Skip to main content

Advertisement

Log in

Microporous Zinc Formate for Efficient Separation of Acetylene over Carbon Dioxide

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Separation of acetylene(C2H2) from carbon dioxide(CO2) by adsorbents is very challenging owing to their high similarity on molecular shape and dimension. Exploring inexpensive and easily available porous materials is of importance to facilitate the practical implementation of the challenging but energy-efficient separation. Herein, we utilize an easily available porous material [Zn3(HCOO)6] for the selective separation of C2H2 over CO2. Because of the pore confinement in [Zn3(HCOO)6](pore size of 0.47 nm) and accessible oxygen sites for preferential binding of C2H2, this material exhibits high low-pressure uptake for C2H2(63 cm3/cm3 at 10 kPa and 298 K) and high C2H2/CO2 selectivity(7.4 under ambient conditions) that is comparable to those of out-performing porous materials. The efficient separation of [Zn3(HCOO)6] for C2H2/CO2 mixture has also been confirmed by the breakthrough experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li J., Corma A., Yu J., Chem. Soc. Rev., 2015, 44, 7112

    Article  CAS  Google Scholar 

  2. Xu W., Li L., Zhang T., Yu J., Chem. Res. Chinese Universities, 2021, DOI: https://doi.org/10.1007/s40242

  3. Xu R., Wang K., Chen G., Yan W., Natl. Sci. Rev., 2019, 6, 191

    Article  Google Scholar 

  4. Hoskins B. F., Robson R., J. Am. Chem. Soc., 1989, 111, 5962

    Article  CAS  Google Scholar 

  5. Kondo M., Yoshitomi T., Matsuzaka H., Kitagawa S., Seki K., Angew. Chem. Int. Ed., 1997, 36, 1725

    Article  CAS  Google Scholar 

  6. Li H., Eddaoudi M., Groy T. L., Yaghi O. M., J. Am. Chem. Soc., 1998, 120, 8571

    Article  CAS  Google Scholar 

  7. Kitagawa S., Kitaura R., Noro S. I., Angew. Chem. Int. Ed., 2004, 43, 2334

    Article  CAS  Google Scholar 

  8. Furukawa H., Cordova K. E., O’Keeffe M., Yaghi O. M., Science, 2013, 341, 1230444

    Article  Google Scholar 

  9. Lin R.-B., Zhang Z., Chen B., Acc. Chem. Res., 2021, 54, 3362

    Article  CAS  Google Scholar 

  10. Lin R.-B., Xiang S., Zhou W., Chen B., Chem, 2020, 6, 337

    Article  CAS  Google Scholar 

  11. Zhang J.-P., Zhang Y.-B., Lin J.-B., Chen X.-M., Chem. Rev., 2012, 112, 1001

    Article  CAS  Google Scholar 

  12. Katsoulidis A. P., Antypov D., Whitehead G. F. S., Carrington E. J., Adams D. J., Berry N. G., Darling G. R., Dyer M. S., Rosseinsky M. J., Nature, 2019, 565, 213

    Article  CAS  Google Scholar 

  13. Forgan R. S., Smaldone R. A., Gassensmith J. J., Furukawa H., Cordes D. B., Li Q., Wilmer C. E., Botros Y. Y., Snurr R. Q., Slawin A. M. Z., Stoddart J. F., J. Am. Chem. Soc., 2012, 134, 406

    Article  CAS  Google Scholar 

  14. Huang X.-C., Lin Y.-Y., Zhang J.-P., Chen X.-M., Angew. Chem. Int. Ed., 2006, 45, 1557

    Article  CAS  Google Scholar 

  15. Huang X.-C., Zhang J.-P., Chen X.-M., Chin. Sci. Bull., 2003, 48, 1491

    Article  Google Scholar 

  16. Tian Y.-Q., Cai C.-X., Ji Y., You X.-Z., Peng S.-M., Lee G.-H., Angew. Chem. Int. Ed., 2002, 41, 1384

    Article  CAS  Google Scholar 

  17. Lin R.-B., Li L., Alsalme A., Chen B., Small Struct., 2020, 1, 2000022

    Article  Google Scholar 

  18. Xie Y., Cui H., Wu H., Lin R.-B., Zhou W., Chen B., Angew. Chem. Int. Ed., 2021, 60, 9604

    Article  CAS  Google Scholar 

  19. Gao J., Qian X., Lin R.-B., Krishna R., Wu H., Zhou W., Chen B., Angew. Chem. Int. Ed., 2020, 59, 4396

    Article  CAS  Google Scholar 

  20. Viertelhaus M., Henke H., Anson C. E., Powell A. K., Eur. J. Inorg. Chem., 2003, 2003, 2283

    Article  Google Scholar 

  21. Wang Z., Zhang B., Zhang Y., Kurmoo M., Liu T., Gao S., Kobayashi H., Polyhedron, 2007, 26, 2207

    Article  CAS  Google Scholar 

  22. Dybtsev D. N., Chun H., Yoon S. H., Kim D., Kim K., J. Am. Chem. Soc., 2004, 126, 32

    Article  CAS  Google Scholar 

  23. Samsonenko D. G., Kim H., Sun Y., Kim G.-H., Lee H.-S., Kim K., Chem. Asian J., 2007, 2, 484

    Article  CAS  Google Scholar 

  24. Wang H., Yao K., Zhang Z., Jagiello J., Gong Q., Han Y., Li J., Chem. Sci., 2014, 5, 620

    Article  CAS  Google Scholar 

  25. Ren X., Sun T., Hu J., Wang S., Microporous Mesoporous Mater., 2014, 186, 137

    Article  CAS  Google Scholar 

  26. Zhang L., Jiang K., Zhang J., Pei J., Shao K., Cui Y., Yang Y., Li B., Chen B., Qian G., ACS Sustainable Chem. Eng., 2019, 7, 1667

    Article  CAS  Google Scholar 

  27. Hu J., Sun T., Liu X., Zhao S., Wang S., Microporous Mesoporous Mater., 2016, 225, 456

    Article  CAS  Google Scholar 

  28. Viertelhaus M., Adler P., Clérac R., Anson C. E., Powell A. K., Eur. J. Inorg. Chem., 2005, 2005, 692

    Article  Google Scholar 

  29. Lin R.-B., Li L., Wu H., Arman H., Li B., Lin R.-G., Zhou W., Chen B., J. Am. Chem. Soc., 2017, 139, 8022

    Article  CAS  Google Scholar 

  30. Luo F., Yan C., Dang L., Krishna R., Zhou W., Wu H., Dong X., Han Y., Hu T.-L., O’Keeffe M., Wang L., Luo M., Lin R.-B., Chen B., J. Am. Chem. Soc., 2016, 138, 5678

    Article  CAS  Google Scholar 

  31. Li Y.-P., Wang Y., Xue Y.-Y., Li H.-P., Zhai Q.-G., Li S.-N., Jiang Y.-C., Hu M.-C., Bu X., Angew. Chem. Int. Ed., 2019, 58, 13590

    Article  CAS  Google Scholar 

  32. Niu Z., Cui X., Pham T., Verma G., Lan P. C., Shan C., Xing H., Forrest K. A., Suepaul S., Space B., Nafady A., Al-Enizi A. M., Ma S., Angew. Chem. Int. Ed., 2021, 60, 5283

    Article  CAS  Google Scholar 

  33. Zhang L., Jiang K., Yang L., Li L., Hu E., Yang L., Shao K., Xing H., Cui Y., Yang Y., Li B., Chen B., Qian G., Angew. Chem. Int. Ed., 2021, 60, 15995

    Article  CAS  Google Scholar 

  34. Accelrys: Materials Studio Getting Started, Release 5.0 Ed., Accelrys Software, Inc., San Diego, 2009

  35. Gao S., Fan R., Li B., Qiang L., Yang Y., Electrochim. Acta, 2016, 215, 171

    Article  CAS  Google Scholar 

  36. Ye Y., Ma Z., Lin R.-B., Krishna R., Zhou W., Lin Q., Zhang Z., Xiang S., Chen B., J. Am. Chem. Soc., 2019, 141, 4130

    Article  CAS  Google Scholar 

  37. Chen K.-J., Scott H. S., Madden D. G., Pham T., Kumar A., Bajpai A., Lusi M., Forrest K. A., Space B., Perry IV J. J., Zaworotko M. J., Chem, 2016, 1, 753

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foudation of China (No. 22090061) and the Hundred Talents Program of Sun Yat-Sen University, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rui-Biao Lin or Xiao-Ming Chen.

Ethics declarations

The authors declare no conflicts of interest.

Electronic Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, JH., Xie, Y., Zhou, MY. et al. Microporous Zinc Formate for Efficient Separation of Acetylene over Carbon Dioxide. Chem. Res. Chin. Univ. 38, 87–91 (2022). https://doi.org/10.1007/s40242-021-1380-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-021-1380-3

Keywords

Navigation