Skip to main content
Log in

The effects of metformin monotherapy and combination of metformin and glibenclamide therapy on the expression of RAGE, Sirt1, and Nrf2 genes in peripheral blood mononuclear cells of type 2 diabetic patients

  • Research article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Purpose

Although metformin is the first-line treatment of type 2 diabetes mellitus (T2DM), a few studies have evaluated the benefits of monotherapies (metformin) versus combination therapy (metformin and glibenclamide) for treatment of T2DM patients. The present study aimed to evaluate the effect of monotherapy with metformin compared to combination therapy with metformin and glibenclamide on the expression of RAGE, Nrf 2, and Sirt1genes.

Methods

EightyT2DM patients and 40 healthy individuals participated in this case-control study. The patients in the treatment group were divided into two groups who received either metformin alone (n = 40) or metformin in combination with glibenclamide (n = 40). FBS, HbA1c, and fructosamine were measured. The expression of RAGE, Nrf 2, and Sirt 1 genes in PBMC of all subjects were assessed using real-time PCR.

Results

RAGE gene expression in both treatment groups was significantly lower than the control (P < 0.05). RAGE gene expression was significantly reduced in the combination of metformin and glibenclamide treated group compared to metformin group (P < 0.05). Additionally, the expression of Sirt 1 and Nrf 2 genes in both treatment groups was higher than that of the control group (P < 0.05). The expression of Sirt 1 and Nrf 2 genes in metformin and glibenclamide treated group were higher than the metformin group (P < 0.05).

Conclusion

Combination therapy (metformin and glibenclamide) showed stronger effect on repression of the RAGE gene and activation of Nrf 2 and Sirt 1 genes compared to monotherapy (metformin); therefore, it can be concluded that combination therapy may have more protective effects on the T2DM patients. No significant correlation was observed between HbA1c and RAGE, Sirt 1, and Nrf 2 genes expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. German M. Chapter 17. Pancreatic hormones and diabetes mellitus. Dalam: Gardner DG, Shoback D, eds. Greenspan’s basic & clinical endocrinology. New York: McGraw-Hill; 2011.

    Google Scholar 

  2. Sebastián C, Satterstrom FK, Haigis MC, Mostoslavsky R. From sirtuin biology to human diseases: an update. J Biol Chem. 2012;287(51):42444–52. https://doi.org/10.1074/jbc.R112.402768.PMC3522245.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rhodes CJ. Type 2 diabetes-a matter of ß-cell life and death? Sci. 2005;307(5708):380–4.

    Article  CAS  Google Scholar 

  4. Larsen R, Kronenberg H, et al. Williams textbook of endocrinology. 12th ed. Amsterdam: Elsevier Saunders; 2011.

    Google Scholar 

  5. Herder C, Roden M. Genetics of type 2 diabetes: pathophysiologic and clinical relevance. Eur J Clin Investig. 2011;41(6):679–92.

    Article  Google Scholar 

  6. Rich SS. Still a geneticist's nightmare. Nature. 2016;536(7614):37–8.

    Article  CAS  Google Scholar 

  7. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813–20.

    Article  CAS  Google Scholar 

  8. Cohen MP, Shea E, Chen S, Shearman CW. Glycated albumin increases oxidative stress, activates NF-κB and extracellular signal-regulated kinase (ERK), and stimulates ERK-dependent transforming growth factor-β1 production in macrophage RAW cells. J Lab Clin Med. 2003;141(4):242–9.

    Article  CAS  Google Scholar 

  9. Triñanes J, Salido E, Fernández J, Rufino M, González-Posada JM, Torres A, et al. Type 1 diabetes increases the expression of proinflammatory cytokines and adhesion molecules in the artery wall of candidate patients for kidney transplantation. Diabetes Care. 2012;35(2):427–33.

    Article  Google Scholar 

  10. Schmidt AM, Stern D. Atherosclerosis and diabetes: the RAGE connection. Curr Atheroscler Rep. 2000;2(5):430–6.

    Article  CAS  Google Scholar 

  11. Yamagishi S-i, Imaizumi T. Diabetic vascular complications: pathophysiology, biochemical basis and potential therapeutic strategy. Curr Pharm Des. 2005;11(18):2279–99.

    Article  CAS  Google Scholar 

  12. Yamamoto T, Suzuki T, Kobayashi A, Wakabayashi J, Maher J, Motohashi H, et al. Physiological significance of reactive cysteine residues of Keap1 in determining Nrf2 activity. Mol Cell Biol. 28(8):2758–70.

  13. Wu P, Yan Y, Ma L-l, Hou B-y, He Y-y, Zhang L, et al. Effects of the Nrf2 protein modulator salvianolic acid a alone or combined with metformin on diabetes-associated macrovascular and renal injury. J Biol Chem. 2016;291(42):22288–301.

    Article  CAS  Google Scholar 

  14. Cheng J-T, Huang C-C, Liu I-M, Tzeng T-F, Chang CJ. Novel mechanism for plasma glucose–lowering action of metformin in streptozotocin-induced diabetic rats. Diabetes. 2006;55(3):819–25.

    Article  CAS  Google Scholar 

  15. Kitada M, Kume S, Kanasaki K, Takeda-Watanabe A, Koya D. Sirtuins as possible drug targets in type 2 diabetes. Curr Drug Targets. 2013;14(6):622–36.

    Article  CAS  Google Scholar 

  16. Ripsin CM, Kang H, Urban RJ. Management of blood glucose in type 2 diabetes mellitus. Am Fam Physician. 2009;79(1):29–36.

    PubMed  Google Scholar 

  17. Palmer SC, Mavridis D, Nicolucci A, Johnson DW, Tonelli M, Craig JC, et al. Comparison of clinical outcomes and adverse events associated with glucose-lowering drugs in patients with type 2 diabetes: a meta-analysis. JAMA. 2016;316(3):313–24.

    Article  CAS  Google Scholar 

  18. Tabish SA. Is diabetes becoming the biggest epidemic of the twenty-first century? Int J Health Sci. 2007;(2):1, V–VIII.

  19. Caton PW, Nayuni NK, Kieswich J, Khan NQ, Yaqoob MM, Corder R. Metformin suppresses hepatic gluconeogenesis through induction of SIRT1 and GCN5. J Endocrinol. 2010;205(1):97.

    Article  CAS  Google Scholar 

  20. Yan SF, Ramasamy R, Schmidt AM. Mechanisms of disease: advanced glycation end-products and their receptor in inflammation and diabetes complications. Nat Rev Endocrinol. 2008;4(5):285–93.

    Article  CAS  Google Scholar 

  21. Herold K, Moser B, Chen Y, Zeng S, Yan SF, Ramasamy R, et al. Receptor for advanced glycation end products (RAGE) in a dash to the rescue: inflammatory signals gone awry in the primal response to stress. J Leukoc Biol. 2007;82(2):204–12.

    Article  CAS  Google Scholar 

  22. Ramasamy R, Vannucci SJ, Yan SSD, Herold K, Yan SF, Schmidt AM. Advanced glycation end products and RAGE: a common thread in aging, diabetes, neurodegeneration, and inflammation. Glycobiol. 2005;15(7):16R–28R.

    Article  CAS  Google Scholar 

  23. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058–70.

    Article  CAS  Google Scholar 

  24. Williams B, Gallacher B, Patel H, Orme C. Glucose-induced protein kinase C activation regulates vascular permeability factor mRNA expression and peptide production by human vascular smooth muscle cells in vitro. Diabetes. 1997;46(9):1497–503.

    Article  CAS  Google Scholar 

  25. Ishii H, Jirousek MR, Koya D, Takagi C, Xia P, Clermont A, et al. Amelioration of vascular dysfunctions in diabetic rats by an oral PKC β inhibitor. Sci. 1996;272(5262):728–31.

    Article  CAS  Google Scholar 

  26. Cuadrado A, Manda G, Hassan A, Alcaraz MJ, Barbas C, Daiber A, et al. Transcription factor NRF2 as a therapeutic target for chronic diseases: a systems medicine approach. Pharmacol Rev. 2018;70(2):348–83.

    Article  CAS  Google Scholar 

  27. Hou X, Xu S, Maitland-Toolan KA, Sato K, Jiang B, Ido Y, et al. SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J Biol Chem. 2008;283(29):20015–26.

    Article  CAS  Google Scholar 

  28. Gadducci A, Biglia N, Tana R, Cosio S, Gallo M. Metformin use and gynecological cancers: a novel treatment option emerging from drug repositioning. Crit Rev Oncol/Hematol. 2016;105:73–83.

    Article  Google Scholar 

  29. Mafauzy M. Repaglinide versus glibenclamide treatment of type 2 diabetes during Ramadan fasting. Diabetes Res Clin Pract. 2002;58(1):45–53.

    Article  CAS  Google Scholar 

  30. Tosi F, Muggeo M, Brun E, Spiazzi G, Perobelli L, Zanolin E, et al. Combination treatment with metformin and glibenclamide versus single-drug therapies in type 2 diabetes mellitus: a randomized, double-blind, comparative study. Metabolism. 2003;52(7):862–7.

    Article  CAS  Google Scholar 

  31. Ishibashi Y, Matsui T, Takeuchi M, Yamagishi S-i. Beneficial effects of metformin and irbesartan on advanced glycation end products (AGEs)–RAGE-induced proximal tubular cell injury. Pharmacol Res. 2012;65(3):297–302.

    Article  CAS  Google Scholar 

  32. Chen X-F, Zou J-J, Tang W, Lin W-D, Sun L-L, Bao Y, et al. Metformin corrects RAGE overexpression caused signaling dysregulation and NF-κB targeted gene change. Int J Clin Exp Med. 2016;9(2):2913–20.

    CAS  Google Scholar 

  33. Ishibashi Y, Matsui T, Takeuchi M, Yamagishi S. Metformin inhibits advanced glycation end products (AGEs)-induced renal tubular cell injury by suppressing reactive oxygen species generation via reducing receptor for AGEs (RAGE) expression. Horm Metab Res. 2012;44(12):891–5.

    Article  CAS  Google Scholar 

  34. Gu J, Ye S, Wang S, Sun W, Hu Y. Metformin inhibits nuclear factor-κB activation and inflammatory cytokines expression induced by high glucose via adenosine monophosphate-activated protein kinase activation in rat glomerular mesangial cellsin vitro. Chin Med J. 2014;127(9):1755–60.

    CAS  PubMed  Google Scholar 

  35. Hattori Y, Suzuki K, Hattori S, Kasai K. Metformin inhibits cytokine-induced nuclear factor κB activation via AMP-activated protein kinase activation in vascular endothelial cells. Hypertension. 2006;47(6):1183–8.

    Article  CAS  Google Scholar 

  36. Ayers D, Baron B, Hunter T. miRNA influences in NRF2 pathway interactions within cancer models. J Nucleic Acids. 2015;2015:143636.

    Article  Google Scholar 

  37. Leibiger IB, Berggren P-O. Sirt1: a metabolic master switch that modulates lifespan. Nat Med. 2006;12(1):34–6.

    Article  CAS  Google Scholar 

  38. Hundal RS, Krssak M, Dufour S, Laurent D, Lebon V, Chandramouli V, et al. Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes. 2000;49(12):2063–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present article was supported by the Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. The study team would like to acknowledge gratefully the staff of this center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Taghi Goodarzi or Mohammad Hossein Karimi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding authors states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseinipoor, H., Kariminejad, S.Y., Salehi, M. et al. The effects of metformin monotherapy and combination of metformin and glibenclamide therapy on the expression of RAGE, Sirt1, and Nrf2 genes in peripheral blood mononuclear cells of type 2 diabetic patients. J Diabetes Metab Disord 21, 369–377 (2022). https://doi.org/10.1007/s40200-022-00984-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-022-00984-7

Keywords

Navigation