Skip to main content

Advertisement

Log in

A self-healable and bioadhesive acacia gum polysaccharide-based injectable hydrogel for wound healing acceleration

  • Research article
  • Published:
DARU Journal of Pharmaceutical Sciences Aims and scope Submit manuscript

Abstract

The present study aimed at developing an injectable hydrogel based on acacia gum (AG) for wound healing acceleration. The hydrogels were synthetized through metal-ligand coordination mediated by Fe3+ and characterized in terms of gelation time, gel content, initial water content, swelling capacity, water retention ratio, and porosity. Moreover, FTIR, XRD and TGA analyses were performed for the hydrogels and allantoin (Alla) loaded ones. Furthermore, bioadhessiveness, and self-healing as well as antibacterial, toxicity and wound healing potentials of the hydrogels were evaluated. The hydrogels displayed fast gelation time, high swelling, porosity, and bioadhessiveness, as well as antioxidant, self-healing, antibacterial, blood clotting, and injectability properties. FTIR, XRD and TGA analyses confirmed hydrogel synthesis and drug loading. The Alla-loaded hydrogels accelerated wound healing by decreasing the inflammation and increasing the cell proliferation as well as collagen deposition. Hemocompatibility, cell cytotoxicity, and in vivo toxicity experiments were indicative of a high biocompatibility level for the hydrogels. Given the advantages of fast gelation, injectability and beneficial biological properties, the use of Alla-loaded hydrogels could be considered a new remedy for efficient wound healing.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Xu J, Liu Y, Hsu SH. Hydrogels based on schiff base linkages for biomedical applications. Molecules. 2019;24(16): 3005. https://doi.org/10.3390/molecules24163005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Parwani L, Bhatnagar M, Bhatnagar A, Sharma V, Sharma V. Gum acacia-PVA hydrogel blends for wound healing. Vegetos. 2019;32(1):78–91. https://doi.org/10.1007/s42535-019-00009-4.

    Article  Google Scholar 

  3. Ahmadian Z, Gheybi H, Adeli M. Efficient wound healing by antibacterial property: advances and trends of hydrogels, hydrogel-metal NP composites and photothermal therapy platforms. J Drug Deliv Sci Technol. 2022;103458. .https://doi.org/10.1016/j.jddst.2022.103458

  4. Zohreband Z, Adeli M, Zebardasti A. Self-healable and flexible supramolecular gelatin/MoS2 hydrogels with molecular recognition properties. Int J Biol Macromol. 2021;182:2048–55. https://doi.org/10.1016/j.ijbiomac.2021.05.106.

    Article  CAS  PubMed  Google Scholar 

  5. Sattari S, Dadkhah Tehrani A, Adeli M. pH-responsive hybrid hydrogels as antibacterial and drug delivery systems. Polymers. 2018;10(6): 660. https://doi.org/10.3390/polym10060660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mescher AL. Macrophages and fibroblasts during inflammation and tissue repair in models of organ regeneration. Regeneration. 2017;4(2):39–53. https://doi.org/10.1002/reg2.77.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Atala A, Irvine DJ, Moses M, Shaunak S. Wound healing versus regeneration: role of the tissue environment in regenerative medicine. MRS Bull. 2010;35(8):597–606. https://doi.org/10.1557/mrs2010.528.

    Article  CAS  Google Scholar 

  8. Giano MC, Ibrahim Z, Medina SH, Sarhane KA, Christensen JM, Yamada Y, Brandacher G, Schneider JP. Injectable bioadhesive hydrogels with innate antibacterial properties. Nat Commun. 2014;5(1):4095. https://doi.org/10.1038/ncomms5095.

    Article  CAS  PubMed  Google Scholar 

  9. Yan S, Wang W, Li X, Ren J, Yun W, Zhang K, Li G, Yin J. Preparation of mussel-inspired injectable hydrogels based on dual-functionalized alginate with improved adhesive, self-healing, and mechanical properties. J Mater Chem B. 2018;6(40):6377–90. https://doi.org/10.1039/C8TB01928B.

    Article  CAS  PubMed  Google Scholar 

  10. Sundaram MN, Pradeep A, Varma PK, Jayakumar R. Different forms of chitosan and its derivatives as hemostatic agent and tissue sealants. 2021. pp. 1–28; https://doi.org/10.1007/12_2021_98.

  11. Pei X, Wang J, Cong Y, Fu J. Recent progress in polymer hydrogel bioadhesives. J Polym Sci. 2021;59(13):1312–37. https://doi.org/10.1002/pol.20210249.

    Article  CAS  Google Scholar 

  12. Nam S, Mooney D. Polymeric tissue adhesives. Chem Rev. 2021;121(18):11336–84. https://doi.org/10.1021/acs.chemrev.0c00798.

    Article  CAS  PubMed  Google Scholar 

  13. Guo J, Sun W, Kim JP, Lu X, Li Q, Lin M, Mrowczynski O, Rizk EB, Cheng J, Qian G, Yang J. Development of tannin-inspired antimicrobial bioadhesives. Acta Biomater. 2018;72:35–44. https://doi.org/10.1016/j.actbio.2018.03.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu C, Shen L, Lu Y, Hu C, Liang Z, Long L, Ning N, Chen J, Guo Y, Yang Z, Hu X. Intrinsic antibacterial and conductive hydrogels based on the distinct bactericidal effect of polyaniline for infected chronic wound healing. ACS Appl Mater Interfaces. 2021;13(44):52308–20. https://doi.org/10.1021/acsami.1c14088.

    Article  CAS  PubMed  Google Scholar 

  15. Tu Y, Chen N, Li C, Liu H, Zhu R, Chen S, Xiao Q, Liu J, Ramakrishna S, He L. Advances in injectable self-healing biomedical hydrogels. Acta Biomater. 2019;90:1–20. https://doi.org/10.1016/j.actbio.2019.03.057.

    Article  CAS  PubMed  Google Scholar 

  16. Zhao X, Wu H, Guo B, Dong R, Qiu Y, Ma PX. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials. 2017;122:34–47. https://doi.org/10.1016/j.biomaterials.2017.01.011.

    Article  CAS  PubMed  Google Scholar 

  17. Geng H, Dai Q, Sun H, Zhuang L, Song A, Caruso F, Hao J, Cui J. Injectable and sprayable polyphenol-based hydrogels for controlling hemostasis. ACS Appl Bio Mater. 2020;3(2):1258–66. https://doi.org/10.1021/acsabm.9b01138.

    Article  CAS  PubMed  Google Scholar 

  18. Pourshahrestani S, Zeimaran E, Kadri NA, Mutlu N, Boccaccini AR. Polymeric hydrogel systems as emerging biomaterial platforms to enable hemostasis and wound healing. Adv Healthc Mater. 2020;9(20): 2000905. https://doi.org/10.1002/adhm.202000905.

    Article  CAS  Google Scholar 

  19. Aduba DC Jr, Yang H. Polysaccharide fabrication platforms and biocompatibility assessment as candidate wound dressing materials. Bioengineering. 2017;4(1):1. https://doi.org/10.3390/bioengineering4010001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Patel S, Goyal A. Applications of natural polymer gum arabic: a review. Int J Food Prop. 2015;18(5):986. https://doi.org/10.1080/10942912.2013.809541.

    Article  CAS  Google Scholar 

  21. Ibekwe CA, Oyatogun GM, Esan TA, Oluwasegun KM. Synthesis and characterization of chitosan/gum arabic nanoparticles for bone regeneration. Am J Mater Sci Eng. 2017;5(1). .https://doi.org/10.12691/ajmse-5-1-4

  22. Sanchez C, Nigen M, Tamayo VM, Doco T, Williams P, Amine C, Renard D. Acacia gum: history of the future. Food Hydrocolloids. 2018;78:140–60. https://doi.org/10.1016/j.foodhyd.2017.04.008.

    Article  CAS  Google Scholar 

  23. Singh B, Sharma S, Dhiman A. Acacia gum polysaccharide based hydrogel wound dressings: synthesis, characterization, drug delivery and biomedical properties. Carbohydr Polym. 2017;165:294–303. https://doi.org/10.1016/j.carbpol.2017.02.039.

    Article  CAS  PubMed  Google Scholar 

  24. Elblbesy MA, Hanafy TA, Shawki MM. Polyvinyl alcohol/gum arabic hydrogel preparation and cytotoxicity for wound healing improvement. E-Polymers. 2022;22(1):566. https://doi.org/10.1515/epoly-2022-0052.

    Article  CAS  Google Scholar 

  25. Raguvaran R, Manuja BK, Chopra M, Thakur R, Anand T, Kalia A, Manuja A. Sodium alginate and gum acacia hydrogels of ZnO nanoparticles show wound healing effect on fibroblast cells. Int J Biol Macromol. 2017;96:185–91. https://doi.org/10.1016/j.ijbiomac.2016.12.009.

    Article  CAS  PubMed  Google Scholar 

  26. Li M, Li H, Li X, Zhu H, Xu Z, Liu L, Ma J, Zhang M. A bioinspired alginate-gum arabic hydrogel with micro-/nanoscale structures for controlled drug release in chronic wound healing. ACS Appl Mater Interfaces. 2017;9(27):22160–75. https://doi.org/10.1021/acsami.7b04428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ye J, Yang G, Zhang J, Xiao Z, He L, Zhang H, Liu Q. Preparation and characterization of gelatin-polysaccharide composite hydrogels for tissue engineering. PeerJ. 2021;9: e11022. https://doi.org/10.7717/peerj.11022.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bealer EJ, Onissema-Karimu S, Rivera-Galletti A, Francis M, Wilkowski J, Salas-de la Cruz D, Hu X. Protein–polysaccharide composite materials: fabrication and applications. Polymers. 2020;12(2): 464. https://doi.org/10.3390/polym12020464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Amaya-Chantaca NJ, Caldera-Villalobos M, Claudio-Rizo JA, Flores-Guía TE, Becerra-Rodríguez JJ, Soriano-Corral F, Herrera-Guerrero A. Semi-IPN hydrogels of collagen and gum arabic with antibacterial capacity and controlled release of drugs for potential application in wound healing. Prog Biomater. 2023;12(1):25–40. https://doi.org/10.1007/s40204-022-00210-w.

    Article  CAS  PubMed  Google Scholar 

  30. Ahmadian Z, Correia A, Hasany M, Figueiredo P, Dobakhti F, Eskandari MR, Hosseini SH, Abiri R, Khorshid S, Hirvonen J, Santos HA. A hydrogen-bonded extracellular matrix‐mimicking bactericidal hydrogel with radical scavenging and hemostatic function for pH‐responsive wound healing acceleration. Adv Health Mater. 2021;10(3):2001122. https://doi.org/10.1002/adhm.202001122.

    Article  CAS  Google Scholar 

  31. Becker LC, Bergfeld WF, Belsito DV, Klaassen CD, Marks JG, Shank RC, Slaga TJ, Snyder PW, Andersen FA. Final report of the safety assessment of allantoin and its related complexes. Int J Toxicol. 2010;29(3suppl):84S – 97. https://doi.org/10.1177/1091581810362805.

    Article  CAS  PubMed  Google Scholar 

  32. Li QX, Song BZ, Yang ZQ, Fan HL. Electrolytic conductivity behaviors and solution conformations of chitosan in different acid solutions. Carbohydr Polym. 2006;63(2):272. https://doi.org/10.1016/j.carbpol.2005.09.024.

    Article  CAS  Google Scholar 

  33. Gupta KC, Jabrail FH. Glutaraldehyde and glyoxal cross-linked chitosan microspheres for controlled delivery of centchroman. Carbohydr Res. 2006;341(6):744. https://doi.org/10.1016/j.carres.2006.02.003.

    Article  CAS  PubMed  Google Scholar 

  34. Gupta KC, Jabrail FH. Glutaraldehyde cross-linked chitosan microspheres for controlled release of centchroman. Carbohydr Res. 2007;342(15):2244–52. https://doi.org/10.1016/j.carres.2007.06.009.

    Article  CAS  PubMed  Google Scholar 

  35. Dherange DD, Pangavane MR. Review on: excipients used in herbal drug technology. Int J Res Publ Rev. 2022;3(2):465–475.

  36. Musa HH, Ahmed AA, Musa TH. Chemistry, biological, and pharmacological properties of gum Arabic. Bioactive Molecules in Food; Springer International Publishing AG: Cham, Switzerland. 2018:1–8; https://doi.org/10.1007/978-3-319-54528-8_11-1.

  37. Qu J, Zhao X, Liang Y, Zhang T, Ma PX, Guo B. Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials. 2018;183:185–99. https://doi.org/10.1016/j.biomaterials.2018.08.044.

    Article  CAS  PubMed  Google Scholar 

  38. Zhu J, Han H, Li F, Wang X, Yu J, Qin X, Wu D. Peptide-functionalized amino acid-derived pseudoprotein-based hydrogel with hemorrhage control and antibacterial activity for wound healing. Chem Mater. 2019;31(12):4436–50. https://doi.org/10.1021/acs.chemmater.9b00850.

    Article  CAS  Google Scholar 

  39. Murphy CM, O’Brien FJ, Little DG, Schindeler A. Cell-scaffold interactions in the bone tissue engineering triad. Eur Cell Mater. 2013;26(4):120. https://doi.org/10.22203/eCM.v026a09.

    Article  CAS  PubMed  Google Scholar 

  40. Balaji A, Jaganathan SK, Ismail AF, Rajasekar R. Fabrication and hemocompatibility assessment of novel polyurethane-based bio-nanofibrous dressing loaded with honey and Carica papaya extract for the management of burn injuries. Int J Nanomed. 2016;11:4339. https://doi.org/10.2147/IJN.S112265.

    Article  CAS  Google Scholar 

  41. Wang Y, Tong L, Zheng Y, Pang S, Sha J, Li L, Zhao G. Hydrogels with self-healing ability, excellent mechanical properties and biocompatibility prepared from oxidized gum arabic. Eur Polymer J. 2019;117:363–71. https://doi.org/10.1016/j.eurpolymj.2019.05.033.

    Article  CAS  Google Scholar 

  42. Duan W, Bian X, Bu Y. Applications of bioadhesives: a mini review. Front Bioeng Biotechnol. 2021;9:716035. https://doi.org/10.3389/fbioe.2021.716035.

  43. Rad ZP, Mokhtari J, Abbasi M. Fabrication and characterization of PCL/zein/gum arabic electrospun nanocomposite scaffold for skin tissue engineering. Mater Sci Eng: C. 2018;93:356–66. https://doi.org/10.1016/j.msec.2018.08.010.

    Article  CAS  Google Scholar 

  44. Ates B, Koytepe S, Balcioglu S, Karaaslan MG, Kelestemur U, Gulgen S, Ozhan O. Biomimetic approach to tunable adhesion of polyurethane adhesives through Fe3 + crosslinking and hydrophobic tween units with balance of adhesion/cohesion forces. Int J Adhes Adhes. 2019;95: 102396. https://doi.org/10.1016/j.ijadhadh.2019.102396.

    Article  CAS  Google Scholar 

  45. Ali S, Khatri Z, Oh KW, Kim IS, Kim SH. Zein/cellulose acetate hybrid nanofibers: electrospinning and characterization. Macromol Res. 2014;22:971–7. https://doi.org/10.1007/s13233-014-2136-4.

    Article  CAS  Google Scholar 

  46. Cai Y, Wang Q, Wei Q, You Q, Huang F, Song L, Hu Y, Gao W. Structure, thermal, and antibacterial properties of polyacrylonitrile/ferric chloride nanocomposite fibers by electrospinning. Int J Polym Anal Charact. 2010;15(2):110–8. https://doi.org/10.1080/10236660903525083.

    Article  CAS  Google Scholar 

  47. Baien SH, Seele J, Henneck T, Freibrodt C, Szura G, Moubasher H, Nau R, Brogden G, Mörgelin M, Singh M, Kietzmann M. Antimicrobial and immunomodulatory effect of gum arabic on human and bovine granulocytes against Staphylococcus aureus and Escherichia coli. Front Immunol. 2020;10: 3119. https://doi.org/10.3389/fimmu.2019.03119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tian R, Qiu X, Yuan P, Lei K, Wang L, Bai Y, Liu S, Chen X. Fabrication of self-healing hydrogels with on-demand antimicrobial activity and sustained biomolecule release for infected skin regeneration. ACS Appl Mater Interfaces. 2018;10(20):17018–27. https://doi.org/10.1021/acsami.8b01740.

    Article  CAS  PubMed  Google Scholar 

  49. Lv C, Li L, Jiao Z, Yan H, Wang Z, Wu Z, Guo M, Wang Y, Zhang P. Improved hemostatic effects by Fe3 + modified biomimetic PLLA cotton-like mat via sodium alginate grafted with dopamine. Bioactive Mater. 2021;6(8):2346–59. https://doi.org/10.1016/j.bioactmat.2021.01.002.

    Article  CAS  Google Scholar 

  50. Sakthiguru N, Sithique MA. Fabrication of bioinspired chitosan/gelatin/allantoin biocomposite film for wound dressing application. Int J Biol Macromol. 2020;152:873–83. https://doi.org/10.1016/j.ijbiomac.2020.02.289.

    Article  CAS  PubMed  Google Scholar 

  51. O’Connor NA, Syed A, Wong M, Hicks J, Nunez G, Jitianu A, Siler Z, Peterson M. Polydopamine antioxidant hydrogels for wound healing applications. Gels. 2020;6(4): 39. https://doi.org/10.3390/gels6040039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Standard AS. F756-00: Standard standard practice for assessment of hemolytic properties of materials. USA: Annual Book of ASTM Standards; 2000.

    Google Scholar 

  53. Ugartondo V, Mitjans M, Vinardell MP. Comparative antioxidant and cytotoxic effects of lignins from different sources. Bioresour Technol. 2008;99(14):6683–7. https://doi.org/10.1016/j.biortech.2007.11.038.

    Article  CAS  PubMed  Google Scholar 

  54. Picone P, Sabatino MA, Ajovalasit A, Giacomazza D, Dispenza C, Di Carlo M. Biocompatibility, hemocompatibility and antimicrobial properties of xyloglucan-based hydrogel film for wound healing application. Int J Biol Macromol. 2019;121:784–95. https://doi.org/10.1016/j.ijbiomac.2018.10.078.

    Article  CAS  PubMed  Google Scholar 

  55. Tsou YH, Khoneisser J, Huang PC, Xu X. Hydrogel as a bioactive material to regulate stem cell fate. Bioactive Mater. 2016;1(1):39–55. https://doi.org/10.1016/j.bioactmat.2016.05.001.

    Article  Google Scholar 

  56. Tibbitt MW, Anseth KS. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng. 2009;103(4):655. https://doi.org/10.1002/bit.22361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ahmadian Z, Dargahi AR, Musaie K, Eskandari MR. Preparation and in vivo toxicity study of allantoin incorporated hyaluronic acid-L-cysteine oral solution: a future treatment for mucositis. Pharm Sci. 2021;28(3):414–23. https://doi.org/10.34172/PS.2021.65.

    Article  Google Scholar 

  58. Florentino IF, Silva DP, Galdino PM, Lino RC, Martins JL, Silva DM, de Paula JR, Tresvenzol LM, Costa EA. Antinociceptive and anti-inflammatory effects of Memora nodosa and allantoin in mice. J Ethnopharmacol. 2016;186:298–304. https://doi.org/10.1016/j.jep.2016.04.010.

    Article  CAS  PubMed  Google Scholar 

  59. Ali BH, Al-Husseni I, Beegam S, Al-Shukaili A, Nemmar A, Schierling S, Queisser N, Schupp N. Effect of gum arabic on oxidative stress and inflammation in adenine–induced chronic renal failure in rats. PLoS ONE. 2013;8(2): e55242. https://doi.org/10.1371/journal.pone.0055242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sowa I, Paduch R, Strzemski M, Zielińska S, Rydzik-Strzemska E, Sawicki J, Kocjan R, Polkowski J, Matkowski A, Latalski M, Wójciak-Kosior M. Proliferative and antioxidant activity of Symphytum officinale root extract. Nat Prod Res. 2018;32(5):605–9. https://doi.org/10.1080/14786419.2017.1326492.

    Article  CAS  PubMed  Google Scholar 

  61. Araújo LU, Grabe-Guimarães A, Mosqueira VC, Carneiro CM, Silva-Barcellos NM. Profile of wound healing process induced by allantoin. Acta Cirurgica Brasileira. 2010;25:460–1. https://doi.org/10.1590/S0102-86502010000500014.

    Article  PubMed  Google Scholar 

  62. Nokoorani YD, Shamloo A, Bahadoran M, Moravvej H. Fabrication and characterization of scaffolds containing different amounts of allantoin for skin tissue engineering. Sci Rep. 2021;11(1):16164. https://doi.org/10.1038/s41598-021-95763-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Valle KZ, Saucedo Acuña RA, Ríos Arana JV, Lobo N, Rodriguez C, Cuevas-Gonzalez JC, Tovar-Carrillo KL. Natural film based on pectin and allantoin for wound healing: obtaining, characterization, and rat model. BioMed Res Int. 2020;2020. https://doi.org/10.1155/2020/6897497

Download references

Acknowledgements

The authors would like to thank Dr. Ahmad Salimi, Ardabil University of Medical Sciences, for helpful suggestions with regard to the technical issues examined in the present study. The authors also would like to thank Ardabil University of Medical Sciences for its financial support (ethical code: IR.ARUM.REC.1400.016). The authors are also grateful to the staff of Iran Science Elites Federation.

Funding

The financial resources of this work were provided by Ardabil University of Medical Sciences, Ardabil, Iran.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Zainab Ahmadian, Mohsen Adeli; Methodology: Zainab Ahmadian, Mahsa Zibanejad Jelodar, Sajjad Sefareshi, Vahed Adhami; Formal analysis and investigation: Zainab Ahmadian, Hossein Ali Ebrahimi, Motaleb Ghasemian; Writing-original and editing: Zainab Ahmadian, Marzieh Rashidipour.

Corresponding author

Correspondence to Zainab Ahmadian.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

ESM 1

(RAR 5.57 MB)

ESM 2

(DOCX 1.39 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadian, Z., Jelodar, M.Z., Rashidipour, M. et al. A self-healable and bioadhesive acacia gum polysaccharide-based injectable hydrogel for wound healing acceleration. DARU J Pharm Sci 31, 205–219 (2023). https://doi.org/10.1007/s40199-023-00475-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40199-023-00475-x

Keywords

Navigation