
Vol.:(0123456789)1 3

https://doi.org/10.1007/s40199-022-00446-8

REVIEW ARTICLE

A comparison between SARS‑CoV‑1 and SARS‑CoV2: an update 
on current COVID‑19 vaccines

Gelareh Abdolmaleki1 · Mina Azam Taheri1 · Sarina Paridehpour1 · Neshaut Mashreghi Mohammadi1,2 · 
Yasaman Ahmadi Tabatabaei1 · Taraneh Mousavi3,4 · Mohsen Amin1,2 

Received: 5 June 2021 / Accepted: 5 August 2022 
© The Author(s), under exclusive licence to Tehran University of Medical Sciences 2022

Abstract
Since the outbreak of the novel coronavirus disease 2019 (COVID-19) in Wuhan, China, many health care systems have 
been heavily engaged in treating and preventing the disease, and the year 2020 may be called as “historic COVID-19 vaccine 
breakthrough”. Due to the COVID-19 pandemic, many companies have initiated investigations on developing an efficient 
and safe vaccine against the virus. From Moderna and Pfizer in the United States to PastocoVac in Pasteur Institute of Iran 
and the University of Oxford in the United Kingdom, different candidates have been introduced to the market. COVID-19 
vaccine research has been facilitated based on genome and structural information, bioinformatics predictions, epitope map-
ping, and data obtained from the previous developments of severe acute respiratory syndrome coronavirus (SARS-CoV or 
SARS-CoV-1) and middle east respiratory syndrome coronavirus (MERS-CoV) vaccine candidates. SARS-CoV genome 
sequence is highly homologous to the one in COVID-19 and both viruses use the same receptor, angiotensin-converting 
enzyme 2 (ACE2). Moreover, the immune system responds to these viruses, partially in the same way. Considering the on-
going COVID-19 pandemic and previous attempts to manufacture SARS-CoV vaccines, this paper is going to discuss clinical 
cases as well as vaccine challenges, including those related to infrastructures, transportation, possible adverse reactions, 
utilized delivery systems (e.g., nanotechnology and electroporation) and probable vaccine-induced mutations.
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Introduction

Being considered the newest addition to the Coronaviridae 
family, severe acute respiratory syndrome coronavirus-2 
(SARS-CoV-2) is the virus responsible for the coronavi-
rus disease 2019 (COVID-19), which was declared a pan-
demic on March 11, 2020, by the World Health Organiza-
tion (WHO) [1]. The term ‘Corona’ represents crown-like 
spikes on the outer surface of the coronaviruses, which 
contain the largest genomes among all the RNA viruses [2, 
3]. Up to July 16, 2022, the number of confirmed COVID-
19 cases were 566,641,094 including 6,386,256 deaths and 
537,853,204 recoveries [4].

Based on the recent WHO updates, the most common 
symptoms of COVID-19 are fever, cough, tiredness, and loss 
of taste/smell [5]. The less common ones are sore throat, 
headache, aches and pains, diarrhea, rashes, or discolora-
tion of fingers or toes, and red or irritated eyes. The disease 
is assessed into mild, severe, and critical (i.e., respiratory 
failure, septic shock, multiple organ dysfunction, or failure) 
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categories based on the clinical manifestations and severity 
[6, 7].

Apart from the health-related complications of the dis-
ease, its economic burden cannot be ignored. It was reported 
that global gross domestic product (GDP) dropped about 
4.5% in 2020 [8]. Numerous people who have found them-
selves jobless and lost their insurance have faced a grave 
situation. The average cost for hospital care for COVID-19 
patients ranges from 51,000 to 78,000 USD based on their 
age [9]. The only similar conditions we have experienced in 
the twenty-first century are the Middle East respiratory syn-
drome (MERS) and severe acute respiratory syndrome coro-
navirus (SARS-CoV) outbreaks in 2012 and 2003, respec-
tively. Although SARS-CoV, MERS-CoV, and SARS-CoV-2 
belong to the same coronaviruses genus, SARS-CoV-2 is 
associated with milder infections. This explains why SARS-
CoV-2 spreads far easier [10].

Herd immunity occurs when enough of a population is 
protected against an infection that its transmission ceases, 
indirectly safeguard those who are not immune. The herd 
immunity threshold for COVID-19 is at least 60–70% [11]. 
So far, global vaccination seems to be the only weapon in 
providing such conditions. In taking advantage of the high 
genetic similarity between SARS-CoV and SARS-CoV-2 
(i.e., 79.6%), various vaccine candidates from nearly all over 
the world have been introduced throughout the pandemic, 
with Pfizer’s “BNT162b1” and Modena’s “mRNA-1273” 
being the forerunners in acquiring USFDA’s authorization 
for emergency use [12]. From live attenuated or inactivated 
viruses, viral vectors, and virus-like particles (VLPs) to 
recombinant proteins and nucleic acids (RNAs and DNAs), 
diverse platforms have been used in the SARS-CoV-2 vac-
cine manufacturing process [13, 14]. Each platform has its 
pros and cons in fields such as storage conditions, price, side 
effects, efficacy, and safety. It is also affected by multiple 
factors, one of the most important of which is the issue of 
mutations.

Considering the importance of proper vaccination and the 
challenges mentioned above, it is necessary to thoroughly 
identify all available SARS-CoV-2 vaccines by reviewing 
their mechanism of action, delivery systems, clinical effi-
cacy, side effects, and possible vaccine-induced mutations. 
These issues will be comprehensively discussed in the pre-
sent article, aiming to better the global vaccination process 
and policymaker decisions.

A comparison between SARS‑CoV 
and SARS‑CoV‑2

SARS-CoV is a virus responsible for the epidemic that 
started in 2003 and ended shortly after, resulting in only a 
few vaccines starting phase 1 clinical trial and other vaccines 

staying at the pre-clinical phase. Considering this issue, 
comparing SARS-CoV with SARS-CoV-2 is almost unfea-
sible; however, lessons regarding SARS-CoV vaccines can 
be taken to enhance the safety and efficacy of SARS-CoV-2 
vaccines. Since a better understanding of SARS-CoV-2 
leads to improved vaccine manufacture, this section provides 
information on this virus and its structure [15].

The phylogenetic tree analysis of SARS-CoV-2 shows 
that, like SARS-CoV, it belongs to a different clade from 
MERS-CoV [10]. Based on the genomic sequence com-
parison, SARS-CoV-2 shares about 79.6% and 50% over-
all genomic similarity with SARS-CoV and MERS-CoV, 
respectively [13]. While SARS-CoV and SARS-CoV-2 
share their entry receptor, angiotensin-converting enzyme 
2 (ACE2), MERS-CoV uses dipeptidyl peptidase (DPP)-4 
[16]. Regarding their structural proteins (Fig. 1), spike 
glycoprotein (S) on the particle's surface consists of two 
subunits that can bind to the cellular receptors and mediate 
infection, following which the cell begins replicating in the 
cytoplasm. Membrane (M) protein increases the membrane 
curvature, promoting the viral assembly. Envelope (E) pro-
tein is involved mainly in numerous functions in the viral 
replication cycle, such as assembly, release, and pathogen-
esis. Nucleocapsid (N) protein inhibits interferon (IFN) and 
plays a significant role in virus transcription and assem-
bly [3, 17, 18]. The results showed 76%, 90.1%, 90.6%, 
and 94.7% similarities between S, M, N, and E proteins of 
SARS-CoV and SARS-CoV-2, respectively [19]. Further-
more, some similarities and differences exist between SARS-
CoV and SARS-CoV-2 regarding receptor binding domain, 
host cell entry, and protease activation [20]. SARS-CoV and 
SARS-CoV-2 bind to the ACE2 receptor of human cells in 
many tissues, including the lungs, kidneys, heart, and testis, 
by their receptor-binding domain (RBD) in the S1 subunit 
[21]. Then, their envelope and the host cell membrane fuse 
to release the viral nucleocapsid into the target cells [22]. 
To this end, the S protein should be activated, so the S2 
subunit (cleaved from the S1 subunit by host cell proteases) 
assists the fusion process and transports the virion into the 
host cells [18].

By comparing the full-length S protein sequences, the 
most probable alterations were found on the S1 subunit sug-
gesting that the neutralizing antibodies that were once effec-
tive against SARS-CoV might not offer protection against 
SARS-CoV-2. Although cross-reactivity between the anti-
bodies seems to be cross-reactivity, cross-neutralization 
appears to be relatively rare [10, 23].

SARS-CoV-2 binding affinity is 10–20 times higher 
than SARS-CoV, causing a more efficient cell entry. SARS-
CoV-2 RBD, despite its higher affinity, is possibly less 
exposed than SARS-CoV RBD. This may be due to the 
“lying-down” position of its RBD, which can lead to inef-
fective receptor binding compared to the “standing-up” state 
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in SARS-CoV [18]. On the other hand, the immune evasion 
caused by this position contributes to the conformational 
masking strategies [18, 20, 23].

A protein sequence alignment analysis was performed 
to look deeper into the encoded proteins of SARS-CoV-2 
and SARS-CoV. Most of them were substantially homolo-
gous (95%–100%) and two SARS-CoV-2 proteins (ORF8 
and ORF10) had no counterparts in SARS-CoV, making it 
clinically meaningful to analyze the biological function of 
these two specific proteins [3].

SARS‑CoV and SARS‑CoV‑2 interactions 
with the immune system

Pathophysiology of SARS-CoV-2 and SARS-CoV infections 
closely resemble each other, with aggressive inflammatory 
responses heavily involved in damage to the airways. Put dif-
ferently, the viral infection rate and the host response are two 
contributory factors in this regard [24]. SARS-CoV-2 enters 
the body through the nasal-oral cavity [25]. Once inhaled, 
the virus primarily binds to the host cells through its target 
receptor. Earlier work on SARS-CoV demonstrated that the 
virus targets cells which express ACE2, such as airway epi-
thelial cells, alveolar epithelial cells, vascular endothelial 
cells, and macrophages in the lungs. Since SARS-CoV-2 

uses the same receptor, these cells are likely to be targeted 
[24].

SARS-CoV-2, as a cytopathic virus and as part of its repli-
cative cycle, prompts death and injury of virus-infected cells 
and tissues, which in the airway epithelial cells can lead to 
elevated levels of virus-linked pyroptosis (a highly inflam-
matory form of programmed cell death that is frequently 
seen with cytopathic viruses). This probably triggers an 
inflammatory response. The released pathogen-associated 
molecular patterns (PAMPs) such as viral RNA, and damage-
associated molecular patterns (DAMPs), including ATP and 
DNA, are detected by alveolar epithelial cells and alveolar 
macrophages, which use a variety of pattern-recognition 
receptors (PRRs). Subsequently, local inflammation occurs 
following hypersecretion of pro-inflammatory cytokines and 
chemokines, including interleukin (IL)-6, interferon gamma-
induced protein (IP)-10, macrophage inflammatory protein 
1α (MIP1α), MIP1β and monocyte chemoattractant protein 
1 (MCP1); all of which parallel the observations in SARS-
CoV. This results in the recruitment of immune cells, notably 
monocytes and T lymphocytes but not neutrophils, into the 
infected location, provoking further inflammation [24, 26].

In a healthy immune response, the primary inflamma-
tion caused by either SARS-CoV or SARS-CoV-2 attracts 
virus-specific T cells to the site of infection to eradicate the 

Fig. 1  Schematic presentation 
of coronavirus virion structure
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infected cells before the virus spreads and ultimately lead 
to minimal lung damage, clearance of the virus, and lastly, 
recovery. However, it has been reported that alveolar dys-
function in two COVID-19 cases led to cytokine storm and 
failure of multiple organs, including the lungs and heart [27].

In a dysfunctional immune response, the primary inflam-
mation may lead to the gathering of immune cells in the 
lungs and the overproduction of pro-inflammatory cytokines 
(also known as a cytokine storm). This causes acute respira-
tory disease syndrome (ARDS) and eventually lung dam-
age. Patients with severe COVID-19 required intensive care 
in hospitals displayed higher blood plasma levels of IL-2, 
IL-7, IL-10, IP-10, MCP1, MIP1α, and tumor necrosis factor 
(TNF). IL-6 level in these patients continued to increase over 
time and was higher in non-survivors than survivors. Fur-
thermore, patients with severe disease, compared to patients 
with a mild infection, showed a significantly higher per-
centage of CD14 + and CD16 + inflammatory monocytes in 
peripheral blood. These cells secrete inflammatory cytokines 
that help the cytokine storm (IP-10, MCP1, and MIP1α) 
[24, 25]. Subsequently, the cytokine storm might affect other 
organs, leading to multi-organ damage. For instance, ele-
vated levels of cytokines such as TNF were reported to cause 
septic shock, myocardial injury, and circulatory failure in 
some patients, especially those over 60 years of age. Further-
more, non-neutralizing antibodies produced by B cells may 
boost SARS-CoV-2 infection through antibody-dependent 
enhancement (ADE), further worsening organ damage [24].

In SARS-CoV-2 infection, production of type I and III 
interferons decreases, leading to an overall reduction in the 
transcription of antiviral genes [25]. Research on SARS-
CoV found that several viral structural and non-structural 
proteins can antagonize interferon responses, thus, elud-
ing the immune system. Coronaviruses are implied to pos-
sess the ability to escape from immune detection and curb 
human immune responses, which somewhat explains why 
they usually have a more extended incubation period [16]. 
Antagonism happens at different stages of the interferon 
signaling pathway, including pattern-recognition receptor 
(PRR) signaling through TNF receptor-associated factor 3 
(TRAF3), interferon regulatory factor 3 (IRF3), and other 
molecules, downstream interferon signaling through STAT1, 
PRR recognition of viral RNA and host mRNA degradation 
and host protein translation. Some of these pathways are 
present in SARS-CoV-2 [24]. SARS-CoV-2 infection can 
also decrease T cells and enhance the exhaustion of effector 
T cells, thereby reducing the immune response against the 
virus. This exhaustion results from a higher expression of 
inhibitory receptors on the cell’s surface, which is influenced 
by cytokines like IL-6, IL-10, and TNF-α [25, 28–31].

Following the viral clearance of either SARS-CoV or 
SARS-CoV-2, a group of memory T cells is produced to 
encounter re-infection. Re-stimulated CD4 + memory T cells 

activate B cells and other immune cells by cytokine produc-
tion, while cytotoxic memory T cells assist in eliminating 
the infected cells during a future infection. In addition to this 
mechanism, studies on SARS-CoV revealed that produced 
antibodies were present in the blood for at least six months to 
two years. According to a study in China, 93.88% of patients 
after one year and 89.58% after two years tested positive for 
IgG against SARS-CoV [31]. Whether these results can be 
extrapolated to all COVID-19 patients worldwide remains 
unknown and requires further investigations [25].

How antibodies decay is found to vary by individuals, 
target antigen, antibody isotype, and assay used in studies; 
anti-N antibodies are the fastest to decrease, followed by 
anti-RBD and anti-S antibodies [32–34]. The half-life of 
anti-S antibodies has been estimated to be 126–238 days in 
different studies [35–37]. Data are showing that SARS-CoV-
2-specific IgG was detectable in 90% of seroconversions up 
to one year post-infection [34, 38].

Factors affecting the severity of the infection

During the current pandemic, numerous studies have 
addressed the challenges with vaccine efficacy. Some chal-
lenges are related to the virus, while others are linked to 
epidemiological conditions, vaccine platforms, and gender. 
Most efforts have been focused on stimulating neutralizing 
antibody production, route of administration, dosage, and 
injection intervals [39]. The physiological heterogeneity 
among different individuals plays a critical role in vaccine 
efficacy [40]. Moreover, factors such as eligibility for all 
age groups, genetics, gender, ethnicity, history of former 
infection, and the emergence of new variants of concern 
(VOC) are considered obstacles to vaccine production [41]. 
Although results are conflicting regarding the impact of the 
different factors on the severity of the disease and vaccine 
responses, a brief explanation of how such issues can affect 
the overall mortality and morbidity from SARS-CoV and 
SARS-CoV-2 is provided below.

Genetics

Results from previous studies regarding the effect of host 
genetic factors on the severity of SARS-CoV are crucial to 
be used in the SARS-CoV-2 pandemic [42–44], which are 
discussed as follows.

SARS‑CoV

According to an in vivo study, there is a locus on chromo-
some 3 (including 23 genes and 13 non-coding RNAs), which 
contributes to SARS-CoV vascular cuffing and inflammation 
of the lungs [45]. Genetic polymorphism in those genes is 
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associated with different clinical manifestations in patients. 
Moreover, human cyclophilin A, a peptidyl-prolyl isomerase, 
contributes to the viral core sequestration. This protein binds 
to the N protein of the virus and interacts with the coronavirus 
proteins and genome. Single nucleotide polymorphism in the 
cyclophilin A gene contributes to heterogeneity of COVID-19 
severity in different individuals [45]. It is also suggested that 
ACE2 receptor polymorphism brings about varieties within 
individuals [45, 46]. The severity of the infection and suscep-
tibility to SARS are affected by a particular polymorphism of 
the CLEC4M gene (in the variable tandem repeats in exon) 
since L-SIGN, the coded protein of this gene is a receptor 
for the virus [45, 47]. Diverse quantities in mannose-binding 
lectin (MBL) may affect protection against SARS. For exam-
ple, a lower amount of MLB worsened the severity of SARS 
[46, 47]. It was also reported that Fc gamma RIIA-R/R131 
genotype polymorphism, which is in the human Fc gamma 
receptor IIA gene, was related to the severity of SARS infec-
tion [45]. Polymorphism of IFNγ + 874A and RANTES-28G 
alleles, MIF gene (on influenza), and human leukocyte antigen 
(HLA) also contributed to SARS' severity and mortality rate. 
Interactions of all these variables are contentious issues that 
need further investigation [45–47].

SARS‑CoV2

ACE2 ACE2 polymorphisms, such as p.Arg514Gly in the 
African/African-American population, were linked to car-
diovascular and pulmonary disorders by altering the interac-
tion between angiotensinogen and ACE2 receptor [48]. It has 
been reported that higher expression of ACE2 receptors posi-
tively correlated with the severity of the SARS-CoV-2 infec-
tion [45]. Since ACE2 is the key receptor for SARS-CoV-2, 
individuals with diabetes, hypertension, and chronic obstruc-
tive pulmonary disease [45] would be more susceptible to 
SARS-CoV-2 infection. Close contact is essential for recog-
nizing RBD. Changes in ACE2 residues at the binding inter-
face affect affinity, one of the most important determinants of 
host sensitivity [49]. hACE2 K353 and K31 are the signifi-
cant areas that form hydrogen bonds with the backbones of 
N501 and Q493, respectively, in the receptor-binding motif 
and play a role in the tight binding of the SARS-CoV-2 S pro-
tein [50]. The whole-genome sequencing of 1200 individuals 
and chip genotyping of more than 15,000 participants found 
two observed missense variants of ACE2, K26R, and S331F, 
which are responsible for reducing the receptor affinity of 
the viral Spike protein [51]. It has been discovered that 14 
ACE2 polymorphisms with increased susceptibility (I21V, 
E23K, K26R, N64K, T92I, Q102P, D206G, G211R, R219C, 
E329G, H378R, V447F, A501T, and N720D) had greater 
allele frequencies in European (non-Finnish) groups than in 
East Asian populations. Two resistance-related ACE2 poly-
morphisms (E35K and F72V) show greater allele frequencies 

in East Asian groups but are low or absent in European (non-
Finnish) populations. These findings are consistent with the 
pandemic scenario and could help explain why COVID-19 
prevalence and fatality rates in Europe and East Asia are so 
different [49]. Due to these findings, genetic variations in the 
ACE2 gene among individuals are remarkable factors that 
affect disease severity [51].

Inflammatory factors Higher amounts of ferritin, D-dimer, 
C-reactive protein, and increased levels of IL-2, IL-6, IL-10, 
and TNF-α have been associated with the severity and mor-
tality rates of SARS-CoV-2 infection [45]. Some reports indi-
cated that polymorphisms of rs1800896 in IL-10, rs2275913 
in IL-17A, and rs763780 loci in the IL-17F gene were corre-
lated with death rates in different countries [52]. However, in 
Northwestern Mexico, there was no association between the 
rs1800871 and rs1800872 polymorphisms and COVID-19 
severity and mortality [53]. To find an association between 
polymorphism of TNF-α gene and COVID-19 severity, a 
study showed that the presence of TNF-α polymorphism 
affected people's sensitivity to COVID-19 infection [54].

Transmembrane protease, serine 2 (TMPRSS2) TMPRSS2 
is a serine protease in various human tissues and is involved 
in SARS-CoV-2 infection. Genetic variations on this pro-
tein influence virus clearance in the host and predisposi-
tion to infection. Generally, polymorphisms at TMPRSS2 
RS2070788, RS7364083, and RS9974589 are crucial to 
consider. Also, the expression of TMPRSS2 is increased 
with the polymorphism at TMPRSS2 rs8134378 in men and 
favors the fusion of the virus membrane [45, 46, 55].

HLA loci Numerous studies stated the association between 
SARS-CoV-2 and HLA gene [47]. One study found that the 
HLA-A*24:02 allele influences susceptibility to COVID-19. 
Moreover, HLA-B*46:01 affects and enervates the immune 
system, thus enhancing the severity of the coronavirus infec-
tion in the Asian population. Due to some observation, rep-
etition, and conservation of HLA-B*15:03 between various 
viruses, one can assume that this allele somewhat protects 
coronaviruses [45]. New outcomes suggest that individu-
als with HLA-A*11:01, HLA-A*02:06, or HLA- B*54:01 
are probably preserved from SARS-CoV-2 infection [56]. 
Other studies on SARS-CoV and MERS-CoV reported that 
several HLA genotypes are associated with susceptibility 
or resistance, which include HLA- B*07:03, HLA-B*46:01, 
HLA-C*08:01, HLA-C*15:02, HLA-DRB1*03:01, HLA-
DRB1*11:01, and HLA- DRB1*12:02 [57, 58].

Gender

It is demonstrated that men have a higher mortality rate and 
worse outcomes during the COVID-19 pandemic and SARS 

383DARU Journal of Pharmaceutical Sciences (2022) 30:379–406



1 3

epidemic [57]. It has been shown that vaccines are more 
efficient in women as they lead to higher antibody responses, 
though vaccine side effects are more exacerbated within this 
gender [58, 59]. Several factors, including the immune sys-
tem, physiological factors, sex hormones, lifestyle, socio-
cultural behaviors, and prevalence of underlying diseases, 
are involved in morbidity and mortality [57, 60].

SARS‑CoV

Meaningful differences were observed in animal models 
regarding the level of pro-inflammatory cytokines, IL-6, 
and specific chemokines. Pro-inflammatory cytokines, IL-6 
and C–C motif chemokine ligand 2 (CCL2) and C-X-C 
motif chemokine ligand 1 (CXCL1) expression were 
reported to increase in the lungs of male mice. As a result, 
inflammatory responses in male mice lasted longer, causing 
higher mortality and lung immunopathology. Moreover, 
ACE2 expression was lower in females with heart failure 
than in men [59]. In a group of SARS-CoV cases in Bei-
jing, the infection rate was similar in males and females; 
however, the studies revealed gender-related differences 
regarding case fatality rates (CFR), with males experienc-
ing higher CFRs than females [61]. A study on a mouse 
model of SARS-CoV infection displayed greater suscepti-
bility to the disease in male mice compared to females of 
the same age [62].

SARS‑CoV‑2 interaction with different cell types

Estrogens may downregulate the expression of ACE2 recep-
tor genes located on X chromosomes and are associated 
with interferon expression in previous research [57, 59, 63]. 
Although some findings reported a relation between ACE2 
receptors and mortality rate in men, the exact association is 
still a mystery. Besides, several studies noted that males have 
more ACE2 receptors on the endothelium of the lungs [59, 
64]. The expression of TMPRSS2 mRNA is not different 
among males and females in the lung tissue, but it may be 
regulated by androgens of prostate cells [57, 63]. Moreover, 
as men express more TMPRSS2 protein in their androgen-
sensitive tissues like the prostate and testis, they are more 
sensitive to the infection [55].

A single X chromosome in men compared to two in 
women increases inflammation within this gender [64]. 
Aging significantly reduces immune factors like B cells, T 
cells, and natural killer cells in males [59]. Sex hormones 
also regulate the function of the immune system [57, 59, 
63]. Higher levels of IL-6 can cause severe disease among 
males [57]. These differences may eventually lead to a faster 
clearance of pathogens in females [46].

About early antiviral responses, Toll-like receptor 7 
(TLR7) plays a role in innate sensing of the virus and has 
higher expression in females [57, 59, 64]. IFN-α is also 
expressed more in adult females than adult males [47]. Alto-
gether, females have more efficient innate immune responses 
and a higher level of inflammatory cytokine production than 
males [58, 65]. Viral detection takes longer in males [63]. 
Macrophage and neutrophil activity and pattern recognition 
receptors are also said to differ among these two genders but 
have not been completely clarified [58].

In adaptive immune responses, antibody levels are higher 
in females since estrogens lead to escalation of the somatic 
hypermutations, gender dissimilarities in germinal center 
formation, fewer stringent selection against autoreactive B 
cells, and the epigenetic obtainability of B cell loci [63, 64]. 
T cells are also affected by gender. Overall, T-cell responses 
are more robust in females than males [58]. It has been 
shown that ACE2 genes are expressed in the testicles at high 
levels, and that is why viral clearance takes longer for males 
compared to female counterparts [59].

Age

During the time of the COVID-19 pandemic, the elderly 
population became more susceptible to the disease, and 
they were at increased risk of death; therefore, it is cru-
cial to compare mortality and morbidity variations between 
individuals of different ages, since these factors can lead to 
diverse responses to viruses as well as vaccines [66–68]. The 
relation between ACE2 expression and aging is still in inves-
tigation. ACE2 expression was lower in the heart, but its 
activity was raised in aged animals [69]. In the lungs, ACE2 
mRNA expression was higher in adult females, whereas pro-
tein levels and activity were reduced in the aged females 
compared to males. In the kidneys, ACE2 activity is sex-
dependent rather than age-dependent, with an elevation in 
males [70]. Estrogens and androgens level is also reduced 
as people get older, which may impact ACE2 expression.

Moreover, higher levels of ACE2 in children probably lead 
to a protective effect against SARS-CoV-2 [71]. This is most 
likely due to children’s unique ACE plasma profile that can 
be identified from birth. A rise in urine and plasma levels of 
ACE2, as well as an increase in local placental production and 
activity of ACE2, was recognized during mid to late pregnancy 
as a result of estradiol, known as the modulator of the ACE/
ACE2. ACE can cross the placenta, allowing the mother to 
pass on her immunity and other protective soluble elements  
to the infant [72–74]. The number of lymphocytes signifi-
cantly decreases at the early stages of the disease in adults, 
while children have normal white blood cells and lymphocytes 
count [67]. It is also mentioned that “trained immunity” in  
children can lead to a milder disease [71]. Breastmilk contain-
ing some antiviral proteins such as Lactoferrin and Casein, 
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along with maternal antibodies, are other factors protecting 
infants against infection [66].

In 2021, after global vaccination, several studies were 
done to evaluate age as one of the factors for vaccine immune 
responses. Xia et al. claimed that people aged 60 and above 
who received the Sinopharm inactivated vaccine showed fewer 
neutralizing antibodies than those aged 18–59. In another 
study, Müller et al. concluded that 31.3% of people aged 80 
and older given the BNT162b2 vaccine display no neutral-
izing antibodies after the second injection, compared to 2.2% 
of those younger than 60 [39]. Therefore the diversity in the 
responses among age categories was enumerated as a chal-
lenge for vaccine production.

Ethnicity and geographical differences

African-American race is considered to have a greater mor-
tality rate [75]. A study showed that ACE2 expression was 
high in East Asian females [76]. TMPRSS2 allele frequency 
is also different among populations as it is a lower frequency 
in East Asians [55]. Thus, differences in gene expression, 
immune system, or even genetic background play a role in 
diverse responses to SARS-CoV-2 [76]. Furthermore, some 
national variations such as their access to health care, qual-
ity of nutrition, substance abuse, social distancing policies, 
social behavior, the incidence of obesity, diabetes, being 
over 65 years old, access to health care, and socioeconomic 
development level should be considered to explain why mor-
tality rates vary from place to place [75, 77, 78].

Infection history

At the beginning of the global vaccination, the debatable issue 
was whether previously infected patients with COVID-19 were 
required to receive the same full range of vaccination regimens 
as those who were not experienced. Hence, the rate of specific 
anti-SARS-CoV-2 neutralizing antibodies in the serum sam-
ples was examined. Among vaccine regimens using the BNT-
162b2nAb, titers were considerably lower in uninfected peo-
ple receiving both doses than in previously infected patients 
receiving only one dose. Thereby, to maximize the herd [79] of 
the entire regimens, it is recommended to vaccinate previously 
infected patients with only a single dose [39, 80–82].

SARS‑CoV and SARS‑ CoV‑2 vaccines

COVID-19 vaccine producers have taken the previous 
investigations on SARS vaccines (in 2003) into account. 
During the SARS outbreak, it took almost four months to 
develop a range of usable antigens for the animal, and cell 
culture trials before the genome sequence of the coronavi-
rus became available. The first human trial on the SARS Ta
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vaccine was conducted in Beijing (December 2004) after 
the epidemic had ended. Therefore, studies stopped at the 
preclinical stage, and still, there are no available vaccines 
against SARS-CoV and MERS-CoV [83, 84] (Table 3). 
The lack of SARS-CoV and MERS-CoV vaccines could be 
related to insufficient funding and a poor understanding of 
the viruses’ biology [84].

The mechanism of action of SARS-CoV and SARS-
CoV-2 vaccines significantly resemble each other. Scien-
tists attempt to find ways to expose the immune system to 
the spike protein on the virus membrane to stimulate virus 
identification during further exposure and induce antibody 
responses (Tables 1, 2 and 3). To this end, the same vaccine 
platforms were used to develop vaccines against SARS-CoV 
and SAR-CoV-2, which are discussed as follows. SARS-
CoV, SAR-CoV-2, and MERS vaccine evolution is briefly 
summarized in Fig. 2.

Vaccine platforms

Virus‑based vaccines

Virus-based vaccines are the platform most commonly 
used for other diseases, either as an inactivated (killed) 
or live attenuated virus that contains most of the virus 
antigens [14]. In killed vaccines, the virus is inactivated 
by radiation, heat, or formaldehyde. This platform offers 
a broad antigenic profile while being safe (i.e., the inca-
pability to replicate) and less expensive than DNA/RNA 
vaccines. In live attenuated vaccines, serial passage of 
the virus leads to a reduction in its virulence. Hence, 
this platform produces strong and long-lasting humoral 
and cellular immune responses and offers a broad anti-
genic profile. Meanwhile, virus-based vaccines are 
associated with safety concerns due to their higher risk 
of virus replication, and thus, they are rarely used in 
immunocompromised patients [140–142].

Protein‑based vaccines

Instead of using the whole virus, many researchers choose 
protein subunit vaccines and use antigens with strong immu-
nogenicity, for example, the S protein or only the RBD 
[14]. The recombinant RBD vaccines compose of several 
conformational neutralizing epitopes, stimulating effective 
neutralizing antibodies against SARS-CoV [143]. Another 
protein-based vaccine strategy includes virus-like particles 
(VLP), offering a broad antigenic profile via imitating the 
SARS-CoV-2 structure on the surface of a non-replicative 
empty virus shell without genetic material [14, 140]. This 
platform is considered safer with lower cost than conven-
tional vaccine platforms [141, 142].
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Viral vector‑based vaccines

Several viruses, e.g., vesicular stomatitis virus (VSV), influ-
enza, measles, and adenovirus, could also be engineered as 
replicative or non-replicative recombinant vectors which 
express coronavirus S protein [14]. Vaccines produced by 
this platform are categorized as replicating and non-repli-
cating vectors. In non-replicating kinds, virus replication is 
prevented by removing a gene responsible for encoding a 
structural protein. As the name suggests, replicating vectors 
can replicate in the cells and, therefore, require a smaller dos-
age. However, there are some safety concerns regarding their 
administration in immunocompromised patients [141, 142].

Nucleic acid‑based vaccines

DNA‑based vaccines DNA vaccines are usually created 
using plasmid DNA containing eukaryotic expression ele-
ments to encode one or more antigens. DNA vaccines are 
stable, generally administered through intramuscular and 
intradermal injection, and activate both humoral and cellular 
immune responses. One obstacle is that they shall cross two 
cellular membranes before entering the nucleus. Another 
is that no DNA vaccine has previously been approved for 
human administration [14, 142].

RNA‑based vaccines The mRNA, encapsulated in lipid nan-
oparticles, enters the cytoplasm as a template to be trans-
lated, making multiple copies of the antigen. It may code 
the full-length S protein or a fraction [14, 141]. Like vec-
tor and DNA-based vaccines, mRNA vaccines can induce 
both humoral and cellular immunity. mRNA vaccines are 

considered to be safe, fast, and efficient. The only setback is 
the low temperature needed for transportation and storage 
[141, 142].

DNA/ RNA as vaccine delivery system for COVID‑19

The key challenge in developing DNA/RNA vaccines is 
the host cells' probability of being picked up. There are two 
standard methods of introducing the DNA/RNA into the host 
immune cells [14]: first, using viral vectors; and second, 
using a delivery system to carry the DNA/RNA across the 
cell membrane to boost the synthesis of S protein.

Electroporation

This method temporarily applies a high-voltage electric 
pulse to the living cells. Consequently, DNA can pass 
through the membrane with more permeability. INOVIO 
pharmaceutical uses this technology (CELLECTRA®) to 
produce the COVID-19 vaccine [144].

Oligonucleotides (DNA/RNA) delivery

Oligonucleotides are macromolecules that present high ther-
apeutic indexes remarkably when the formulation is tailored 
to reach specific tissues and sites of action. In the process 
of oligonucleotide delivery, nanoparticles need to encap-
sulate adequate amounts of nucleic acid and have specific 
tissue targeting properties. Thus, combining LNPs (Lipid-
Based Nanoparticles) and immune-modulatory oligonucleo-
tide adjuvants induces synergistic effects for immunologic 
responses [145, 146].

Fig. 2  The rise and fall of 
coronaviruses in the past two 
decades
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Adeno‑associated virus (AAV) and lentivirus‑based vaccines

Seven front runners (in clinical stages) of COVID-19 vac-
cine candidates mainly use nucleic acid vaccines which con-
tain non-replicating viral vectors such as adeno-associated 
virus or lentivirus for vaccine delivery [146]. AAV encodes 
different antigens, stimulating a robust immune response in 
vaccinated individuals via various delivery methods. With 
these promising qualities, rAAV vectors are widely used for 
vaccine development (e.g., AAV-2 serotype as a vector for 
delivery of SARS-CoV immunogen) [147–149].

Lipid nanoparticle (LNP) systems

Viruses and nanoparticles are similar in size. Nano-materials 
are also ideal for antigen delivery as adjuvants and copies 
of viral structures, allowing nanotechnology to assist vac-
cine development [150]. Nanotechnology aids novel vaccine 
design, especially in the case of COVID-19. The first vac-
cine candidate launched into clinical trials is an mRNA vac-
cine delivered via lipid nanoparticles [146]. The announce-
ment of the Pfizer and Moderna vaccines breakthrough in 

November 2020 has gained the attention of scientists and 
manufacturers. Practically, a vital part of these vaccines' suc-
cess is based on their drug delivery particle, the lipid nano-
particle carrier. This system solves the delivery challenges 
by transporting the vaccine to the proper cellular populations 
and subcellular locations [92].

Moreover, LNPs can fulfill the basic conditions of an 
RNA/DNA delivery system. They can also preserve nucleic 
acids from digestion when they move to the target cell. Last, 
LNPs can be produced by catatonic outer membranes to 
allow cell entry [151–153].

LNPs improve the stability of mRNA-based vaccines 
such as mRNA-1273 Moderna. Nanocarriers present these 
payloads (DNA-RNA) to antigen-presenting cells (APCs). 
These carriers can provide innate adjuvant behavior and 
synchronize delivery of both antigen and adjuvant to target 
immune cells [154, 155].

Silica nanoparticle for DNA and RNA delivery

This method has been proven to be safe. It is an alterna-
tive to the LNP method to cover LNP deficiencies (i.e., 

Table 4  Case reports of reinfection

The randomized data gathered is until January 2021, though, in recent months more cases have been confirmed
Abbreviations: ADE: Antibody-dependent enhancement; NA: Not available

Reported Country Age/
Gender

Time gap Explanation Recovered References

Nov. 21 South Korea 21/Female 10 days - Symptoms:  1st case: mild;  2nd case: mild
- The genetic sequencing results belonged to a different strain of 

SARS-CoV-2

Yes [179]

Aug. 28 United States 25/Male 31 days - Symptoms:  1st case: mild;  2nd case: severe
- First, a very high dose of virus might have led to the second 

instance of infection and a more severe disease. Second, it is pos-
sible that reinfection was caused by a more virulent version of the 
virus, whether generally or specifically in this person. Third, a 
mechanism of ADE might be the cause. It is possible that a case of 
continuous infection entailing deactivation was reported

Yes [180]

Sep. 29 Qatar 20 s/Male 45 days NA; nearly all of the suspected cases were men and young adults Yes [181]
Aug. 30 Ecuador 46/Male 47 days - Symptoms:  1st case: mild;  2nd case: moderate

- High levels of IgG antibodies were found after the second infection
Yes [182]

Sep. 23 United States 42/Male 51 days - Symptoms:  1st case: mild;  2nd case: severe Yes [183]
Sep. 15 India 25/Male 100 days - Symptoms:  1st case: asymptomatic  2nd case: asymptomatic

- Second infection was asymptomatic but had a higher viral load
Yes [184, 185]

Sep. 15 India 28/Female 101 days - Symptoms:  1st case: asymptomatic  2nd case: asymptomatic
- Second infection was asymptomatic but had a higher viral load

Yes [184, 185]

Sep. 26 United States 60/NA 118 days - Symptoms:  1st case: severe;  2nd case: mild Yes [184]
Oct. 16 Sweden 53/Female 120 days - Symptoms:  1st case: mild;  2nd case: milder

- Low levels of antibodies were found after the second infection with 
a low viral load in the nasopharynx

Yes [184]

Aug. 24 Hong Kong 33/Male 123 days - Symptoms:  1st case: mild;  2nd case
asymptomatic

Yes [186]
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insufficient delivery of nucleic acids into the cells). Another 
crucial advantage is that the mesoporous silica-nanoparticles 
(MSNs) have excellent biocompatibility and chemical stabil-
ity attaching to oligonucleotides, including DNA, RNA, and 
siRNA [146, 150].

COVID‑19 vaccine challenges

Probably, the best way to limit infections is vaccination. It 
has two outstanding usages; first, decreasing the number 
of infected people and hence lessening virus spreading; 
second, preventing multi-infection, and if not, reducing 
post-recovery syndromes [15]. The manufacturers have 
been facing some challenges during the development of 
the COVID-19 vaccine, as outlined below.

Animal models

The virus's ability to infect a particular cell or tissue (viral 
tropism) may lead to the suspension of the vaccine devel-
opment at the preclinical phase and is the rationale behind 
animal testing [156]. This big challenge must be addressed 
before the clinical phases [15]. Another challenge is that 
the vaccine candidate may trigger an immune response in 
animal models, which may not be replicated in humans. 
This is because animals may not produce biological char-
acteristics akin to the human model, which makes the 
mortality and efficacy rates unreliable [157]. Neverthe-
less, pigs make good models since they are susceptible to 
SARS-CoV-2 and have a human-like nature [158]. In vitro 
experiments on animal models do not necessarily assure a 
similar efficacy for humans.

Viral vector‑based vaccines

The viral vector’s challenge lies in the production of the 
vaccine. This incomplete process results in the defective 
vector turning into some plasmids. Viral vector-based 
vaccine production has an impact on the cost and recov-
ery yield. Enhancing the downstream process reduces the 
price and increases the recovery yield [150].

S protein

Vaccines block the interaction between ACE2 receptors 
on the host cells and S proteins [159]. While not much 
biological data exists on the whole mechanism [158]. If 
there is enough concentration of S protein in the body, its 
bioavailability causes the infection to spread [159]. More-
over, the ratio of the titer of antibody IgG to nucleotides 
and virion depends on the S protein. The formation of S 

protein complexes decreases the IgG efficacy [159]. Vac-
cine developers focus more on S protein as a functional 
site of the virus due to its ability to attach to the recep-
tor. Vaccines can block this and make virus-neutralizing 
antibodies in the lung cells [158]. Mutation of S protein, 
although it may lead to stronger binding between S protein 
and receptor by affecting the function, might not affect 
viral pathogenicity [159].

Humoral immune responses

Recombinant protein vaccines cause humoral immune 
responses, which cannot provide decent immunogenicity 
for the body [150]. These proteins may have higher efficacy 
if adjuvants are added to their formulations; for instance, 
Novavax, adjuvanted with matrix M1, uses the noted strat-
egy [83]. Recently, Sanofi adjuvanted recombinant protein 
SARS-CoV-2 vaccine candidate in collaboration with the US 
Biomedical Advanced Research and Development Authority 
(BARDA) and GSK is under major examination focusing on 
original D.614 virus as well as B.1.351 variant among 18 
and older, in diverse regions [160]. This platform is suitable 
for middle- and low-income countries since it is inexpensive 
and safer than other platforms [161].

Glycosylation

Glycosylation of the vaccine upon administration in humans 
is a big challenge. Through glycosylation, the vaccine cam-
ouflages itself so the immunogenic antigens cannot be vis-
ible to the immune system leading to evasion from the host 
immune system. This phenomenon may negatively impact 
the effectiveness of the vaccine [159].

mRNA vaccines

mRNA is a platform that has been much used in designing 
the new vaccines for SARS-CoV-2. It limits the spreading of 
infections; however, drawbacks, including safety and immu-
nogenicity, are among the challenges hindering vaccine 
development. Moreover, RNA is destroyed quickly, another 
con of this platform [159]. The risk of infection still exists 
in vaccine platforms that use weakened or killed viruses. 
However, they are more reliable and safer than others. These 
vaccines have some non-specific effects like activating mem-
ory cells, i.e., antibodies produced by mRNA vaccines tar-
get S protein (skipping the glycosylation), unlike vaccines 
containing killed or weakened viruses [159]. Consequently, 
vaccines that only contain specific antigens, such as Pfizer/
BioNTech (BNT162b2) or Moderna/NIAID (mRNA-1273), 
are better able to launch an adaptive immune attack against 
the virus. By introducing these latter antigens, the immune 
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system is distracted without being able to target the virus 
effectively with induced antibodies or T cells [162].

Mutations' effect on vaccine efficacy

A mutation is an expected change in genome sequencing 
that makes organisms different. So far, many mutations 
have been reported, but most do not affect transmission and 
pathogenicity. Usually, due to the ability of proofreading 
during replication, the rate of mutations is less than other 
RNA viruses. However, it has been suggested that a G614 
mutation in the virus spike glycoprotein (compared to the 
previous variant of D614) could increase the transmission 
and infectivity of the virus but did not affect disease severity 
[163]. Moreover, studies have shown that certain medicines 
could affect the rate of coronavirus mutation. Coronavirus 
mutation rates increased when β-D-N4-hydroxycytidine-
5'-isopropyl ester (NHC) exerted antiviral activity. This 
compound inhibited the replication of highly pathogenic 
human coronaviruses. EIDD-2801, an antiviral drug known 
as molnupiravir, is more effective at combating MERS-CoV 
infection when mutation rates are higher [164].

These are variants with various mutations in their genome 
sequences which may cause further challenges in vaccine 
efficacy:

– Variant B.1.1.7 (also known as 20I / 501Y.V1 and VOC 
202,012/01): this variant was discovered for the first 
time in the United Kingdom. Significant mutations in the 
deletion processes are found in strains N5014, P681H, 
H69-V70, and Y144/145 of B.1.1.7. These mutations 
of N501Y increased the affinity to the receptor bind-
ing, explaining the rapid spread of B.1.1.7 [165]. One of 
the mutations in the B.1.1.7 variant is a mutation in the 
N501Y receptor binding domain that has increased the 
virus transmission rate [158]. A study of variant B.1.1.7 
of SARS-CoV-2 showed that its mortality rate was 30 
percent higher than other previous variants [165].

– Variant B.1.351 (also known as 20H / 501Y.V2): this vari-
ant was found in South Africa. The N501Y and E484K 
mutations have also been found within this variant, the 
latter is said to affect neutralization by polyclonal and 
monoclonal antibodies. There has been no evidence that 
this variant is associated with the disease severity [158]. 
Numerous mutations have been identified in NTD, three in 
RBD, and one at the furin cleavage site. Due to the emer-
gence of new variants, the efficacy of current monoclo-
nal antibodies (mAb) therapies and vaccines is at risk. In 
conclusion, many mutations occur, either in the antigenic 
supersite (NTD16,17) or in the ACE2-binding site (which 
is a major target of antiviral antibodies) [165, 166].

– Variant B.1.1.28 (with the new name P.1 that was discov-
ered in the four Brazilian passengers in Tokyo, Japan): 

The P.1 variant also has 17 mutations and three deletions, 
as well as the E484K and N501Y mutations. The pos-
sibility exists that certain mutations within this variant 
could impair the ability of antibodies produced by infec-
tion or vaccination to neutralize or detect the virus [158]. 
Viruses with co-mutations with the P.1 variant carry an 
increased risk of spreading the disease. It is a fact that the 
common mutation in the variant permitted contamination 
similar to that in the South African variant, as well as 
creating new risk factors [165, 166].

– Variant B.1.617.2 (also known as Delta) was first detected 
in Maharashtra in October 2020. It has spread nationwide 
since then. Compared to the wild-type Wuhan-1 bearing 
D614G, B.1.617.2 is sixfold less sensitive to neutralizing 
serum antibodies from recovered individuals and eight-
fold more sensitive to antibodies induced by vaccination. 
A lower level of neutralizing antibody against B.1.617.2 
was found in ChAdOx1 vaccinates than in BNT162b2 
[167].

– South Africa first reported the variant B.1.1.529 (named 
Omicron) to WHO on November 24, 2021. A recent epi-
demiological report on South Africa showed three dis-
tinct peaks in reported cases. In the spike, Omicron has 
26–32 mutations, which make it highly divergent. There 
is a possibility that some of these mutations involve 
immune escape potential and higher transmission; how-
ever, existing data are conflicting [166].

Problems with vaccination strategies

Cold chain

Currently, companies are dealing with conserving the vac-
cines in the cold chain since biological compounds have bet-
ter stability in liquid form. They invest 80% of their produc-
tion expenses [150]. Converting liquid from vaccine to dry 
powder (currently available for intranasal vaccines) makes 
transportation more accessible, reduces vaccine cost, and 
makes it more heat-resistant [150]. Lyophilized spike protein 
was fully functional when incubated at 60 °C during the 
experiment. On the other hand, the integrity of the liquid 
formulations was compromised on day 7 at 40 °C. However, 
the liquid formulation of Spike protein failed after less than 
one day at 60 °C [168].

Antibody‑dependent enhancement (ADE)

ADE is a dangerous condition that may aggravate the 
inflammation in vaccinated individuals upon exposure to 
the SARS-CoV-19. The mechanism behind this phenom-
enon is yet to be discovered. However, one possibility is 
that the non-neutralizing anti‐S antibodies may expedite 
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uptake by macrophages. This leads to macrophage stimula-
tion, production of pro-inflammatory cytokines (IL‐6, IL‐8, 
and MCP1), and loss of tissue‐repaired cytokine (TGFβ), 
causing the virus to enter the host cell and spread the infec-
tion [169]. A neutralizing antibody acts as a viral receptor. 
It binds to the surface spike proteins of coronaviruses, caus-
ing a conformational alteration in the spike and intermedi-
ating viral access to IgG Fc receptor-expressing cells. This 
immunopathological event has been reported in other viral 
infections. Previously, it has been shown that if the target 
cells were reinfected by another serotype of dengue virus 
(i.e., secondary infection), the pre-existing antibodies could 
not thoroughly neutralize the virus and led to ADE. Thus, 
human trials should carefully evaluate vaccine safety and 
potentially harmful immune responses [159]. One action 
plan to reduce the chance of ADE is using the S1 or RBD 
antigen of SARS-CoV-2 instead of the complete full‐length 
S protein. Moreover, selecting Th1‐skewed adjuvants rather 
than alum adjuvants may avoid the inflammatory, immune-
pathological, and ADE effects [159].

Side effects

During the process of SARS and MERS vaccine manufactur-
ing, trials failed due to significant and potentially lethal side 
effects. For instance, a whole-virus (inactivated) vaccine was 
tested in ferrets and non-human primates, and a virus-like 
particle vaccine was tested in mice. The vaccines provided 
protection; however, the lungs of mice were infected with the 
virus [158]. One of the common immunopathological com-
plications related to SARS-CoV and MERS-CoV vaccines 
was ADE [170]. In addition, elevated temperature (range 
1–2.5 °C peaked on the second day), nasal discharge, and 
sneezing were observed in ferrets during the SARS-CoV 
whole killed and adenovirus vector-based vaccine study 
[171]. According to the above-mentioned adverse effects, 
development processes end at the preclinical phase.

Nonetheless, everything has changed when it comes to 
the current COVID-19 pandemic. One year has passed since 
the first wave of the pandemic, and still, we are facing this 
virus’ mutations. Despite all the expected adverse effects, 
vaccine manufacturers should try their best not to eradi-
cate but at least alleviate vaccines' side effects necessarily. 
Most SARS-CoV-2 vaccines use only small portions of the 
virus or the virus’ RNA as a platform. This may sidestep 
the problems with SARS-CoV vaccines containing more 
virus parts. Therefore, many different methods for vaccines 
are being tested by global laboratories to reduce these side 
effects [172].

Despite estimated side effects, approved vaccines worth 
the risk of not contracting COVID-19. The first dose and 
second dose of vaccination have unpleasant but not serious 
side effects, except in pregnant women and children [172]. 

These adverse effects are similar in different COVID-19 
vaccines that reached the third clinical trial phase. These 
effects are also classified based on their duration and inten-
sity [172].

According to the studies on SARS-CoV and MERS-CoV 
vaccine development process, there is a concern about the 
use of coronavirus S-based vaccines since inflammatory and 
pathological immune effects such as pulmonary eosinophilic 
infiltration and ADE may occur. Earlier studies on SARS 
and MERS vaccine candidates have pointed to the risk of 
ADE; however, there is no clear evidence for SARS-CoV-2 
[95, 173].

Since side effects of COVID-19 vaccines are mild and 
transient, they are usually out of concern. There may be pain, 
redness, or swelling at the injection site. Tiredness, head-
ache, muscle pain, chills, fever, and nausea are common side 
effects in the rest of the body [174]. These symptoms may be 
signs of immune system response in the activation of T-cells 
and B-cells. However, our attention was drawn to an issue, 
society’s uncertainty about being vaccinated. Therefore, we 
cannot assure vaccines are safe unless most of society has 
taken a shot [24, 175].

Reinfections

When a virus variant in circulation causes a second infec-
tion, which was not known to be present at the first infection, 
it is probably considered reinfection. Some SARS-CoV-2 
reinfections (primarily mild) have been documented in sev-
eral studies [176]. Kojima and Klausner reviewed several 
clinical and epidemiological studies. They found that the 
risk of reinfection with SARS-CoV-2 decreased by 80.5–100 
percent among those who had had COVID-19 [176]. Vacci-
nation efficacy against SARS-CoV-2 may vary in cases with 
a history of previous COVID-19 infection. Some studies 
compared the risk of reinfection between previously infected 
individuals who had never been vaccinated and those who 
had received vaccination after infection. A case–control 
study from May–June 2021 in Kentucky found that previ-
ously infected individuals who were unvaccinated had 2.3 
times greater odds of reinfection than previously infected 
but vaccinated individuals. Delta was not the dominant vari-
ant in the United States at the time of the study [177]. A 
series of matched-cohort studies involving 1,531,736 indi-
viduals vaccinated with mRNA vaccines between December 
21, 2020, and September 19 found that prior SARS-CoV-2 
infection was associated with a significantly lower risk for 
breakthrough infection among vaccine receivers [178]. Such 
findings provide evidence for the claim that post-infection 
immunity plus post-vaccination immunity may result in 
antibody responses bigger than post-infection immunity 
(hybrid immunity). However, a severe SARS-CoV-2 has 
been reported after recovery from breakthrough infection 
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by an alpha variant is fully vaccinated (COVISHIELD®) 
health workers [177]. Whole genome sequencing confirmed 
that reinfection had happened with the Delta variant.

After vaccination, the ratio of reinfection has decreased. 
Besides, Omicron may have an increased risk for reinfection 
than other variants of concern (e.g., those who have previ-
ously had COVID-19 are more likely to become infected 
with Omicron), but the information is limited [166]. The 
immunological black box of COVID-19 has not been fully 
decoded, and more cohort and retrospective studies are 
required to improve our understanding of vaccine efficacy 
upon emergence of new variants (Table 4).

Conclusion

During the SARS-CoV outbreak in 2002–2003, although 
44 vaccines were launched in preclinical stages, only six 
vaccines got into clinical trials. In contrast to SARS-CoV-2, 
the prevalence of SARS-CoV was not that high, and the 
epidemic ended after a while. Therefore, the development 
of all SARS vaccines was left incomplete. Consequently, at 
the beginning of the COVID-19 outbreak, scientists used 
previous SARS-CoV data to extend COVID-19 vaccines. 
While published data on COVID-19 vaccines showed con-
siderable efficacy and immunogenicity, future studies will 
provide more accurate information on probable vaccination 
impacts on receivers considering age, gender, and ethnicity, 
providing an opportunity to prevent people from transmitting 
the virus. COVID-19 vaccine developers are currently fac-
ing many challenges, including cold supply chain, vaccine 
stability duration, transportation difficulties, complications 
concerning booster doses, short time follow-up duration, not 
enough data about immunization and vaccines' long-term 
effects, the probability of asymptomatic infections after vac-
cination, interaction of vaccines with other medicines and 
more notably, limited number of receivers.
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