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Abstract

Background In this study, a combination of nanotechnology, organic synthesis and radiochemistry were utilized in order to
design an efficient nano-system conjugated with a suitable radionuclide and an antitumor agent for possible application as
tumor theragnostic agent.

Method Four novel compounds (3 and 4a-c) bearing tetrahydroquinazoline-7-sulfonohydrazide or 1,2,3,4-tetrahydroquinazo-
line-7-sulfonamide scaffold were designed. Then, docking study predicted that the compounds can be considered as potential
inhibitors for PARP-1. Following that; the four compounds were synthesized and properly characterized using /HNMR,
I3CNMR, IR and Mass spectroscopy. The cytotoxic effect of the four compounds was evaluated against breast cancer cell
line (MDA-MB-436), where compound 3 showed the most promising cytotoxic effect. The inhibitory effect of the four
compounds was evaluated in vitro against PARP-1.

Result Carboxylated graphene oxide nanosheets (NGO-COOH) were synthesized by a modified Hummer's method and has size
of range 40 nm. The NGO-COOH nanosheets were proven to be safe and biocompatible when tested in vitro against normal
human lung fibroblast cells (MRC-5). The prepared NGO-COOH nanosheets were conjugated with compound 3 then radiola-
beled with *™Tc to yield **™Tc-NGO-COOH-3 with a radiochemical yield of 98.5.0+0.5%. *"Tc-NGO-COOH-3 was injected
intravenously in solid tumor bearing mice to study the degree of localization of the nano-system at tumor tissue. The results of
the study revealed, excellent localization and retention of the designed nano-system at tumor tissues with targeting ratio of 9.0.
Conclusion Stirred a new candidate tumor theragnostic agent that is safe, selective and stable.

Keywords Nanographene sheets - Technetium-99m - Nano synthesis - Tumor imaging - Radiolabeling - Active targeting -
In-silico study - PRAP-1 inhibitor - Tumor theragnosis

Introduction
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normal cells [1]. Tumor tissues have a completely different
vascular system than normal tissue blood vessels [2]. This
vascular system in tumor tissue has pervert dynamics, with
lineaments like, hyperpermeability and the loss of a base-
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and retained for reasonable time. This fact is what makes
NPs excellent carriers for active drugs or a contrast agent
[9, 10]. The efficiency of NPs can be further improved by
active targeting. This can be achieved via inoculating/ con-
jugating the NPs with an active drug that has the ability to
interact with a specific target which is highly accumulated
on the surface of the tumor cells. This technique causes NPs
to actively target the tumor tissue, increases their localiza-
tion, retention, selectively delivers the active agent, improv-
ing the therapeutic potential of the conjugated ligand and
decreasing undesirable side effects. In this aspect NPs can
be conjugated with various tumor specific agents including
antibodies, peptides or a chemotherapeutic agent [11]. Vari-
ous NPs have been utilized in the field of nuclear medicine
where the NPs act as a carrier for a chosen radioisotope
for the purpose of imaging, therapy or both. *™Tc-chitosan
NPs, ?™Tc-bovine serum albumin NPs, *™Tc-Aspergillus
flavus synthesized copper oxide NPs have been found to be
efficient in diagnostic purposes. Meanwhile, '''In- multi-
functional superparamagnetic iron oxide NPs has found its
use as a cancer therapeutic agent [12—17].

Graphene has been explored for different imaging appli-
cations due to its unique characteristics, safety and rapid cel-
lular uptake [18]. So, graphene based nanosheets are excel-
lent nano-systems when compared to other NPs [19, 20].

PARP-1, poly(ADP-ribose) polymerase-1, is respon-
sible for repairing the DNA damage within the cell [21].
For that reason, PARP-1 is one of the intriguing targets for
cancer therapy where PARP-1 inhibitors showed efficiency
in inducing cellular death. Various PARP-1 inhibitors are
at clinical investigation for the treatment of various tumors
such as olaparip, iniparib, veliparib and talazoparib [22].

In this work, a novel nano-system comprised of carboxy-
lated nanographene sheets (NGO-COOH) conjugated with
both **™Tc and a novel cytotoxic agent is investigated as a
radio-theragnostic agent. ®™Tc has been chosen for this study
due to its excellent characteristics as a radiotracer for use in
single-photon emission computed tomography (SPECT)
[23-28]. The designed nano-system is expected to target the
tumor cells via both passive and active targeting as illustrated
in Fig. 1. The designed nano-system will be investigated for
its biocompatibility and selective accumulation at tumor site.

Experimental

Materials

Chemicals

Chloroform, Graphite, ethyl acetate H,0, H,SO,, KMnO,

NaNO; and NaOH were bought from Sigma (St. Louis,
Mo., USA). Fetal Bovine serum, DMEM, RPMI-1640,
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Fig.1 A Schematic diagram of passive targeting of graphene oxide
(GO) nanosheets; B Active targeting of decorated graphene oxide
nanosheets

HEPES buffer solution, L-glutamine and gentamycin were
purchased from Lonza (Belgium).

Radioactive material

Technetium-99 m (*°™Tc) was eluted as pertechnetate
(*’™Tc0,™) from a Mo/**™Tc generator provided as a gift
from Radio-isotopes Production Facility (RPF), Egyptian
Atomic Energy Authority (EAEA), Cairo, Egypt.

Mammalian cell lines
Normal human lung fibroblast cells (MRC-5) were collected

from the American Type Culture Collection (ATCC, Rock-
ville, MD).
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Docking of the synthesized compounds to the Active
site of PARP-1

Database preparation

All molecules were build using the builder functionality
integrated in MOE2015.10 program. The molecules were
subjected to stochastic conformational search and energy
minimization using MMFF94X forcefield. All the generated
conformation were saved as.mdb file to be used for later dock-
ing [29].

Protein targets preparation

PARP-1 crystal structure was downloaded from the protein
data bank depository (https://www.rcsb.org/), PDB 4GV7
[30]. For protein preparation, all included water molecules
were removed, 3D protonation was performed, and energy
minimization and correction of bonding pattern was applied.

Identification of the binding site

The binding site was determined based on the position of the
bounded co-crystallized inhibitor using the site finder func-
tionality in MOE.

Docking protocol

Semi-flexible docking was applied using MMFF94x as a force
field, triangle matcher as placement method and London dG
as scoring function. For validation of the docking protocol, the
co-crystallized ligand was included in the docked database and
re-docked with the test compounds. Also, the docking protocol
was done using Affinity dG as a scoring function to validate
the results of the docking [29].

Synthesis of carboxylated nanographene oxide
sheets (NGO-COOH)

Graphite oxide suspension was prepared from natural graph-
ite powder using the modified Hummers' process. Exactly
1 g graphite and 1 g NaNO; were added to 50 mL H,SO, and
the mixture was stirred for 10 min in an ice bath. Following
that, the mixture was allowed to warm to room temperature
while gradually adding 6 g of KMnO,. The formed suspen-
sion was stirred in a water bath (35 C), then mixed with
one hundred milliliter of deionized water (DI) while keep-
ing the temperature under 60 °C. Finally, 6 mL of hydro-
gen peroxide (30%) diluted in 200 mL deionized water was
added to the suspension to solubilize manganese ions and
to prevent the suspension from forming residual permanga-
nate. Centrifugation was performed at 6000 rpm for 10 min

then the supernatant solution was extracted and centrifuged
several times to remove all the remaining acids and salts.
The obtained nanographene oxide (NGO) suspension was
sonicated for 30 min to obtain a yellow—brown graphene
oxide (GO) suspension. Further centrifugation at 2000 rpm
for 15 min was performed to dissolve the remaining unex-
foliated graphitic platelets and any formed precipitates
were eliminated. For carboxylation of NGO, 10 mL NaOH
(12 mg/ mL) was added followed by sonication for 2 h at 800
W to convert OH groups to COOH [31-36].

Characterization of NGO-COOH nanosheets

Various techniques were used to characterize NGO-COOH
nanosheets to ascertain their form, size, surface area, chemi-
cal composition, and dispersion. Transmission electron
microscopy (TEM) with an acceleration voltage of 200 kV
(Ted Pella, Redding, CA, USA), and dynamic light scatter-
ing (DLS) at an acceleration voltage of 200 kV (Ted Pella,
Redding, CA, USA) were used for characterization. The
XPS peak was deconvoluted using Gaussian components
after a Shirley background subtraction. The O/C atomic ratio
of the NGO sheets were evaluated using peak area ratio of
the XP Score levels and the sensitivity factor of each element
in XPS. Raman spectroscopy was carried out at room tem-
perature using a HR-800Jobin-Yvon equipped with a 532 nm
Nd-YAG excitation source. UV—Visible spectrophotometry
using visible recording spectrophotometer UV-160A, Shi-
madzu, Japan and Fourier transformer infrared spectroscopy
(FT-IR), (Mattson Instruments, Inc., New Mexico, USA was
used. Samples were prepared for TEM measurements by
placing 5- 20 pL. of NGO-COOH dispersed solution on a
Cu grid and then dried under an IR lamp while the sample
had been diluted by utilizing the same sample quantity of
bi-distilled water for DLS measurements.

Synthesis and characterization of 2,4-Dioxo-1,2,3,4-tetra-
hydroquinazoline-7-sulfonohydrazide

Chemistry

The synthetic approach of the target quinazoline-sulfonohy-
drazide derivative as shown in Scheme 1.

Preparation of quinazoline-2,4(1H,3H)-dione (1) Compound
1 was prepared according to reported method [37]. Yield
72%, m.p.> 250 °C.

Preparation of 2,4-dioxo-1,2,3,4-tetrahydroquinazo-

line-7-sulfonyl chloride (2) Compound 2 was prepared
according to reported method. Yield 71%, m.p. 310 °C.
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Reagents and conditions: i) chlorosulfonic acid, ethanol, reflux for 6h; ii) hydrazine hydrate, ethanol, stirring
at r.t. for 6h ; iii) appropriate amines, ethanol, reflux for 7h.

Scheme 1 The synthetic approach of the target quinazoline-sulfonohydrazide derivatives (3 and 4a-c)

2,4-dioxo-1,2,3,4-tetrahydroquinazoline-7-sulfonohydrazide
(3) To a solution of the sulfonyl chloride derivative 2
(2.60 g, 10 mmol) in ethanol (30 mL), hydrazine hydrate
(2 mL, 20 mmol) was added and the reaction was continu-
ously stirred at room temperature for 6 h. The formed precip-
itate was filtered, washed several times with petroleum ether
and then crystallized from ethanol to yield the hydrazide
derivative 3 as a white powder.

Yield (65%), m.p.268-270 °C, IR (KBr, cm™h): 3344—
3320 (4NH); 3132 (CH-aromatic), 2999 (CH-alicyclic);
1750, 1678 (2C=0); 1332, 1138 (SO,). 'HNMR (DMSO-
dg, 0 ppm): 4.17 (broad s, 2H, NH,, exchangeable with D,0);
7.30, 7.9 (2d, 2H, J=17.08 Hz, aromatic-H); 8.28 (s, 1H,
aromatic-H); 8.24, 11.31, 11.55 (3 s, 3H, 3NH, exchangeable
with D,0).”CNMR (DMSO-d,, 6 ppm): 114.73, 116.54,
128.06, 132.12, 134.23, 144.24, (aromatic-C); 150.61,
162.54 (2C=0). MS, m/z (%): 257 [M* +1] (30.09), 256
[M*] (19.27). Analysis for CgHgN,0,S (256.24), Calcd.:
%C, 37.50; H, 3.15; N, 21.87; S, 12.51. Found: %C, 37.78;
H, 3.37; N, 22.06; S, 12.38.

Preparation of 2,4-dioxo-N-substituted-1,2,3,4-tetrahy-
droquinazoline-7-sulfonamide (4a-c) To a solution of
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compound 2 (2.60 g, 10 mmol) in ethanol (30 mL), an
appropriate amine namely; p-toluidine, 2-aminobenzoic
acid and thiazol-2-amine (10 mmol) was added. The reac-
tion mixture was refluxed for 7 h. The formed precipitate
was collected by filtration and crystallized from ethanol to
give the corresponding derivatives 4a-c.

2,4-Dioxo-N-(p-tolyl)-1,2,3,4-tetrahydroquinazoline-7-sul-
fonamide (4a) Yield (74%), m.p. <300 °C, IR (KBr, cm™!):
3344-3320 (3NH); 3132 (CH-aromatic); 2996 (CH-alicy-
clic); 1750, 1678 (2C =0); 1332, 1138 (SO,). HNMR
(DMSO-dg, & ppm): 2.32 (s, 3H, CHj;); 6.95-8.20 (m, 7H,
aromatic-H); 11.21, 11.31, 11.50 (3 s, 3H, 3NH, exchange-
able with D,0). CNMR (DMSO-d,, & ppm): 20.76
(CH,); 121.31, 123.34, 124.51, 126.85, 129.43, 130.12,
130.67, 138.20, 141.37, 142.84, 144.28, 150.50 (aromatic-
C); 150.67, 163.11 2C=0). MS, m/z (%): 332 [M* +1]
(45.09), 331 [M™*] (41.89). Analysis for C,sH,;N;0,S
(331.35), Calcd.: %C, 54.37; H, 3.95; N, 12.68; S, 9.68.
Found: %C, 54.57; H, 3.70; N, 12.93; S, 9.90.

2-(2,4-Dioxo-1,2,3,4-tetrahydroquinazoline-7-sulfonamido)
benzoic acid (4b) Yield (74%), m.p. 280-282 °C, IR (KBr,
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cm™Y): 3350- 3320 (3NH); 3025 (CH-aromatic), 2905 (CH-
alicyclic); 1750, 1710, 1680 (3C=0); 1332, 1135 (SO,).
THNMR (DMSO-d,, § ppm): 6.71-6.90 (m, 2H, aromatic-
H), 7.10 (d, 1H, aromatic-H), 7.14-7.26 (m, 1H, aromatic-H);
7.81, 7.87 (2d, 2H, J=7.08 Hz, aromatic-H); 8.20 (s, 1H,
aromatic-H), 11.08, 11.21, 11.31 (3 s, 3H, 3NH, exchange-
able with D,0); 11.55 (s, 1H, OH, exchangeable with D,0).
BCNMR (DMSO-dy, 6 ppm): 117.10, 123.61, 128.67, 132.43,
134.70, 130.53, 134.69, 137.90, 141.45, 142.84, 144.67,
150.81 (aromatic-C); 150.61, 162.91, 171.11 (3C=0). MS,
m/z (%): 362 M +1] (36.50), 361 [M*] (28.03), Analysis
for C;sH;;N;04S (361.33), Caled.: % C, 49.86; H, 3.07; N,
11.63; S, 8.87. Found: % C, 50.09; H, 3.27; N, 11.85; S, 9.17.

2,4-dioxo-N-(thiazol-2-yl)-1,2,3,4-tetrahydroquinazo-
line-7-sulfonamide (4c) Yield (74%), m.p. 265-267 °C, IR
(KBr, cm™"): 3348- 3330 (3NH); 3021 (CH-aromatic); 2910
(CH-alicyclic); 1746, 1680 (2C=0); 1332, 1135 (S0,).
THNMR (DMSO-d,, § ppm): 6.71,7.11 (2d, 2H, J=7.08 Hz,
aromatic-H); 7.21- 8.20 (m, 3H, aromatic-H); 11.08, 11.21,
11.50 (3 s, 3H, 3NH, exchangeable with D,0). CNMR
(DMSO-dy, & ppm): 124.10, 128.15, 129.63, 131.90, 138.90,
141.45, 142.84, 144.67, (aromatic-C); 154.61, 168.91 (C=0).
MS, m/z (%): 324 [M*] (28.03). Analysis for C;;HgN,O,S,
(324.33), Calcd.: % C, 40.74; H, 2.49; N, 17.28; S, 19.77.
Found: % C, 40.59; H, 2.27; N, 17.65; S, 19.43.

Evaluation of cytotoxic effects
Evaluation of cytotoxic effects of NGO-COOH nanosheets

The in vitro cytotoxic effect of NGO-COOH was tested using
Normal human lung fibroblast cells (MRC-5). The cells were
grown on RPMI-1640 medium supplemented with 10% inac-
tivated fetal calf serum and 50 ug/mL gentamycin. The cells
were maintained at 37 °C in a humidified atmosphere with 5%
CO, and were sub-cultured 23 times per week.

For the cytotoxicity assay, the cell lines were suspended
in medium at concentration 5x 10* cells/ well in Corn-
ing® 96-well tissue culture plates, then incubated for 24 h.
NGO was then added into 96-well plates (three replicates)
to achieve twelve concentrations for it. Six vehicle controls
with media were run for each 96 well plate as a control.
After incubating for 24 h, the numbers of viable cells were
determined by MTT test. The 50% inhibitory concentration
(ICsy) was estimated using Graphpad Prism software (San
Diego, CA. USA) from graphic plots of the dose response
curve for each conc [38, 39].

Evaluation of cytotoxic effect of compound 3 and 4a-c

The cytotoxicity assay was performed at Department of
therapeutic chemistry/ National Research Center. cytotoxic

activity of target compounds 3, 4a-c was determined via three
independent experiments by 3-(4,5-dimethylthiazolyl-2)-2,5-
diphenyltetrazolium bromide (MTT) cell proliferation assay
against the cell proliferation of human breast cancer MDA-
MB-436 cells carrying natural BRCA1 deficient [R].

In vitro PARP inhibition assay

The in vitro inhibition of PARP-1 was measured using an HT
F Homogeneous 96-well PARP Inhibition Assay Kit (Trevi-
gen, Ca# 4690-096-K, Gaithersburg, USA), according to the
manufacturer’s protocol. The synthesized compounds were
dissolved in DMSO and then serially diluted to the required
concentrations with distilled water, keeping the final con-
centration of DMSO lower than 1%. Olaparib was used as
positive control. Fluorescence values under the condition of
excitation wavelength (544 nm) and emission wavelength
(590 nm) were measured using a multi-well spectrophotom-
eter (Molecular Devices SpectraMax M5 microplate reader,
Careforde, Chicago, USA). Then, the standard curve was
drawn and the inhibition rate of each test compound was cal-
culated. ICs, value of each compound was calculated using
GraphPad Prism 6 software [40, 41].

Conjugation of NGO-COOH with compound 3
(NGO-COOH-3)

NGO-COOH nanosheets were condensed with compound 3
(12 mM) in the presence of N,N'-Dicyclohexylcarbodiimide
(DCC) (12 mM) in DMF. Dicyclohexylurea formed was
removed by filtration and DMF was removed under vac-
uum. The residue obtained was washed with water to remove
excess of amine and traces of DMF. The residue was then
purified by column chromatography using chloroform/ethyl
acetate, 80:20 as an eluent and then recrystallized from alco-
hol [42-44].

Radiolabeling procedures

The eluted [gngc]TcO4_ was reduced from its hepta-oxi-
dation state to enable the formation of the desired complex
[**™Tc]TcO,-NGO-COOH using sodium dithionite [45].
Compound 3 and its conjugate with NGO-COOH nanosheets
were radiolabeled with **™Tc as follow;

Radiolabeling of compound 3

A volume of 200 pL of freshly eluted *™TcO,~ (20 MBq)
was added to appropriate amount sodium dithionite (5-
25 mg) followed by the addition of different amounts of
compound 3 (50- 750 mg) dissolved in 5 mL of DMF.
The mixture was incubated for 10- 50 min and the pH was
adjusted using the appropriate buffer solutions at 4- 8.
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Radiolabeling of NGO-COOH-3

A volume of 200 pL of freshly eluted **™TcO,~ (20 MBq) was
added to appropriate amount sodium dithionite (5- 25 mg)
followed by the addition of different amounts of NGO-COOH
(50- 500 mg). The mixture was incubated for 10- 60 min and
the pH was adjusted using buffer solutions at 4-8.

Determination of in vitro stability

The in vitro stability of the radiolabeled complexes was stud-
ied in saline at 0.5, 2, 4, 6, 8 and 24 h post-incubation. The
radiolabeling reactions were kept at 37 °C and a sample from
each reaction mixture was withdrawn and the RCY was re-
estimated by paper chromatography.

Determination of the radiochemical yield (RCY)
The RCY was determined using ascending paper chromatog-

raphy. After the designated time interval, samples of each radi-
olabeling reaction mixture (200 uL, 20 MBq) were applied on

strips of Whatman paper no. 3 (13 cmX 1 cm). The applied
samples were allowed to air dry. Two different mobile phases
were used for development [46-50]. First, chloroform/ethyl ace-
tate mixture (1:2) was used as a mobile phase to check the per-
centage of free 9ngcO4_. Second saline, was used to determine
the percent of reduced hydrolyzed *™Tc-colloid (RH-""Tc).
After complete development, each paper strip was allowed to
dry and cut into 1 cm pieces and counted in a well-type Nal
(T1) y-counter (BLC-20, BUCK Scientific). HPLC was used
to ensure that the labeled molecule was present as a single spe-
cies and to ascertain the complexation yield. HPLC analysis
of ™Tc were done by injection of 10 pl, after 0.20 um Mil-
lipore filtration, into the column (C-18 reversed phase column)
and UV spectrophotometer detector (SPD-6A) adjusted to the
270 nm wavelength. The column was eluted with mobile phase
(water (A) and acetonitrile (B) mixed with 0.1% trifluoroacetic
acid as the mobile phase. the flow rate was adjusted to 1 ml/
min. Fractions of 1 ml were collected separately using a fraction
collector up to 30 and counted in a well-type Nal (T1) detector
connected to a single-channel analyzer [51].
The RCY was calculated as follows;

Radiolabeled complex % = 100 — (free_**"Tc_TcO™ ,% + RH=""Tc%).

Biodistribution study of radiolabeled complexes

To form a solid tumor, a 0.2 mL of Ehrlich Ascites Carci-
noma fluid was administered intramuscularly in the right thigh
of female Swiss Albino mice. The animals were well-cared
until the tumors became obvious (7- 10 days). The parent
tumor line (Ehrlich Ascites Carcinoma) was withdrawn from
7-day-old Swiss Albino donor females and diluted with sterile
physiological saline solution to yield 12.5 x 10° cells/mL [52].
The animal study was conducted in accordance with the
EAEA Committee on Animal Ethics (EAEA/2020/193)
which follows the criteria set upon by the European Com-
munity for the use of animals as an experiment.
Biodistribution studies were performed by injecting the
solid tumor-bearing mice intravenously with NGO-COOH
nanosheets followed by injecting the radiolabeled com-
plexes. The mice were divided into four groups (four mice
per group) according to the designated time of dissection.
Following the administration of the radiolabeled nanosheets,
mice were dissected at 0.5, 1, 2, 4 h post injection (p.i).
Blood, solid tumor, and major organs/tissues were collected
and wet-weighed. The distribution of the radioactivity in
each organ/ fluid was measured ex vivo, the radioactivity
in each was detected by a gamma-counter (Perkin Elmer)
as presented in Fig. 4. The results were expressed as mean
percentage injected dose per gram (%ID/g + SD) [53-55].
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Result and discussion

Docking of the synthesized compounds to the Active
site of PARP-1

Poly (ADP- ribose) polymerases (PARP) are diphetheria toxin
like ADP-ribosyltransferase domain proteins that detect DNA
single strand breaks and catalyze their repair by adding ADP-
ribose units to acceptor proteins to facilitate the DNA repair
process. The inhibition of PARP-1 retards the DNA repair
process thus, PARP-1 inhibitors act as radiosensitizers and
chemosensitizers and used in combination with alkylating
agents and radiotherapy in cancer patients [56—58]. Different
PARP-1 inhibitors have been developed and currently are in
phase 2 and 3 clinical trials including olaparib [59], rucaparib
[60] niraparib [61], veliparib [62] and talazoparib [63].

In this study, the docking of compound 3 to the active
site of PARP-1 has been performed along with other known
PARP-1 inhibitors (olaparib, and talazoparip) to evaluate
their affinity to PARP-1.

Compound 3 showed comparable affinity to the co-crys-
tallized ligand (-6.46 kcal.mol~") as shown in Table 1. Com-
pound 3 secured its fit with the formation of 3 HB interac-
tions with Arg 865, Ser864 and Tyr889 as shown in Fig. 2.

The results of the docking study clearly showed that the
suggested compounds had remarkable affinity towards the
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active site of PARP-1. Compound 3 showed a promising
affinity and could be considered as a promising inhibitor for
PARP-1 enzyme.

Chemistry
Synthesis of compounds 3 and 4a-c
Synthetic strategy to synthesize the target derivatives 3, 4a-c

has been illustrated in Scheme 1. The structural formulae of
all the new compounds were confirmed by microanalyses and

spectral data. Anthranilic acid was stirred with an equivalent
amount of urea at 160 °C for 6 h to give the key starting
compound 1H-quinazolin-2,4-dione (1) [37]. Furthermore,
compound 1 was treated with chlorosulfonic acid in etha-
nol to give the corresponding sulfonyl derivative 2, which
was stirred with hydrazine hydrate in ethanol at r.t. fOor 6 h
to accomplish the corresponding sulfonohydrazide 3. Also,
compound 2 was allowed to react with different appropriate
amines namely; p-toluidine, 2-aminobenzoic acid and thia-
zol-2-amine in refluxing ethanol to afford the corresponding
tetrahydroquinazoline-7-sulfonamide derivatives 4a-c.

Table 1 Docking of compound

T Compound S (Kcal.mol™) No of bonds Amino Acids involved
3 to the active site of PARP-1

3 -6.47 3 HB Arg865, Ser864 and Tyr889
Olaparib -7.63 1 arene-arene interac-  Tyr907

tion His862

1 HB

Talazoparib -6.03 1 HB Asp766
Co-crystallized —6.06 3HB Gly863 and Tyr907

Fig.2 Docking pose of
compound 3 the active site of
PARP-1; A 3D presentation of
the docked pose; B 2D presenta-
tion of the docked pose

A

Mean Diameter = 20.9 nm Vanance (P.1) - 2752

Stnd. Deviation = 34.6 nm (165.9%) Chi Squared w6415

Norm. Stnd. Dev. = 1.659 Baseline Adj. = 0.000 %

(Coeft. of Varn) Z-Avg. Diff. Coeff. = 2.53E.008 cm2/s

ag: 20000x

Fig.3 Size analysis of NGO-COOH nanosheets (A) DLS scan, B TEM image
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Fig.4 FT-IR spectra of (A) NGO-COOH nanosheets, B NGO-OH nanosheets and (C) XPS spectrum of NGO-COOH nanosheets

Synthesis and characterization of NGO-COOH nanosheets

NGO- COOH nanosheets were synthesized according to
the method mentioned earlier. The carboxylation of NGO
sheets offer a method for increasing the hydrophilicity of the
sheets thus increasing the distance between them. Also, the
introduced carboxylic groups act as a reactive site that ease
the conjugation of other active molecules such as peptides,
enzymes polymers and positively charged molecules [64].
When examined by DLS, all small sheets were found to be
within the size range of 10-70 nm Fig. 3A. Also, the aver-
age diameters of NGO-COOH sheets were 6.5 ~70 nm. The
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Fig.5 UV/Vis spectra of the NGO-COOH nanosheets
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shape of NGO-COOH was studied using TEM Fig. 3B. The
width of the NGO-COOH sheets was reduced by sonication
to less than 100 nm, while their thickness that captured and
measured by TEM was 1- 2 nm.

FTIR confirmed the existence of COOH groups in the
NGO-COOH. As shown in Fig. 4A the appearance of absorp-
tion peaks at 3437 (sharp peak) and 1638 cm™! representing
C =0 group was observed. This peak stretched due to the
effect of C=C of cyclic carbon in the hybrid structure of
nanographene. On the other hand, FTIR of NG-OH showed a
broad band at 3471 cm™! assigned for the OH group as shown
in Fig. 4B [65]. Figure 4C represents XPS peak deconvolu-
tion of C(1 s) core levels of the GO sheets. In the peak decon-
volution, the peak centered at 285 eV was attributed to the
C—C and C=C bonds. The other deconvoluted peaks located
at the binding energies of 286.6, 287.4, 288.3 and 289.4 eV
were assigned to the C-OH, C-O-C, C=0, and O=C-OH
oxygen-containing functional groups, respectively [47—-49].

The O/C atomic ratio of the NGO sheets was found to be
0.47. This is consistent with the oxygen content of chemically
exfoliated GO sheets reported previously [50, 51]. The COOH
groups of NGO were further confirmed by UV/Vis spectros-
copy. A peak at 232 nm appeared representing COOH group
as shown in Fig. 5. Furthermore, UV/Vis spectrum of NGO

sheets presented an absorption peak at 270 nm [31, 65, 66].

Synthesis and characterization of NGO-COOH-3 conjugate
Conjugating NGO-COOH nanosheets with compound 3 was

intended to actively target the conjugated nano-system to tumor
cells. Active targeting will cause increase of the selectivity and
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Fig.6 The schematic diagram
of the NGO-COOH with com-
pound 3 as active targeting of

nanosheets for tumor

carl:;oxylaied graphene
oxide nanosheets

active site of
ligand

receptor

active targeting of carboxylated graphene oxide nanosheets

Scheme 2 The synthetic
approach of the NGO-COOH T
with compound 3
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retention of the cytotoxic agent (3) at tumor site. Thus, enhanc-
ing its therapeutic potential (Fig. 6). Compound 3 was chosen
from the synthesized compounds based on its promising affin-
ity to PARP-1 as predicted by the docking study and its potent
cytotoxic effect on BRCA1 mutant MDA-MB-436 cells.

The conjugation of NGO-COOH nanosheets was performed
using the strategy outlined in Scheme 2. Following the conjuga-
tion, compound 3 appeared as spots of 25 nm on the sheets of
NGO-COOH as measured by TEM and shown in Fig. 7A. The
presence of NH of amide group in the complex was also con-
firmed by FTIR where absorption peaks at 3444 (broad peak)
and 1650 cm™~'were detected representing the C=0, Fig. 7B.

Cytotoxicity evaluation

Cytotoxicity evaluation of the synthesized compounds (3,
4a-c)

The results were expressed in Table 2 as the ICs, (pM)
values. The hydrazide derivative 3 exhibited the most

promising cytotoxic efficiency that was about 1.6 times
more potent than that obtained by Staurosporine (ICs;
0.006 pM and 0.01 pM, respectively). Compound 4b dis-
played equipotent cytotoxic activity to that obtained by
Staurosporine of (IC5,=0.01 pM). The significant cyto-
toxic activity of both analogues 3 and 4b could explained
due to the presence of NH, and OH groups which might
form additional H-bonds with the target proteins leading to
the improvement of the inhibiting effect against the tested
cancer cells. On the other hand, a detectable reduction (5,
4 folds) in the potency was observed by the compounds 4a
and 4c as shown in Table 2.

Cytotoxicity evaluation of NGO-COOH nanosheets

The cytotoxic effect of NGO-COOH nanosheets was
tested normal human lung fibroblast cells (MRC-5) to
determine the safety of the nano-system to the body. The
determined inhibitory activity of NGO-COOH was found
to be 30.45 +0.27 pg/mL as shown in Fig. 8. This result
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Fig.7 Size analysis of NGO- A
COOH-3; AThe FT-IR spectra
of NGO-COOH-3 B

-

Table 2 Cytotoxic activity of

C d No. IC M
the new compounds (3 and ompound o so (HM)

dac) MDA-MB-436
3 0.006+0.1
4a 0.05+£0.8
4b 0.01+£0.3
4c 0.04+0.8
Staurosporine  0.01+0.1

illustrates the biocompatibility of NGO-COOH and how
much the safety of this organic compound.

In vitro PARP-1 and NGO-COOH inhibitory assay

The in vitro PARP-1 inhibitory active for the synthesized
compounds (3 and 4a-c) using olaparib as a reference
drug. According to Table 3, the compounds displayed
inhibitory activities against PARP-1 with ICy, values in
the nano-range (49.56- 144.4 ng/mL). However, none
of the tested compounds showed potency comparable to
olaparib of (IC5;,=9.49 ng/mL). It could be noted that; the
thiazole derivative 4c¢ represented the most potent inhibi-
tory effect against the target enzyme of 1C5,=49.56 ng/
mL followed by compounds 4b and 3 had ICs, of 60.32
and 66.9 ng/mL, respectively. This result indicated that the
new compounds their cytotoxic can be attributed to inhibi-
tion of PARP-1 along with other mechanism of action. The
determined inhibitory activity of NGO-COOH was found
to be 30.45 +0.27 pg/mL as shown in Fig. 8. This result
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illustrates the biocompatibility of NGO-COOH and how
much the safety of this organic compound.

Radiolabeling of compound 3 and NGO-COOH-3

Radiolabeling compound 3 was planned in order to study its
biodistribution profile and the degree of its localization at
tumor site. The various conditions affecting the radiochemi-
cal yield such as pH of the reaction, reaction time, amount of
sodium dithionite and compound 3. The optimum RCY for
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obtaining **™Tc-3 was 98.5 +0.45% (Fig. 9) using 15 mg of
sodium dithionite, 250 mg of compound 3 and the reaction
was allowed to proceed for 30 min at pH 5.

On the other hand, NGO-COOH-3 was radiolabeled with
9mTe to study the utility of the radiolabeled nano-system for
theragnostic use. The optimum RCY for *™Tc-NGO-COOH-3
complex (98.5 +0.45%) was obtained using 15 mg sodium
dithionite, 150 pg of substrate at pH 6 at reaction time 30 min
as shown in Fig. 10. The radiochromatogram was presented in
(Fig. 11) and showed two peaks, one at fraction No. 2.8 which
corresponds to the free pertechnetate, while the second peak
was collected at fraction No. 5.5, 8.1 and 7 that correspond
to #™Tc-3, #"Tc-NGO-COOH and **"Tc-NGO-COOH-3

Table 3 In vitro inhibitory

activity of the synthesized Compound No. ;%l%g_lf/ml)
compounds against PARP-1
3 66.9
4a 144.4
4b 60.32
4c 49.56
Olaparib 9.49
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complexes respectively which were found to coincide with the
UV signal. The radiochromatogram showed 98.5% labeling
yield which was coinciding with the results of the analysis
using ascending paper chromatography.

In vitro stability study

9mTe-3 and ™ Tc-NGO-COOH-3 were tested for their in vitro
stability in saline to ensure the stability of the radiolabeled
complex at time of injection.

As indicated in Fig. 12, both complexes showed adequate
stability observed in high RCY (above 98.5%) for time up to
8 h. Also, after 12 h both complexes were stable (RCY98.5%).

Biodistribution study
Biodistribution of**™Tc-3

The overall approach for studying the biodistribution pat-
tern of the radiolabeld complex is outline in Fig. 13. The
biodistribution of *™Tc-3 following administration in nor-
mal mice is presented in Fig. 14A. As can be observed, the
initial blood uptake of **™Tc -3 was high (10.5 + 1.4%ID/g)

=

Tt

THATIT G Gk Ao 1 1. 23 A el o1 3 103 TR3 W | 0 § A 3 T
12am | cCA-
1 -con

radiochemical labeling yield (%)

“_‘——,.,_ " i p_—y
T
<
=2
o
==
= [Fe—aan e ) > Y T hyaenoe
£ |o—199m 1t o
2 |- e comon
2 -
®
>
E
o
o
=3
°
o<
s > i &
T T B
~ A
time ( min)

Fig.9 Radiochemical yield of 9mTe 3 (a) pH, b Sodium dithionite amount, ¢ compound 3 amount, d reaction time
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at 0.5 h p.i. The radioactivity was cleared gradually with
time from the blood reaching 3.2 +0.4%ID/g at 4 h p.i. The
observed radioactivity uptake in the liver was relatively
high starting with 11+ 1.7%ID/g (0.5 h p.i) and reached
12+ 1.2%ID/g (1 h p.i). The liver uptake started declining
after 1 h and reached its lowest measured value at 4 h p.i
(8+1.3%ID/g). On the contrary, the kidney showed mod-
erate uptake of radioactivity when compared to the liver
which indicated that the metabolism and excretion of **™Tc
-3 is mainly through hepatobiliary pathway. The accumu-
lation of radioactivity at the stomach was not high which
indicated that the complex is stable in vivo and no radioly-
sis occurred. localization of *™Tc-3 at tumor site was High
and rapid (0.5 p.i) with uptake of 5.0 + 0.40%ID/g and the
uptake continued increasing to reach 6.5 +0.3%ID/g after
2 h then 6.0 +£0.4%ID/g at 4 h p.i (Fig. 14C). The fast
uptake and prolonged retention of **™Tc -3 at tumor site
indicated that compound 3 has the potential to be a targeted
therapeutic agent.

@ Springer

Biodistribution of [**™Tc] Tc-NGO-COOH-3

The observed radioactivity in the blood was much lower
than that in case of *™Tc -3 with uptake of 5.0 +0.5%ID/g at
30 min. after injection and reaching 1+0.1%ID/g at 4 h after
injection (Fig. 14B) which indicated fast distribution of the
nano-system throughout the body. Also, the initial liver uptake
at 30 min. after injection. (7.0+0.7%ID/g) was lower than that
of #™Tc¢ -3 at the same time point (11.0+ 1.7%ID/g). How-
ever, after 4 h p.i the uptake reached 15.0+ 1.5%ID/g 4 h. This
high uptake can be explained by the fact that; NGO-COOH
conjugates hydrodynamic diameter studied in this analysis is
considerably larger than the cutoff for renal filtration (5 nm),
thus, hepatobiliary pathway is expected to be the major route
for clearance (Fig. 14B) [67]. For *™Tc-NGO-COOH-3,
the tumor uptake was 7.0 +0.70%ID/g at 0.5 h which was
nearly duplicated after 1 h p.i. to reach 12.0+ 1.2%ID/g. The
uptake remained steady for 4 h (Fig. 14D). The pattern of
tumor uptake of **"Tc-NGO-COOH-3 showed high uptake,
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excellent accumulation and retention especially when com-
pared with *™Tc-olaparib (3.2 +0.36%ID/g, 2 h p.i). Compar-
ing the tumor uptake of *™Tc -3 and **™Tc-NGO-COOH-3,
the later complex clearly showed higher uptake of radioac-
tivity at all time points. High uptake with long retention and
two folds increased uptake of the radioactivity in short time
assured that; the designed nanosheets played a major role in
selective accumulation of the radioactivity at tumor site. Also,
the tumor uptake was further augmented by EPR phenomena
[9, 68-71]. In addition, tumor tissues lose a disposal lym-
phatic system, which enhanced the retention of *™Tc-NGO-
COOH-3. Finally, nanosheets being coated with hydrophilic
group like carboxylic group help to prevent the ReticuloEn-
dothelial System (RES) mechanism by reducing in vivo
adsorption [16, 72, 73]. The RES is essentially responsible
for clearance of Nanoparticles from the biological system.
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Selective localization and targeting of tumor tissue

Target/ non-target ratio is often utilized to express selec-
tive localization degree of radiopharmaceuticals. In this
study, the target (tumor muscle) uptake to non-target uptake
(contralateral normal muscle) was evaluated for the tumor
uptake of both *™Tc-3 and ™ Tc-NGO-COOH-3. The most
effective techniques for reducing RES absorption involve
stabilizing nanosheets with hydrophilic groups [33, 73-76].
Phagocytes are unable to infiltrate because a hydrated
water barrier provides considerable steric hindrance, which
remained consistent during its in vivo tests. The high target/
nontarget ratio, which was 9 after 2 h post-injection, is a
benefit of the suggested radiolabeled nano-system (**™Tc-
NGO-COOH). The greatest T/NT ratio for previously pub-
lished radiolabeled nano-systems was 3.7 +0.45-7+0.5 [15,
74,75]. While NGO T/NT ratio was 2+0.5 as reported [76].

Conclusion

Nanographene oxide modified derivative (NGO) NGO-
COOH nanosheets have overexpressed surface area and
capacity to carry a huge payload so it is a novel nano-sheet
material that have potential pathways to tumors in vivo.
NGO-COOH holds promise as a various scaffold material
for the development of molecular imaging probes while
2,4-dioxo-1,2,3,4-tetrahydroquinazoline-7-sulfonohy-
drazide (3) is promising inhibitors for PARP-1 enzyme.
So, combination of both nanomaterial and the PRAP-1
inhibitor and labeling them by **™Tc and also the exploi-
tation of the advantage of the active targeting of the nano-
system to tumor cells give a high potential opportunity to
have a novel potent drug that may start a new era in tumor
theragnosis.
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