Skip to main content
Log in

Quantitative analysis of catalpol in chinese patent medicine Lixin pill by near-infrared diffuse reflectance spectroscopy

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Lixin pill is a typical Chinese patent medicine with anti-rheumatic heart disease activity that has been widely used in clinical practice. Therefore it is very important to detect the concentration of catalpol, as the main component of the active ingredient. Near-infrared reflectance(NIR) spectroscopy was used to study the content of catalpol in the unprocessed Chinese patent medicine of Lixin pills. NIR is applied to quantitatively analyze 77 samples, which were randomly divided into a calibration set containing 61 samples and a prediction set containing 16 samples. To get a satisfying result, partial least squares(PLS) regression was utilized to establish quantitative models. In PLS regression, the values of coefficient of determination(R 2) and root mean square error of cross-validation (RMSECV) of PLS regression are 0.9419 and 0.0216, respectively. The process of establishing model, parameters of model, and prediction results were also discussed in detail(root mean square error of prediction is 0.0164). The overall results show that NIR spectroscopy can be efficiently utilized for the rapid and accurate analysis of routine chemical compositions in the Chinese patent medicine of Lixin pills. The prediction set suggests that this quantitative analysis model has excellent generalization ability and prediction precision. Accordingly, the result can provide technical support for the further analysis of catalpol in unprocessed Lixin pill. Moreover, this study supplied technical support for the further analysis of other Chinese patent medicine samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dong S. F., Zhu Z. G., Liu W. M., Zhao W. X., Spectrsc. Spect. Anal., 2001, 21(3), 391

    CAS  Google Scholar 

  2. Rothman J. M., Chapman C. A., Hansen J. L., Cherney D. J. R., Pell A. N., Int. J. Primatol., 2009, 30(5), 729

    Article  Google Scholar 

  3. Ikeda T., Altaf-Ul-Amin M., Takahashi H., Fukusaki E., Plant Biotechnol., 2009, 26(5), 451

    Article  CAS  Google Scholar 

  4. Kays S. E., Archibald D. D., Sohn M., J. Sci. Food. Agr., 2005, 85(9), 1596

    Article  CAS  Google Scholar 

  5. Kays S. E., Barton F. E., J. Agr. Food Chem., 2002, 50(5), 1284

    Article  CAS  Google Scholar 

  6. Du L. N., Wu L. H., Lu J. H., Gou W. L., Meng Q. F., Jiang C. J., Shen S. L., Teng L. R., Chem. Res. Chinese Universities, 2007, 23(5), 518

    Article  CAS  Google Scholar 

  7. Melucci D., Monti D., D’Elia M., Luciano G., J. Forensic. Sci., 2012, 57(1), 86

    Article  CAS  Google Scholar 

  8. Moros J., Galipienso N., Vilches R., Garrigues S., de la Guardia M., Anal. Chem., 2008, 80(19), 7257

    Article  CAS  Google Scholar 

  9. Nie L. X., Wang G. L., Lin R. C., Chem. Res. Chinese Universities, 2009, 25(5), 633

    CAS  Google Scholar 

  10. Wang X. L., Feng Y. C., Hu C. Q., Chin. J. Anal. Chem., 2009, 37(12), 1825

    CAS  Google Scholar 

  11. Zhang Y., Xie Y. F., Song F. R., Liu Z. Q., Cong Q., Zhao B., Chem. Res. Chinese Universities, 2008, 24(6), 717

    CAS  Google Scholar 

  12. Chakraborty S., Weindorf D. C., Zhu Y. D., Li B., Morgan C. L. S., Ge Y. F., Galbraith J., J. Environ. Monitor, 2012, 14(11), 2886

    Article  CAS  Google Scholar 

  13. Balabin R. M., Syunyaev R. Z., J. Colloid. Interface Sci., 2008, 318(2), 167

    Article  CAS  Google Scholar 

  14. Pasquini C., Bueno A. F., Fuel, 2007, 86(12/13), 1927

    Article  CAS  Google Scholar 

  15. Lee Y., Chung H. E., Kim N., Appl. Spectrosc., 2006, 60(8), 892

    Article  CAS  Google Scholar 

  16. Blanco M., Maspoch S., Villarroya I., Peralta X., Gonzalez J. M., Torres J., Appl. Spectrosc., 2001, 55(7), 834

    Article  CAS  Google Scholar 

  17. Tan C., Chen H., Wu T., Xu Z. H., Li W. Y., Qin X., Anal. Lett., 2013, 46(1), 171

    Article  Google Scholar 

  18. Ma Y. J., Bai R. S., Du G. R., Ma L., He A. J., Li N., Yi X. L., Cai W. S., Zhou J., Shao X. G., Anal. Methods, 2012, 4(5), 1371

    Article  CAS  Google Scholar 

  19. Zhang M., Cai W. S., Shao X. G., Analyst, 2011, 136(20), 4217

    Article  CAS  Google Scholar 

  20. Tan C., Wang J. Y., Wu T., Qin X., Li M. L., Vib. Spectrosc., 2010, 54(1), 35

    Article  CAS  Google Scholar 

  21. Zhang Y., Cong Q., Xie Y. F., Yang J. X., Zhao B., Spectrochim. Acta A, 2008, 71(4), 1408

    Article  Google Scholar 

  22. Liu Y. Q., Pi Z. F., Song F. R., Liu Z. Q., Liu Z. Y., Chem. J. Chinese Universities, 2012, 33(9), 1932

    CAS  Google Scholar 

  23. Ning Y., Cai W. S., Shao X. G., Chem. J. Chinese Universities, 2012, 33(4), 673

    CAS  Google Scholar 

  24. Struc V., Pavesic N., Informatica, 2009, 20(1), 115

    Google Scholar 

  25. Andersen A. H., Rayens W. S., Liu Y. S., Smith C. D., Magn. Reson. Imaging, 2012, 20(3), 446

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Zhang or Ying-ping Wang.

Additional information

Supported by the Science and Technology Funds of Chinese Academy of Agricultural Sciences(No.201205) and the Fundamental Research Funds of Central Nonprofit Research Institutes, China(No.2012ZL089).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Bai, Xy., Wang, Yp. et al. Quantitative analysis of catalpol in chinese patent medicine Lixin pill by near-infrared diffuse reflectance spectroscopy. Chem. Res. Chin. Univ. 29, 1059–1062 (2013). https://doi.org/10.1007/s40242-013-3231-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-013-3231-3

Keywords

Navigation