Skip to main content

Advertisement

Log in

Effect of Sintering Time on the Mechanical and Corrosion Behavior of Zn–Mg Composites with a Core–Shell Structure Prepared by SPS

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Zn-10 Mg composite with a core–shell structure was prepared by spark plasma sintering (SPS) technology, and a systematic study of the microstructure and properties has been conducted for different sintering times. The shell layer dominated by the hard MgZn2 phase thickens with the increase in sintering time, which has a positive effect on the mechanical and degradation properties of the material. The sample sintered for 20 min (T-20) has the best mechanical properties, with a compressive strength of 226 MPa and a compression rate of 6.5%. The corrosion resistance of samples increases as the sintering time prolongs, while the hydrogen evolution volume and pH value decrease in the immersion experiment. Furthermore, the increase in the shell thickness significantly reduces the corrosion rate, which is attributed to the weakening of the galvanic corrosion reaction between the Mg core and the MgZn2 shell. Therefore, composite with unique core–shell structure provides an advanced design idea for degradable biomaterials, and a reasonable control of sintering time can provide the optimal design strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. X. Wang, X. Shao, T. Dai, F. Xu, J.G. Zhou, G. Qu, L. Tian, B. Liu, Y. Liu, Acta Biomater. 92, 351 (2019)

    Article  Google Scholar 

  2. J.L. Wang, J.K. Xu, C. Hopkins, D.H.K. Chow, L. Qin, Adv. Sci. 7, 1902443 (2020)

    Article  CAS  Google Scholar 

  3. N. Li, Y. Zheng, J. Mater. Sci. Technol. 29, 489 (2013)

    Article  CAS  Google Scholar 

  4. W. Jahnen Dechent, M. Ketteler, Clin. Kidney J. 5, i3 (2012)

    Article  CAS  Google Scholar 

  5. W. Pachla, S. Przybysz, A. Jarzebska, M. Bieda, K. Sztwiertnia, M. Kulczyk, J. Skiba, Bioact. Mater. 6, 26 (2021)

    Article  CAS  Google Scholar 

  6. D. Vojtěch, J. Kubásek, J. Šerák, P. Novák, Acta Biomater. 7, 3515 (2011)

    Article  Google Scholar 

  7. J. Kubásek, D. Vojtěch, E. Jablonská, I. Pospíšilová, J. Lipov, T. Ruml, Mater. Sci. Eng. C 58, 24 (2016)

    Article  Google Scholar 

  8. E. Jablonská, D. Vojtěch, M. Fousová, J. Kubásek, J. Lipov, J. Fojt, T. Ruml, Mater. Sci. Eng. C 68, 198 (2016)

    Article  Google Scholar 

  9. C. Shen, X. Liu, B. Fan, P. Lan, F. Zhou, X. Li, H. Wang, X. Xiao, L. Li, S. Zhao, Z. Guo, Z. Pu, Y. Zheng, RSC Adv. 6, 86410 (2016)

    Article  CAS  Google Scholar 

  10. A. Jarzębska, M. Bieda, J. Kawałko, Ł Rogal, P. Koprowski, K. Sztwiertnia, W. Pachla, M. Kulczyk, Mater. Lett. 211, 58 (2018)

    Article  Google Scholar 

  11. H.F. Li, X.H. Xie, Y.F. Zheng, Y. Cong, F.Y. Zhou, K.J. Qiu, X. Wang, S.H. Chen, L. Huang, L. Tian, L. Qin, Sci. Rep. 5, 10719 (2015)

    Article  CAS  Google Scholar 

  12. H. Li, H. Yang, Y. Zheng, F. Zhou, K. Qiu, X. Wang, Mater. Des. 83, 95 (2015)

    Article  CAS  Google Scholar 

  13. H. Yang, X. Qu, W. Lin, D. Chen, D. Zhu, K. Dai, Y. Zheng, A.C.S. Biomater, Sci. Eng. 5, 453 (2019)

    CAS  Google Scholar 

  14. J. Kubásek, D. Dvorský, J. Čapek, J. Pinc, D. Vojtěch, Materials 12, 3930 (2019)

    Article  Google Scholar 

  15. Z. Cui, M. Luo, Y. Zhang, D. Gong, W. Wang, J. Wang, Mater. Lett. 279, 128525 (2020)

    Article  CAS  Google Scholar 

  16. T. Kokubo, H. Takadama, Biomaterials 27, 2907 (2006)

    Article  CAS  Google Scholar 

  17. E. McCafferty, Corros. Sci. 12, 3202 (2005)

    Article  Google Scholar 

  18. ASTM G31–72 (2004), Standard Practice for Laboratory Immersion Corrosion Testing of Metals (ASTM International, West Conshohocken, 2004). www.astm.org. https://doi.org/10.1520/g0031-72r04

  19. Y. Meng, G. Jiang, X. Ju, J. Hao, Mater. Charact. 129, 336 (2017)

    Article  CAS  Google Scholar 

  20. B. Rashkova, W. Prantl, R. Görgl, J. Keckes, S. Cohen, M. Bamberger, G. Dehm, Mater. Sci. Eng. A 494, 158 (2008)

    Article  Google Scholar 

  21. K. Yan, J. Bai, H. Liu, Z.Y. Jin, J. Magnes. Alloy. 5, 336 (2017)

    Article  CAS  Google Scholar 

  22. J. Yang, J.L. Wang, Y.M. Wu, L.M. Wang, H.J. Zhang, Mater. Sci. Eng. A 460, 296 (2007)

    Article  Google Scholar 

  23. V. Mamedov, Powder Metall. 45, 322 (2002)

    Article  CAS  Google Scholar 

  24. K. Rezwan, Q.Z. Chen, J.J. Blaker, A.R. Boccaccini, Biomaterials 27, 3413 (2006)

    Article  CAS  Google Scholar 

  25. H. Shao, Y. Huang, Y. Liu, Z. Xiao, Solid State Commun. 343, 114644 (2022)

    Article  CAS  Google Scholar 

  26. X.N. Gu, Y.F. Zheng, Front. Mater. Sci. China 4, 111 (2010)

    Article  Google Scholar 

  27. H.Y. Niu, F.F. Cao, K.K. Deng, K.B. Nie, J.W. Kang, H.W. Wang, Acta Metall. Sin. -Engl. Lett. 33, 362 (2020)

  28. Y. Yan, H. Cao, Y. Kang, K. Yu, T. Xiao, J. Luo, Y. Deng, H. Fang, H. Xiong, Y. Dai, J. Alloys Compd. 693, 1277 (2017)

    Article  CAS  Google Scholar 

  29. D. Noviana, D. Paramitha, M.F. Ulum, H. Hermawan, J. Orthop. Translat. 5, 9 (2016)

    Article  Google Scholar 

  30. L.A. Schneider, A. Korber, S. Grabbe, J. Dissemond, Arch. Dermatol. Res. 298, 413 (2007)

    Article  Google Scholar 

  31. Y. Shen, W. Liu, K. Lin, H. Pan, B.W. Darvell, S. Peng, C. Wen, L. Deng, W.W. Lu, J. Chang, Langmuir 27, 2701 (2011)

    Article  CAS  Google Scholar 

  32. W.D. Mueller, M. Lucia Nascimento, M.F. Lorenzo de Mele, Acta Biomater. 6, 1749 (2010)

    Article  CAS  Google Scholar 

  33. Y. Liu, X. Liu, Z. Zhang, N. Farrell, D. Chen, Y. Zheng, Corros. Sci. 161, 108185 (2019)

    Article  CAS  Google Scholar 

  34. F. Rosalbino, E. Angelini, D. Macciò, A. Saccone, S. Delfino, Electrochim. Acta 54, 1204 (2009)

    Article  CAS  Google Scholar 

  35. J.W. Lee, B.R. Park, S.Y. Oh, D.W. Yun, J.K. Hwang, M.S. Oh, S.J. Kim, Corros. Sci. 160, 108170 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Natural Science Research General Program of Shanxi Province, China (No. 202103021224048), and the Shanxi Zhejiang University New Materials and Chemical Research Institute Scientific Research Project (No. 2022SX-TD025).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zeqin Cui or Jianzhong Wang.

Ethics declarations

Conflict of interest

The authors state that there are no conflicts of interest to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Z., Zhou, L., Hao, X. et al. Effect of Sintering Time on the Mechanical and Corrosion Behavior of Zn–Mg Composites with a Core–Shell Structure Prepared by SPS. Acta Metall. Sin. (Engl. Lett.) 36, 1305–1316 (2023). https://doi.org/10.1007/s40195-023-01548-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-023-01548-1

Keywords

Navigation