Skip to main content
Log in

Study on the Mechanism of Asphaltenes Reducing Oil-Water Interfacial Tension

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

As high polar components of crude oil, asphaltenes play a significant role in reducing oil-water interfacial tension(IFT). In this paper, the effects of asphaltenes on reducing IFT in the presence of surfactant were compared, and the mechanism of asphaltenes reducing the IFT was studied by the dynamic interfacial tension(DIFT) equation. Whether asphaltenes were added to the oil or 2,5-dimethyl-4-(4-dodecyl) benzene sodium sulfonate(p-S14-4) was added to the water phase, either of all results in the IFT reducing and the IFT is related to the coverage and the mass of asphaltenes adsorption at the interface. In the presence of asphaltenes, the adsorption of the active substances to the interface is not entirely dependent on diffusion, and the process can be divided into three regions. Region I: the IFT rapidly reducing, this process is controlled by diffusion of surfactant; Region II: the IFT reducing slowly, resulted from the lower diffusion rate that is limited due to the aggregates formed by the interaction of asphaltene-asphaltene; Region III: the interaction of asphaltene-asphaltene is broken by the interaction of surfactant-asphaltene. The asphaltene aggregates are reduced and adsorbed rapidly at the interface. Furthermore, the results reveal that the asphaltenes concentration affects the coverage rate and adsorption at the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang F. T., Fundamentals of Molecular Interface Chemistry, Shanghai Scientific and Technological Literature Press, Shanghai, 2006

    Google Scholar 

  2. Kiani S., Jones D. R., Alexander S., Barron A. R., J. Colloid Interf. Sci., 2020, 571(1), 307

    Article  CAS  Google Scholar 

  3. Liang W. J., Heavy Oil Chemistry, University of Petroleum Press, Qingdao, 2000

    Google Scholar 

  4. Horvath-Szabo G., Masliyah J. H., Elliott J. A. W., Yarranton H. W., Czarnecki J., J. Colloid Interf. Sci., 2005, 283(1), 5

    Article  CAS  Google Scholar 

  5. Sheu E., Energ. Fuel., 2002, 16(1), 74

    Article  CAS  Google Scholar 

  6. Groenzin H., Mullins O. C., J. Phys. Chem. A, 1999, 103(50), 11237

    Article  CAS  Google Scholar 

  7. Rane J. P., Harbottle D., Pauchard V., Couzis A., Banerjee S., Langmuir, 2012, 28(26), 9986

    Article  CAS  Google Scholar 

  8. Eyssautier J., Levitz P., Espinat D., Jestin J., Gummel J., Grillo I., Barrie L., J. Phys. Chem. B, 2011, 115(21), 6827

    Article  CAS  Google Scholar 

  9. Kuznicki T., Masliyah J. H., Bhattacharjee S., Energ. Fuel., 2009, 23(10), 5027

    Article  CAS  Google Scholar 

  10. Santos D., Souza W., Santana C., Lourenço E., Santos A., Nele M., ACS Omega., 2018, 3(4), 3851

    Article  CAS  Google Scholar 

  11. Zhang S., Zhang L., Lu X., Shi C., Tang T., Wang X., Huang Q., Zeng H., Fuel, 2018, 212(15), 387

    Article  CAS  Google Scholar 

  12. Mohammadi M., Zirrahi M., Hassanzadeh H., Energ. Fuel., 2020, 34(3), 3144

    Article  CAS  Google Scholar 

  13. Jian C. Y., Poopari M. R., Liu Q. X., Zerpa N., Zeng H. B., Tang T., J. Phys. Chem. B, 2016, 120(25), 5646

    Article  CAS  Google Scholar 

  14. Mohammadi M., Zirrahi M., Hassanzadeh H., J. Phys. Chem. B., 2020, 124(15), 3206

    Article  CAS  Google Scholar 

  15. Campen S. M., Moorhouse S. J., Wong J. S. S., Langmuir, 2019, 35(37), 11995

    Article  CAS  Google Scholar 

  16. Wang X., Chemical Engineering & Equipment, 2019, 5, 84

    Article  Google Scholar 

  17. Yang M. Q., Development of Alkalescent ASP Flooding Surfactant and Study on the Dynamic Action Mechanism of Alkali, Jilin University, Changchun, 2018, 20

    Google Scholar 

  18. Fainerman V. B., Lucassen-Reynders E. H., Adv. Colloid Interfac., 2002, 96(25), 295

    Article  CAS  Google Scholar 

  19. Rosen M. J., Kunjappu J. T., Surfactants and interfacial phenomena (4th Edition), Chemical Industrial Press, Beijing, 2015

    Google Scholar 

  20. Wang S., Liu J., Zhang L., Xu Z., Masliyah J., Energ. Fuel., 2009, 23(2), 862

    Article  CAS  Google Scholar 

  21. Langevin D., Argillier J. F., Adv. Colloid Interfac., 2016, 233, 83

    Article  CAS  Google Scholar 

  22. Zarkar S., Pauchard V., Farooq U., Couzis A., Banerjee S., Langmuir, 2015, 31(17), 4878

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangdong Zhou.

Ethics declarations

The authors declare no conflicts of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Cheng, T. & Zhou, G. Study on the Mechanism of Asphaltenes Reducing Oil-Water Interfacial Tension. Chem. Res. Chin. Univ. 38, 616–621 (2022). https://doi.org/10.1007/s40242-021-1178-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-021-1178-3

Keywords

Navigation