Skip to main content

Advertisement

Log in

Involvement of Cdkal1 in the etiology of type 2 diabetes mellitus and microvascular diabetic complications: a review

  • Review article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Diabetes Mellitus, being a polygenic disorder, have a set of risk genes involved in the onset of the insulin resistance, obesity and impaired insulin synthesis. Recent genome wide association studies (GWAS) shows the intimacy of CDK5 regulatory subunit Associated protein 1-Like 1 (Cdkal1) with the pathophysiology of the diabetes mellitus and its complications, although the exact molecular relation is still unknown. In this short review, we have summarized all the diverse biological roles of Cdkal1 in relation to the onset of diabetes mellitus. Variations in the Cdkal1 transcript are responsible for the accumulation of misfolded insulin and thus generating oxidative and ER stress in the pancreatic β-cells, leading to their destruction. Recent studies have shown that Cdkal1 has an intrinsic thiomethyl transferase activity, which is essential for proper posttranslational processing of pre-proinsulin to produce mature insulin. Moreover, Cdkal1 has also been claimed as an endogenous inhibitor of cdk5, which prevents the cdk5-induced interruption in insulin synthesis through PDX1 translocation from nucleus to cytosol. Recent clinical studies have identified the risk single nucleotide polymorphisms (SNPs) of Cdkal1 as one of the root causes for the onset of diabetic complications. To the best of our knowledge, it is the first comprehensive review which elaborates most of the potential Cdkal1-dependent molecular mechanisms studied yet. In this review, we present a compiled and concise summary about all the diverse roles of Cdkal1 in the context of type 2 diabetes mellitus and its associated complications. This review will be helpful to target Cdkal1 as a potential option for the management of type 2 diabetes mellitus in future.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Who. c2020. World Health Organization. [Online]. [5 July 2020]. Available from: https://www.who.int/news-room/fact-sheets/detail/diabetes

  2. Gerich JE. Is reduced first-phase insulin release the earliest detectable abnormality in individuals destined to develop type 2 diabetes? Diabetes. 2002;51(suppl 1):S117–21. https://doi.org/10.2337/diabetes.51.2007.S117.

    Article  CAS  PubMed  Google Scholar 

  3. Wei FY, Tomizawa K. tRNA modifications and islet function. Diabetes Obes Metab. 2018 Sep;20:20–7. https://doi.org/10.1111/dom.13405.

    Article  CAS  PubMed  Google Scholar 

  4. Ohara-Imaizumi M, Yoshida M, Aoyagi K, Saito T, Okamura T, Takenaka H, et al. Deletion of CDKAL1 affects mitochondrial ATP generation and first-phase insulin exocytosis. PLoS One. 2010;5(12):e15553. https://doi.org/10.1371/journal.pone.0015553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Watanabe S, Wei FY, Tomizawa K. Functional characterization of Cdkal1, a risk factor of type 2 diabetes, and the translational opportunities. Drug Discov Today Dis Models. 2013;10(2):e65–9. https://doi.org/10.1016/j.ddmod.2012.12.001.

    Article  Google Scholar 

  6. Groenewoud MJ, Dekker JM, Fritsche A, Reiling E, Nijpels G, Heine RJ, et al. Variants of CDKAL1 and IGF2BP2 affect first-phase insulin secretion during hyperglycaemic clamps. Diabetologia. 2008;51(9):1659–63. https://doi.org/10.1007/s00125-008-1083-z.

    Article  CAS  PubMed  Google Scholar 

  7. Yonghong L, Wilson L, Monica C, Steven JS, Nam B, Joseph JC, et al. Further genetic evidence for three psoriasis-risk genes: ADAM33, CDKAL1, and PTPN22. J Invest Dermatol. 2009;129(3):629–34. https://doi.org/10.1038/jid.2008.297.

    Article  CAS  Google Scholar 

  8. Nan L, Junfen M, Kai L, Changlong G, Liang M. Different contributions of CDKAL 1, KIF21B, and LRRK2/MUC19 polymorphisms to SAPHO syndrome, rheumatoid arthritis, Ankylosing spondylitis, and Seronegative Spondyloarthropathy. Genet Test Mol Biomarkers. 2017;21(2):122–6. https://doi.org/10.1089/gtmb.2016.0112.

    Article  CAS  Google Scholar 

  9. Nikhil K, Sharan S, Chakraborty A, Roy P. Pterostilbene-isothiocyanate conjugate suppresses growth of prostate cancer cells irrespective of androgen receptor status. PLoS One. 2014;9(4):e93335. https://doi.org/10.1371/journal.pone.0093335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Varshney R, Gupta S, Roy P. Cytoprotective effect of kaempferol against palmitic acid-induced pancreatic β-cell death through modulation of autophagy via AMPK/mTOR signaling pathway. Mol Cell Endocrinol. 2017;15(448):1–20. https://doi.org/10.1016/j.mce.2017.02.033.

    Article  CAS  Google Scholar 

  11. Varshney R, Mishra R, Das N, Sircar D, Roy P. A comparative analysis of various flavonoids in the regulation of obesity and diabetes: an in vitro and in vivo study. J Funct Foods. 2019 Aug;1(59):194–205. https://doi.org/10.1016/j.jff.2019.05.004.

    Article  CAS  Google Scholar 

  12. Arragain S, Handelman SK, Forouhar F, Wei FY, Tomizawa K, Hunt JF, et al. Identification of eukaryotic and prokaryotic methylthiotransferase for biosynthesis of 2-methylthio-N6-threonylcarbamoyladenosine in tRNA. J Biol Chem. 2010;285(37):28425–33. https://doi.org/10.1074/jbc.m110.106831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang H, Wei L, Li C, Zhou J, Li Z. CDK5RAP1 deficiency induces cell cycle arrest and apoptosis in human breast cancer cell line by the ROS/JNK signaling pathway. Oncol Rep. 2015;33(3):1089–96. https://doi.org/10.3892/or.2015.3736.

    Article  CAS  PubMed  Google Scholar 

  14. Ubeda M, Rukstalis JM, Habener JF. Inhibition of cyclin-dependent kinase 5 activity protects pancreatic beta cells from glucotoxicity. J Biol Chem. 2006;281(39):28858–64. https://doi.org/10.1074/jbc.m604690200.

    Article  CAS  PubMed  Google Scholar 

  15. Wei FY, Nagashima K, Ohshima T, Saheki Y, Lu YF, Matsushita M, et al. Cdk5-dependent regulation of glucose-stimulated insulin secretion. Nat Med. 2005;11(10):1104–8. https://doi.org/10.1038/nm1299.

    Article  CAS  PubMed  Google Scholar 

  16. Suzuki K, Hata S, Kawabata Y, Sorimachi H. Structure, activation, and biology of calpain. Diabetes. 2004;53(suppl 1):S12–8. https://doi.org/10.2337/diabetes.53.2007.s12.

    Article  CAS  PubMed  Google Scholar 

  17. Ong SB, Lee WH, Shao NY, Ismail NI, Katwadi K, Lim MM, et al. Calpain inhibition restores autophagy and prevents mitochondrial fragmentation in a human iPSC model of diabetic endotheliopathy. Stem Cell Reports. 2019;12(3):597–610. https://doi.org/10.1016/j.stemcr.2019.01.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ahmed D, Sharma M. Cyclin-dependent kinase 5/p35/p39: a novel and imminent therapeutic target for diabetes mellitus. Int. J Endocrinol. 2011. https://doi.org/10.1155/2011/530274.

  19. Johnson AD. Single-nucleotide polymorphism bioinformatics: a comprehensive review of resources. Circ Cardiovasc Genet. 2009;2(5):530–6. https://doi.org/10.1161/2FCIRCGENETICS.109.872010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bethesda MD SNP FAQ Archive: National Center for Biotechnology Information (US).

  21. Rung J, Cauchi S, Albrechtsen A, Shen L, Rocheleau G, Cavalcanti-Proença C, et al. Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia. Nat Genet. 2009 Oct;41(10):1110. https://doi.org/10.1038/ng.443.

    Article  CAS  PubMed  Google Scholar 

  22. Zeggini E, Scott LJ, Saxena R, Voight BF, Marchini JL, Hu T, et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet. 2008;40(5):638–45. https://doi.org/10.1038/ng.120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lasram K, Ben Halim N, Benrahma H, Mediene Benchekor S, Arfa I, Hsouna S, et al. Contribution of CDKAL1 rs7756992 and IGF2BP2 rs4402960 polymorphisms in type 2 diabetes, diabetic complications, obesity risk and hypertension in the T unisian population. J Diabetes. 2015 Jan;7(1):102–13. https://doi.org/10.1111/1753-0407.12147.

    Article  CAS  PubMed  Google Scholar 

  24. Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, Chen H, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007;316(5829):1331–6. https://doi.org/10.1126/science.1142358.

    Article  CAS  PubMed  Google Scholar 

  25. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145):661. https://doi.org/10.1038/nature05911.

    Article  CAS  Google Scholar 

  26. Zhou B, Wei FY, Kanai N, Fujimura A, Kaitsuka T, Tomizawa K. Identification of a splicing variant that regulates type 2 diabetes risk factor CDKAL1 level by a coding-independent mechanism in human. Hum Mol Genet. 2014;23(17):4639–50. https://doi.org/10.1093/hmg/ddu184.

    Article  CAS  PubMed  Google Scholar 

  27. Wei FY, Tomizawa K. Functional loss of Cdkal1, a novel tRNA modification enzyme, causes the development of type 2 diabetes. Endocr J .2011: 1109050614-1109050614; https://doi.org/10.1507/endocrj.ej11-0099.

  28. Steiner DF, Park SY, Støy J, Philipson LH, Bell GI. A brief perspective on insulin production. Diabetes Obes Metab. 2009;11:189–96. https://doi.org/10.1111/j.1463-1326.2009.01106.x.

    Article  CAS  PubMed  Google Scholar 

  29. Støy J, Steiner DF, Park SY, Ye H, Philipson LH, Bell GI. Clinical and molecular genetics of neonatal diabetes due to mutations in the insulin gene. Rev Endocr Metab Disord. 2010;11(3):205–15. https://doi.org/10.1007/11154-010-9151-3.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Brambillasca S, Altkrueger A, Colombo SF, Friederich A, Eickelmann P, Mark M, et al. CDK5 regulatory subunit-associated protein 1-like 1 (CDKAL1) is a tail-anchored protein in the endoplasmic reticulum (ER) of insulinoma cells. J Biol Chem. 2012;287(50):41808–19. https://doi.org/10.1074/jbc.m112.376558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Okamura T, Yanobu-Takanashi R, Takeuchi F, Isono M, Akiyama K, Shimizu Y, et al. Deletion of CDKAL1 affects high-fat diet–induced fat accumulation and glucose-stimulated insulin secretion in mice, indicating relevance to diabetes. PLoS One. 2012;7(11):e49055. https://doi.org/10.1371/journal.pone.0049055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Back SH, Scheuner D, Han J, Song B, Ribick M, Wang J, et al. Translation attenuation through eIF2α phosphorylation prevents oxidative stress and maintains the differentiated state in β cells. Cell Metab. 2009;10(1):13–26. https://doi.org/10.1016/j.cmet.2009.06.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Frakes AE, Dillin A. The UPRER: sensor and coordinator of organismal homeostasis. Mol Cell. 2017;66(6):761–71. https://doi.org/10.1016/j.molcel.2017.05.031.

    Article  CAS  PubMed  Google Scholar 

  34. Sun J, Cui J, He Q, Chen Z, Arvan P, Liu M. Proinsulin misfolding and endoplasmic reticulum stress during the development and progression of diabetes☆. Mol Asp Med. 2015;1(42):105–18. https://doi.org/10.1016/j.mam.2015.01.001.

    Article  CAS  Google Scholar 

  35. Hasnain SZ, Prins JB, McGuckin MA. Oxidative and endoplasmic reticulum stress in b-cell dysfunction in diabetes. J Mol Endocrinol. 2016;56(2):33–54. https://doi.org/10.1530/jme-15-0232.

    Article  Google Scholar 

  36. Dos S, Maria CF, Cole PA, Susanne N, Kimberly BZ, Steven JR, et al. Irp2 regulates insulin production through iron-mediated Cdkal1-catalyzed tRNA modification. Nat Commun. 2020;11(1):1–16. https://doi.org/10.1038/s41467-019-14004-5.

    Article  CAS  Google Scholar 

  37. Fan-Yan W, Kazuhito T. Development of type 2 diabetes caused by a deficiency of a tRNAlys modification. Islets. 2012;4(1):71–3. https://doi.org/10.4161/isl.18262.

    Article  Google Scholar 

  38. Randal JK. Beta-cell failure, stress, and type 2 diabetes. N Engl J Med. 2011;365(20):1931–3. https://doi.org/10.1056/NEJMcibr1109442.

    Article  Google Scholar 

  39. Zeng H, Guo M, Zhou T, Tan L, Chong CN, Zhang T, et al. An isogenic human ESC platform for functional evaluation of genome-wide-association-study-identified diabetes genes and drug discovery. Cell Stem Cell. 2016;19(3):326–40. https://doi.org/10.1016/j.stem.2016.07.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Guo M, Zhang T, Dong X, Xiang JZ, Lei M, Evans T, et al. Using hESCs to probe the interaction of the diabetes-associated genes CDKAL1 and MT1E. Cell Rep. 2017;19(8):1512–21. https://doi.org/10.1016/j.celrep.2017.04.070.

    Article  CAS  PubMed  Google Scholar 

  41. Dehwah MA, Wang M, Huang QY. CDKAL1 and type 2 diabetes: a global meta-analysis. Genet Mol Res. 2010;9(2):1109–20. https://doi.org/10.4238/vol9-2gmr802.

    Article  CAS  PubMed  Google Scholar 

  42. Desai BM, Oliver-Krasinski J, De Leon DD, Farzad C, Hong N, Leach SD, et al. Preexisting pancreatic acinar cells contribute to acinar cell, but not islet β cell, regeneration. J Clin Invest. 2007;117(4):971–7. https://doi.org/10.1172/jci29988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xiao X, Chen Z, Shiota C, Prasadan K, Guo P, El-Gohary Y, et al. No evidence for β cell neogenesis in murine adult pancreas. J Clin Invest. 2013;123(5):2207–17. https://doi.org/10.1172/jci66323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu KC, Leuckx G, Sakano D, Seymour PA, Mattsson CL, Rautio L, et al. Inhibition of Cdk5 promotes β-cell differentiation from ductal progenitors. Diabetes. 2018;67(1):58–70. https://doi.org/10.2337/db16-1587.

    Article  CAS  PubMed  Google Scholar 

  45. Mehmet ZK, Gulali A, Edip E, Ozgur MY, Tuba TD, Burcin MA, Haluk S. Neuregulin-4 is associated with plasma glucose and increased risk of type 2 diabetes mellitus. Swiss Med Wkly. 2019; 149, no. 4344; https://doi.org/10.4414/smw.2019.20139

  46. Mehmet ZK, Gulali A, Burcin MA, Tuba TD, Ozgur MY, Edip E, et al. Is Neuregulin-4 a predictive marker of microvascular complications in type 2 diabetes mellitus? Eur J Clin Investig. 2020;50(3):e13206. https://doi.org/10.1111/eci.13206.

    Article  CAS  Google Scholar 

  47. Gulali A, Aytekin A, Mehmet T, Serkan O, Mehmet FO, Haluk S, et al. Diabetes mellitus increases plasma CARDIOTHROPHIN-1 levels independently of heart failure and hypertension. 2013.

  48. Tuba TD, Gulali A, Burcin MA, Mehmet ZK, Edip E, Haluk S. Neutrophil to lymphocyte ratio as an indicative of diabetic control level in type 2 diabetes mellitus. Afr Health Sci. 2019;19(1):1602–6. https://doi.org/10.4314/ahs.v19i1.35.

    Article  Google Scholar 

  49. Gulali A, Mehmet ZK, Tuba TD, Edip E, Burcin MA, Mustafa S, et al. Mean platelet volume (MPV) as an inflammatory marker in type 2 diabetes mellitus and obesity. Bali Med J. 2018;7(3):650–3. https://doi.org/10.15562/bmj.v7i3.806.

    Article  Google Scholar 

  50. Pinar S, Brendon S, Paola L, Claudio L, Marco S, Roberto P, et al. Inflammation and frailty in the elderly: a systematic review and meta-analysis. Ageing Res Rev. 2016;31:1–8. https://doi.org/10.1016/j.arr.2016.08.006.

    Article  CAS  Google Scholar 

  51. Satilmis B, Gulali A, Ozge K, Burcin MA, Tuba TD. Edmonton frail score is associated with diabetic control in elderly type 2 diabetic subjects. J Diabetes Metab. 2020;19(1):511. https://doi.org/10.1007/2Fs40200-020-00542-z.

    Article  Google Scholar 

  52. Bilgin S, Aktas G, Kahveci G, Atak MB, Kurtkulagi O, Duman TT. Does mean platelet volume/lymphocyte count ratio associate with frailty in type 2 diabetes mellitus? Bratisl Lek Listy. 2021;122(2):116–9. https://doi.org/10.4149/bll_2021_017.

    Article  CAS  PubMed  Google Scholar 

  53. Mehmet ZK, Gulali A, Edip E, Tuba TD, Burcin MA, Haluk S. Mean platelet volume to lymphocyte ratio as a novel marker for diabetic nephropathy. J Coll Physicians Surg Pak. 2018;28(11):844–7.

    Article  Google Scholar 

  54. Mehmat ZK, Gulali A, Edip E, Isa S, Burcin MA, Tuba TD. Serum uric acid to HDL-cholesterol ratio is a strong predictor of metabolic syndrome in type 2 diabetes mellitus. Rev Assoc Med Bras. 2019;65:9–15. https://doi.org/10.1590/1806-9282.65.1.9.

    Article  Google Scholar 

  55. Jeong-Ah S, Jin-Hee L, Sun-Young L, Hee-Sung H, Hyuk-Sang K, Yong-Moon P, et al. Metabolic syndrome as a predictor of type 2 diabetes, and its clinical interpretations and usefulness. J Diabetes Investig. 2013;4(4):334–43. https://doi.org/10.1111/jdi.12075.

    Article  CAS  Google Scholar 

  56. Gulali A, Mehmet ZK, Satilmis B, Burcin MA, Tuba TD, Ozge K. Uric acid to HDL cholesterol ratio is a strong predictor of diabetic control in men with type 2 diabetes mellitus. The Aging Male. 2020;23(5):1098–102. https://doi.org/10.1080/13685538.2019.1678126.

    Article  CAS  Google Scholar 

  57. Mehmet ZK, Gulali A, Tuba TD, Burcin MA, Haluk S. Is uric acid elevation a random finding or a causative agent of diabetic nephropathy? Rev Assoc Med Bras. 2019;65:1155–60. https://doi.org/10.1590/1806-9282.65.9.1156.

    Article  Google Scholar 

  58. Aktas G, Alcelik A, Ozlu MT, Tekce BK, Savli H, Tekce H, et al. Association between omentin levels and insulin resistance in pregnancy. Exp Clin Endocrinol Diabetes. 2014;122(03):163–6. https://doi.org/10.1055/s-0034-1370917.

    Article  CAS  PubMed  Google Scholar 

  59. Mohan RD, Sridevi D, Samuel P, Ishwarlal J. Increased toll-like receptor (TLR) activation and TLR ligands in recently diagnosed type 2 diabetic subjects. Diabetes Care. 2010;33(4):861–8. https://doi.org/10.2337/dc09-1799.

    Article  CAS  Google Scholar 

  60. Husam G, Priya M, Rupali D, Ching LS, Kelly K, Sanaa A, et al. Acute modulation of toll-like receptors by insulin. Diabetes Care. 2008;31(9):1827–31. https://doi.org/10.2337/dc08-0561.

    Article  Google Scholar 

  61. Xiao-Ming M, Hao L, Xiao-Jun T, Guo-Ping Y, Qian L, Shu-Kui W. Independent anti-inflammatory effect of insulin in newly diagnosed type 2 diabetes. Diabetes Metab Res Rev. 2009;25(5):435–41. https://doi.org/10.1002/dmrr.968.

    Article  CAS  Google Scholar 

  62. Take K, Waki H, Sun W, Wada T, Yu J, Nakamura M, et al. CDK5 regulatory subunit-associated protein 1-like 1 negatively regulates adipocyte differentiation through activation of Wnt signaling pathway. Sci Rep. 2017;7(1):1–1. https://doi.org/10.1038/s41598-017-06469-5.

    Article  CAS  Google Scholar 

  63. Xie P, Wei FY, Hirata S, Kaitsuka T, Suzuki T, Suzuki T, et al. Quantitative PCR measurement of tRNA 2-methylthio modification for assessing type 2 diabetes risk. Clin Chem. 2013;59(11):1604–12. https://doi.org/10.1373/clinchem.2013.210401.

    Article  CAS  PubMed  Google Scholar 

  64. Choi JH, Banks AS, Estall JL, Kajimura S, Boström P, Laznik D, et al. Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARγ by Cdk5. Nature. 2010;466(7305):451–6. https://doi.org/10.1038/nature09291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fowler MJ. Microvascular and macrovascular complications of diabetes. Clin Diabetes. 2011;29(3):116–22. https://doi.org/10.2337/diaclin.26.2.77.

    Article  Google Scholar 

  66. Vithian K, Hurel S. Microvascular complications: pathophysiology and management. Clin Med (Lond). 2010;10(5):505. https://doi.org/10.7861/clinmedicine.10-5-505.

    Article  Google Scholar 

  67. Chen G, Xu Y, Lin Y, Lai X, Yao J, Huang B, et al. Association study of genetic variants of 17 diabetes-related genes/loci and cardiovascular risk and diabetic nephropathy in the Chinese she population (中国畲族人群 17 个糖尿病相关基因位点的遗传变异与心血管风险和糖尿病肾病的相关性). J Diabetes. 2013;5(2):136–45. https://doi.org/10.1111/1753-0407.12025.

    Article  CAS  PubMed  Google Scholar 

  68. Liu NJ, Xiong Q, Wu HH, Li YL, Yang Z, Tao XM, et al. The association analysis polymorphism of CDKAL1 and diabetic retinopathy in Chinese Han population. Int J Ophthalmol. 2016;9(5):707. https://doi.org/10.18240/ijo.2016.05.12.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Peng D, Wang J, Zhang R, Jiang F, Tam CH, Jiang G, et al. CDKAL1 rs7756992 is associated with diabetic retinopathy in a Chinese population with type 2 diabetes. Sci Rep. 2017;7(1):1–7. https://doi.org/10.1038/s41598-017-09010-w.

    Article  CAS  Google Scholar 

  70. Pablo Y, José DL, Emilio A, Aylén S, Ana LG, Claudio PJ, et al. The rs4712527 Polymorphism in the CDKAL1 Gene: A Protective Factor for Proliferative Diabetic Retinopathy Progress in Type 2 Diabetes. J Vitreoretin Dis. 2018;2(4):200–7. https://doi.org/10.1177/2F2474126418777405.

    Article  Google Scholar 

  71. Nai-Jia L, Qian X, Hui-Hui W, Yan-Liang L, Zhen Y, Xiao-Ming T, et al. The association analysis polymorphism of CDKAL1 and diabetic retinopathy in Chinese Han population. Int J Ophthalmol. 2016;9(5):707. https://doi.org/10.18240/2Fijo.2016.05.12.

    Article  Google Scholar 

  72. Yanni T, Jing X, Ting H, Jiaqi C, Wei Z, Wei S, et al. A novel polymorphism (rs35612982) in CDKAL1 is a risk factor of type 2 diabetes: a case-control study. Kidney Blood Press Res. 2019;44(6):1313–26. https://doi.org/10.1159/000503175.

    Article  CAS  Google Scholar 

  73. Lu J, Luo Y, Wang J, Hu C, Zhang R, Wang C, et al. Association of type 2 diabetes susceptibility loci with peripheral nerve function in a Chinese population with diabetes. J Diabetes Investig. 2017 Jan;8(1):115–20. https://doi.org/10.1111/jdi.12546.

    Article  CAS  PubMed  Google Scholar 

  74. Prabodha LB, Sirisena ND, Dissanayake VH. Susceptible and prognostic genetic factors associated with diabetic peripheral neuropathy: a comprehensive literature review. Int J Endocrinol 2018 15; https://doi.org/10.1155/2018/8641942.

  75. Pascoe L, Tura A, Patel SK, Ibrahim IM, Ferrannini E, Zeggini E, et al. Common variants of the novel type 2 diabetes genes CDKAL1 and HHEX/IDE are associated with decreased pancreatic β-cell function. Diabetes. 2007;56(12):3101–4. https://doi.org/10.2337/db07-0634.

    Article  CAS  PubMed  Google Scholar 

  76. Shigi N. Sulfur modifications in tRNA: function and implications for human disease. In: Modified nucleic acids in biology and medicine. Cham: Springer; 2016. p. 55–71. https://doi.org/10.1007/978-3-319-34175-0_3.

    Chapter  Google Scholar 

  77. Locke JM, Wei FY, Tomizawa K, Weedon MN, Harries LW. A cautionary tale: the non-causal association between type 2 diabetes risk SNP, rs7756992, and levels of non-coding RNA, CDKAL1-v1. Diabetologia. 2015;58(4):745–8. https://doi.org/10.1007/s00125-015-3508-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Herder C, Rathmann W, Strassburger K, Finner H, Grallert H, Huth C, et al. Variants of the PPARG, IGF2BP2, CDKAL1, HHEX, and TCF7L2 genes confer risk of type 2 diabetes independently of BMI in the German KORA studies. Horm Metab Res. 2008;40(10):722–6. https://doi.org/10.1055/s-2008-1078730.

    Article  CAS  PubMed  Google Scholar 

Download references

Availability of data and material

Not applicable.

Code availability

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have contributed in the following manner: CG, ND and TK made the substantial contribution in conceptualizing, designing and writing the article; SS, DS and PR drafted the article and revised it for critically important intellectual contents; and finally, PR approved the final version to be published.

Corresponding author

Correspondence to Partha Roy.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, C., Das, N., Saha, S. et al. Involvement of Cdkal1 in the etiology of type 2 diabetes mellitus and microvascular diabetic complications: a review. J Diabetes Metab Disord 21, 991–1001 (2022). https://doi.org/10.1007/s40200-021-00953-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-021-00953-6

Keywords

Navigation