    Article  CAS  Google Scholar 

  30. Liu H., Xia J., Zhang N., Cheng H., Bi W., Zu X., Chu W., Wu H., Wu C., Xie Y., Nature Catalysis, 2021, 4, 202

    Article  CAS  Google Scholar 

  31. Wu P., Huang Y., Kang L., Wu M., Wang Y., Scientific Reports, 2015, 5, 14173

    Article  CAS  Google Scholar 

  32. Jin H., Xiong T., Li Y., Xu X., Li M., Wang Y., Chem. Commun., 2014, 50, 12637

    Article  CAS  Google Scholar 

  33. Wu K., Mao X., Liang Y., Chen Y., Tang Y., Zhou Y., Lin J., Ma C., Lu T., Journal of Power Sources, 2012, 219, 258

    Article  CAS  Google Scholar 

  34. Sun H., Guo W., Liu J., Feng Z., Li R., Zhou X., Huang J., Applied Organometallic Chemistry, 2018, 32, e4555

    Article  Google Scholar 

  35. Wang Y., Zheng X., Wang D., Nano Research, 2022, 15, 1730

    Article  CAS  Google Scholar 

  36. Jing H., Zhu P., Zheng X., Zhang Z., Wang D., Li Y., Advanced Powder Materials, 2022, 1, 100013

    Article  Google Scholar 

  37. Lee G. W., Gangopadhyay A. K., Kelton K. F., Hyers R. W., Rathz T. J., Rogers J. R., Robinson D. S., Physical Review Letters, 2004, 93, 037802

    Article  CAS  Google Scholar 

  38. Yang J., Wang Z., Huang C.-X., Zhang Y., Zhang Q., Chen C., Du J., Zhou X., Zhang Y., Zhou H., Wang L., Zheng X., Gu L., Yang L.-M., Wu Y., Angew. Chem., Int. Ed., 2021, 60, 22722

    Article  CAS  Google Scholar 

  39. Zhu M., Zhao C., Liu X., Wang X., Zhou F., Wang J., Hu Y., Zhao Y., Yao T., Yang L.-M., Wu Y., ACS Catal., 2021, 11, 3923

    Article  CAS  Google Scholar 

  40. Yang Z., Wang X., Zhu M., Leng X., Chen W., Wang W., Xu Q., Yang L.-M., Wu Y., Nano Research, 2021, 14, 4512

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China(No.2021YFE0191700), the National Natural Science Foundation of China(Nos.22073033, 21873032, 21673087, 21903032), the Natural Science Foundation of Anhui Province, China(No.2108085QB70), the Fundamental Research Funds for the Central Universities, China(Nos. WK2060000004, WK2060000021, WK2060000025, KY2060000180, 2019kfyR-CPY116), the Collaborative Innovation Program of Hefei Science Center of CAS(No.2021HSC-CIP002), the Natural Science Foundation of Hefei City, China(No. 2021044), the Startup Fund from Huazhong University of Science and Technology, China (Nos.2006013118, 3004013105), and the Innovation and Talent Recruitment Base of New Energy Chemistry and Device, China (No.B21003).

The calculation work was carried out at the LvLiang Cloud Computing Center of China, and the calculations were performed on TianHe-2. The computing work was supported by the Public Service Platform of High Performance Computing by the Network and Computing Center of HUST. Thank the funding support from CAS Fujian Institute of Innovation. We acknowledge the Experimental Center of Engineering and Material Science in the University of Science and Technology of China. We thank the photoemission end stations BL1W1B in Beijing Synchrotron Radiation Facility(BSRF), BL14W1 in Shanghai Synchrotron Radiation Facility (SSRF), BL10B and BL11U in National Synchrotron Radiation Laboratory(NSRL) for the help in characterizations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-ming Yang or Yuen Wu.

Additional information

Conflicts of Interest

The authors declare no conflicts of interest.

Supported Information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, C., Song, B., Ma, Z. et al. A Supported Palladium on Gallium-based Liquid Metal Catalyst for Enhanced Oxygen Reduction Reaction. Chem. Res. Chin. Univ. 38, 1219–1225 (2022). https://doi.org/10.1007/s40242-022-2092-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-022-2092-z

Keywords

Navigation