Skip to main content
Log in

Nitrogen-rich Graphdiyne Film for Efficiently Suppressing the Methanol Crossover in Direct Methanol Fuel Cells

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

The inhibition of the methanol crossover is one of the intractable challenges in the direct methanol fuel cell. The graphdiyne(GDY) with atomic-level pores shows great potential in realizing the zero-permeation of methanol molecules. In this paper, an ultrathin layer of nitrogen-rich GDY film with a high nitrogen content is largely prepared and readily used for retarding the methanol permeation in the state-of-the-art commercial Nafion membrane. The high N-content in this porous GDY nanofilm remarkably increases the selective suppression in methanol transfer, and single-layer GDY film can efficiently prevent 43% methanol crossover and the value of the double-layer GDY film can be high up to 69%. The power performance and the long-term stability of the cell are obviously improved due to the reduced methanol crossover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang C., Wang H. F., Xu Q., Chem. Res. Chinese Universities, 2020, 36(1), 10

    Article  CAS  Google Scholar 

  2. Manthiram A., Nat. Commun., 2020, 11(1), 1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liu X., Li Y., Xue J., Zhu W., Zhang J., Yin Y., Qin Y., Jiao K., Du Q., Cheng B., Zhuang X., Li J., Guiver M. D., Nat. Commun., 2019, 10(1), 842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tian X. L., Zhao X., Su Y. Q., Wang L. J., Wang H. M., Dang D., Chi B., Liu H. F., Hensen E. J. M., Lou X. W., Xia B. Y., Science, 2019, 366(6467), 850

    Article  CAS  PubMed  Google Scholar 

  5. Lu Y., Chen J., Nat. Rev. Chem., 2020, 4(3), 127

    Article  CAS  Google Scholar 

  6. Zhu M. Z., Wang J., Wu Y., Chem. Res. Chinese Universities, 2020, 36(3), 320

    Article  CAS  Google Scholar 

  7. Zhang H., Shen P. K., Chem. Rev., 2012, 112(5), 2780

    Article  CAS  PubMed  Google Scholar 

  8. Trigg E. B., Gaines T. W., Marechal M., Moed D. E., Rannou P., Wagener K. B., Stevens M. J., Winey K. I., Nat. Mater., 2018, 17(8), 725

    Article  CAS  PubMed  Google Scholar 

  9. Shin D. W., Guiver M. D., Lee Y. M., Chem. Rev., 2017, 117(6), 4759

    Article  CAS  PubMed  Google Scholar 

  10. Li Y., Liang L., Liu C., Li Y., Xing W., Sun J., Adv. Mater., 2018, 30(25), e1707146

    Article  PubMed  Google Scholar 

  11. Velayutham P., Sahu A. K., J. Phys. Chem. C, 2018, 122(38), 21735

    Article  CAS  Google Scholar 

  12. Kakati N., Maiti J., Lee S. H., Jee S. H., Viswanathan B., Yoon Y. S., Chem. Rev., 2014, 114(24), 12397

    Article  CAS  PubMed  Google Scholar 

  13. Pan H. H., Jiang Z. Q., Zuo Z. C., He F., Wang F., Li L., Chang Q., Guan B., Li Y. L., Nano Today, 2021, 39, 101213

    Article  CAS  Google Scholar 

  14. Jiang Z. Q., Shi Y. L., Jiang Z. J., Tian X. N., Luo L. J., Chen W. H., J. Mater. Chem. A, 2014, 2(18), 6494

    Article  CAS  Google Scholar 

  15. Kimiaie N., Wedlich K., Hehemann M., Lambertz R., Müller M., Korte C., Stolten D., Energy Environ. Sci., 2014, 7(9), 3013

    Article  CAS  Google Scholar 

  16. Mauritz K. A., Moore R. B., Chem. Rev., 2004, 104(10), 4535

    Article  CAS  PubMed  Google Scholar 

  17. Chen Z. W., Holmberg B., Li W. Z., Wang X., Deng W. Q., Munoz R., Chem. Mater., 2006, 18(24), 5669

    Article  CAS  Google Scholar 

  18. Luo C., Ji X., Hou S., Edison N., Fan X. L., Liang Y. J., Deng T., Jiang J. J., Wang C. S., Adv. Mater., 2018, 30(23), 1706498

    Article  Google Scholar 

  19. Lu J. L., Lu S. F., Jiang S. P., Chem. Commun., 2011, 47(11), 3216

    Article  CAS  Google Scholar 

  20. Liu B. L., Cheng D. M., Zhu H. T., Du J., Li K., Zang H. Y., Tan H. Q., Wang Y. H., Xing W., Li Y. G., Chem. Sci., 2019, 10(2), 556

    Article  PubMed  Google Scholar 

  21. Yang Y. B., Yang X. D., Liang L., Gao Y. Y., Cheng H. Y., Li X. M., Zou M. C., Ma R. Z., Yuan Q., Duan X. F., Science, 2019, 364(6445), 1057

    Article  CAS  PubMed  Google Scholar 

  22. Kim J. D., Oba Y., Ohnuma M., Jun M. S., Tanaka Y., Mori T., Choi Y. W., Yoon Y. G., J. Electrochem. Soc., 2010, 157(12), B1872

    Article  CAS  Google Scholar 

  23. Hu S., Lozada-Hidalgo M., Wang F. C., Mishchenko A., Schedin F., Nair R. R., Hill E. W., Boukhvalov D. W., Katsnelson M. I., Dryfe R. A. W., Grigorieva I. V., Wu H. A., Geim A. K., Nature, 2014, 516(7530), 227

    Article  CAS  PubMed  Google Scholar 

  24. Tsetseris L., Pantelides S. T., Carbon, 2014, 67, 58

    Article  CAS  Google Scholar 

  25. Koenig S. P., Wang L. D., Pellegrino J., Bunch J. S., Nat. Nanotech., 2012, 7(11), 728

    Article  CAS  Google Scholar 

  26. Celebi K., Buchheim J., Wyss R. M., Droudian A., Gasser P., Shorubalko I., Kye J., Lee C., Park H. G., Science, 2014, 344(6181), 289

    Article  CAS  PubMed  Google Scholar 

  27. Chen L., Shi G., Shen J., Peng B., Zhang B., Wang Y., Bian F., Wang J., Li D., Qian Z., Xu G., Liu G., Zeng J., Zhang L., Yang Y., Zhou G., Wu M., Jin W., Li J., Fang H., Nature, 2017, 550(7676), 380

    Article  CAS  PubMed  Google Scholar 

  28. Du Y. C., Zhou W. D., Gao J., Pan X. Y., Li Y. L., Acc. Chem. Res., 2020, 53(2), 459

    Article  CAS  PubMed  Google Scholar 

  29. Huang C. S., Li Y. J., Wang N., Xue Y. R., Zuo Z. C., Liu H. B., Li Y. L., Chem. Rev., 2018, 118(16), 7744

    Article  CAS  PubMed  Google Scholar 

  30. Zuo Z. C., Li Y. L., Joule, 2019, 3(4), 899

    Article  Google Scholar 

  31. Shi L., Xu A., Pan D., Zhao T., Nat. Commun., 2019, 10(1), 1165

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wang F., Zuo Z. C., Li L., Li K., He F., Jiang Z. Q., Li Y. L., Angew. Chem. Int. Ed., 2019, 58(42), 15010

    Article  CAS  Google Scholar 

  33. Li J. F., Wan C. J., Wang C., Zhang H., Chen X. D., Chem. Res. Chinese Universities, 2020, 36(4), 622

    Article  CAS  Google Scholar 

  34. Li M. P., Wang K. H., Lv Q., Chem. Res. Chinese Universties, 2021, DOI: https://doi.org/10.1007/s40242-021-1256-6

  35. Li L., Zuo Z. C., Wang F., Gao J. C., Cao A. M., He F., Li Y. L., Adv. Mater., 2020, 32(14), e2000140

    Article  PubMed  Google Scholar 

  36. Zuo Z. C., He F., Wang F., Li L., Li Y. L., Adv. Mater., 2020, 32(49), e2004379

    Article  PubMed  Google Scholar 

  37. Kan X., Ban Y., Wu C., Pan Q., Liu H., Song J., Zuo Z., Li Z., Zhao Y., ACS Appl. Mater. Inter., 2018, 10(1), 53

    Article  CAS  Google Scholar 

  38. Kresse G., Furthmüller J., Comput. Mater. Sci., 1996, 6(1), 15

    Article  CAS  Google Scholar 

  39. Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett., 1998, 77(18), 3865

    Article  Google Scholar 

  40. Kresse G., Joubert D., Phys. Rev. B, 1999, 59(3), 1758

    Article  CAS  Google Scholar 

  41. Blöchl P. E., Phys. Rev. B, 1994, 50(24), 17953

    Article  Google Scholar 

  42. Burns L. A., Mayagoitia A. V., Sumpter B. G., Sherrill C. D., J. Chem. Phys., 2011, 134(8), 144104

    Article  Google Scholar 

  43. Li G. X., Li Y. L., Liu H. B., Guo Y. B., Li Y. J., Zhu D. B., Chem. Commun. (Camb), 2010, 46(19), 3256

    Article  CAS  Google Scholar 

  44. Shang H., Zuo Z. C., Zheng H. Y., Li K., Tu Z. Y., Yi Y. P., Liu H. B., Li Y. J., Li Y. L., Nano Energy, 2018, 44, 144

    Article  CAS  Google Scholar 

  45. Zhou W. X., Shen H., Wu C. Y., Tu Z. Y., He F., Gu Y. N., Xue Y. R., Zhao Y. J., Yi Y. P., Li Y. J., Li Y. L., J. Am. Chem. Soc., 2019, 141(1), 48

    Article  CAS  PubMed  Google Scholar 

  46. Fujimura M., Hashimoto T., Kawai H., Macromolecules, 1981, 14(5), 1309

    Article  CAS  Google Scholar 

  47. Liu X., Li Y., Xue J., Zhu W., Zhang J., Yin Y., Qin Y., Jiao K., Du Q., Cheng B., Zhuang X., Li J., Guiver M. D., Nat. Commun., 2019, 10(1), 842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos.51802311, U1932211, 21790050, 21790051), the National Key Research and Development Project of China(No.2018YFA0703501), the Key Program of the Chinese Academy of Sciences(No.QYZDY-SSW-SLH015), and the Foundation of the Youth Innovation Promotion Association of Chinese Academy of Sciences(No.2019032).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zicheng Zuo, Zhongqing Jiang or Yuliang Li.

Ethics declarations

The authors declare no conflicts of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Zuo, Z., He, F. et al. Nitrogen-rich Graphdiyne Film for Efficiently Suppressing the Methanol Crossover in Direct Methanol Fuel Cells. Chem. Res. Chin. Univ. 37, 1275–1282 (2021). https://doi.org/10.1007/s40242-021-1345-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-021-1345-6

Keywords

Navigation